LoneStriker
commited on
Commit
•
ead795a
1
Parent(s):
fe08759
Upload folder using huggingface_hub
Browse files- README.md +118 -0
- added_tokens.json +3 -0
- config.json +27 -0
- generation_config.json +10 -0
- model.safetensors.index.json +370 -0
- output.safetensors +3 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +50 -0
- trainer_state.json +2011 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
|
6 |
+
## TIGERScore
|
7 |
+
|
8 |
+
[Project Page](https://tiger-ai-lab.github.io/TIGERScore/) | [Paper](https://arxiv.org/abs/2310.00752) | [Code](https://github.com/TIGER-AI-Lab/TIGERScore) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/TIGERScore) |
|
9 |
+
[🤗TIGERScore-7B](https://huggingface.co/TIGER-Lab/TIGERScore-7B-V1.2) | [🤗TIGERScore-13B](https://huggingface.co/TIGER-Lab/TIGERScore-13B-V1.2)
|
10 |
+
|
11 |
+
## Introduction
|
12 |
+
|
13 |
+
We present TIGERScore, a **T**rained metric that follows **I**nstruction **G**uidance to perform **E**xplainable, and **R**eference-free evaluation over a wide spectrum of text generation tasks. TIGERScore is guided by natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA-2, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.
|
14 |
+
|
15 |
+
## Training Data
|
16 |
+
|
17 |
+
The models are trained on the 🤗 [MetricInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MetricInstruct), which covers 6 text generation tasks and 22 text generation datasets. Check out the dataset card for more details.
|
18 |
+
|
19 |
+
## Training Procedure
|
20 |
+
|
21 |
+
The models are fine-tuned with the MetricInstruct dataset using the original Llama-2 model as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details.
|
22 |
+
|
23 |
+
## Evaluation
|
24 |
+
|
25 |
+
TIGERScore significantly surpasses traditional metrics, i.e. BLUE, ROUGE, BARTScore, and BLEURT, and emerging LLM-based metrics as reference-free metrics. Though our dataset was originally sourced from ChatGPT, our distilled model actually outperforms ChatGPT itself, which proves the effectiveness of our filtering strategy. On the unseen task of story generation, TIGERScore also demonstrates reasonable generalization capability.
|
26 |
+
|
27 |
+
| Tasks→ | Summarization | Translation | Data2Text | Long-form QA | MathQA | Instruction Following | Story-Gen | Average |
|
28 |
+
|-------------------------------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|
|
29 |
+
| GPT-3.5-turbo (few-shot) | **38.50** | 40.53 | 40.20 | 29.33 | **66.46** | 23.20 | 4.77 | 34.71 |
|
30 |
+
| GPT-4 (zero-shot) | 36.46 | **43.87** | **44.04** | **48.95** | 51.71 | **58.53** | **32.48** | **45.15** |
|
31 |
+
| BLEU | 11.98 | 19.73 | 33.29 | 11.38 | 21.12 | **46.61** | -1.17 | 20.42 |
|
32 |
+
| ROUGE-2f | 14.53 | 17.83 | 35.49 | 16.83 | 22.12 | 44.56 | 2.34 | 21.96 |
|
33 |
+
| InstructScore | 26.33 | 47.30 | 43.93 | 21.62 | -4.15 | 16.19 | 16.13 | 23.91 |
|
34 |
+
| GPTScore-ref | 14.73 | 24.95 | 39.42 | 31.60 | 18.20 | 33.14 | 18.24 | 25.75 |
|
35 |
+
| BARTScore-cnn(hypo-ref) | 13.64 | 28.53 | 36.12 | 29.57 | **23.35** | 32.49 | 26.64 | 27.19 |
|
36 |
+
| BARTScore-para (hypo-ref) | 17.18 | 33.72 | 40.79 | 28.94 | 17.27 | 34.47 | 17.43 | 27.11 |
|
37 |
+
| BERTScore | 23.67 | 42.41 | 43.75 | 25.60 | 11.53 | 45.77 | 2.88 | 27.95 |
|
38 |
+
| BLEURT | 17.30 | 48.41 | **48.76** | 33.26 | 3.53 | 36.46 | 27.52 | 30.75 |
|
39 |
+
| UniEval(summ) | **47.52** | 21.90 | 38.38 | **41.83** | 19.78 | 16.02 | **44.46** | 32.84 |
|
40 |
+
| COMET-22 | 33.75 | **56.35** | 33.92 | 35.28 | -5.53 | 46.13 | 39.20 | **34.16** |
|
41 |
+
| BARTScore-para (src-hypo) | **38.68** | 9.60 | 32.26 | 26.86 | -2.70 | 5.92 | 20.55 | 18.74 |
|
42 |
+
| BARTScore-cnn (src-hypo) | 35.50 | 12.83 | 34.33 | 40.96 | 1.50 | 25.43 | 33.48 | 26.29 |
|
43 |
+
| Llama-2-13b-chat-0-shot | 28.53 | 14.38 | 29.24 | 19.91 | 1.08 | 21.37 | 26.78 | 20.18 |
|
44 |
+
| COMETKiwi | 16.27 | **48.48** | 27.90 | 18.05 | -11.48 | 34.86 | 18.47 | 21.79 |
|
45 |
+
| GPTScore-src | 37.41 | 8.90 | 28.82 | 39.48 | 14.25 | 26.46 | 23.91 | 25.61 |
|
46 |
+
| TIGERScore-7B (ours) | 35.11 | 41.50 | 42.39 | **47.11** | 21.23 | 43.57 | 39.26 | 38.60 |
|
47 |
+
| TIGERScore-13B (ours) | 36.81 | 44.99 | **45.88** | 46.22 | **23.32** | **47.03** | **46.36** | **41.52** |
|
48 |
+
| Δ (ours - best reference-free) | -2 | -3 | +12 | +5 | +9 | +14 | +13 | +16 |
|
49 |
+
|
50 |
+
## Formatting
|
51 |
+
|
52 |
+
|
53 |
+
To format the data fields into a single prompt for finetuning or testing, We provide the following code for users to refer:
|
54 |
+
```python
|
55 |
+
FINETUNE_INST = "You are evaluating errors in a model-generated output for a given instruction."
|
56 |
+
FINETUNE_INPUT = """\
|
57 |
+
Instruction: ${generation_instruction}
|
58 |
+
${input_context}
|
59 |
+
|
60 |
+
|
61 |
+
Model-generated Output:
|
62 |
+
${hypothesis_output}
|
63 |
+
|
64 |
+
|
65 |
+
For each error you give in the response, please also elaborate the following information:
|
66 |
+
- error location (the words that are wrong in the output)
|
67 |
+
- error aspect it belongs to.
|
68 |
+
- explanation why it's an error, and the correction suggestions.
|
69 |
+
- severity of the error ("Major" or "Minor").
|
70 |
+
- reduction of score (between 0.5 and 5 given the severity of the error)
|
71 |
+
|
72 |
+
Your evaluation output:
|
73 |
+
"""
|
74 |
+
inst_part = Template(FINETUNE_INST)
|
75 |
+
inst_part = inst_part.substitute(task=task)
|
76 |
+
input_part = Template(FINETUNE_INPUT)
|
77 |
+
input_part = input_part.substitute(
|
78 |
+
generation_instruction=instruction,
|
79 |
+
input_context=input_context,
|
80 |
+
hypothesis_output=hypo_output
|
81 |
+
)
|
82 |
+
prompt = (inst_part + "\n" + input_part).strip("\n ") + "\n"
|
83 |
+
encodings = tigerscore_tokenizer(prompt, return_tensors="pt")
|
84 |
+
input_ids = encodings["input_ids"].to(tigerscore_model.device)
|
85 |
+
attention_mask = encodings["attention_mask"].to(tigerscore_model.device)
|
86 |
+
```
|
87 |
+
|
88 |
+
Example of formatted prompt:
|
89 |
+
```txt
|
90 |
+
You are evaluating errors in a model-generated output for a given instruction.
|
91 |
+
Instruction: Translate the following text from German to English.
|
92 |
+
Der künftige EM-Cheforganisator Philipp Lahm soll laut Grindel im DFB-Präsidium mitarbeiten.
|
93 |
+
|
94 |
+
|
95 |
+
Model-generated Output:
|
96 |
+
According to Grindel, the future head of the European Championships, Philipp Lahm, is to participate in the DFB Presidency.
|
97 |
+
|
98 |
+
|
99 |
+
For each error you give in the response, please also elaborate the following information:
|
100 |
+
- error location (the words that are wrong in the output)
|
101 |
+
- error aspect it belongs to.
|
102 |
+
- explanation why it's an error, and the correction suggestions.
|
103 |
+
- severity of the error ("Major" or "Minor").
|
104 |
+
- reduction of score (between 0.5 and 5 given the severity of the error)
|
105 |
+
|
106 |
+
Your evaluation output:
|
107 |
+
```
|
108 |
+
|
109 |
+
## Citation
|
110 |
+
|
111 |
+
```
|
112 |
+
@article{jiang2023TIGERScore,
|
113 |
+
title={TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks},
|
114 |
+
author={Dongfu Jiang, Yishan Li, Ge Zhang, Wenhao Huang, Bill Yuchen Lin, Wenhu Chen},
|
115 |
+
journal={arXiv preprint arXiv:2310.00752},
|
116 |
+
year={2023}
|
117 |
+
}
|
118 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/ML-A100/models/Llama-2-13b-hf",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 13824,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 40,
|
17 |
+
"num_key_value_heads": 40,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 10000.0,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.35.1",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 32001
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.35.1"
|
10 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26031749120
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e8336e15e59ee2f77a9e126aa6322da840534294df9eef34e5b4e16f750d808
|
3 |
+
size 8397306104
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "[PAD]",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"bos_token": "<s>",
|
39 |
+
"clean_up_tokenization_spaces": false,
|
40 |
+
"eos_token": "</s>",
|
41 |
+
"legacy": false,
|
42 |
+
"model_max_length": 1024,
|
43 |
+
"pad_token": "[PAD]",
|
44 |
+
"padding_side": "right",
|
45 |
+
"sp_model_kwargs": {},
|
46 |
+
"spaces_between_special_tokens": false,
|
47 |
+
"tokenizer_class": "LlamaTokenizer",
|
48 |
+
"unk_token": "<unk>",
|
49 |
+
"use_default_system_prompt": false
|
50 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 664,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 1.3082402064781276e-06,
|
14 |
+
"loss": 0.7935,
|
15 |
+
"step": 2
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 2.6164804129562553e-06,
|
20 |
+
"loss": 0.7,
|
21 |
+
"step": 4
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 3.381751875681663e-06,
|
26 |
+
"loss": 0.6316,
|
27 |
+
"step": 6
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.02,
|
31 |
+
"learning_rate": 3.924720619434383e-06,
|
32 |
+
"loss": 0.5405,
|
33 |
+
"step": 8
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 4.345879896760937e-06,
|
38 |
+
"loss": 0.522,
|
39 |
+
"step": 10
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.04,
|
43 |
+
"learning_rate": 4.689992082159791e-06,
|
44 |
+
"loss": 0.4827,
|
45 |
+
"step": 12
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04,
|
49 |
+
"learning_rate": 4.980934789368156e-06,
|
50 |
+
"loss": 0.4555,
|
51 |
+
"step": 14
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05,
|
55 |
+
"learning_rate": 5.2329608259125105e-06,
|
56 |
+
"loss": 0.45,
|
57 |
+
"step": 16
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.05,
|
61 |
+
"learning_rate": 5.4552635448851985e-06,
|
62 |
+
"loss": 0.4315,
|
63 |
+
"step": 18
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.06,
|
67 |
+
"learning_rate": 5.6541201032390644e-06,
|
68 |
+
"loss": 0.4153,
|
69 |
+
"step": 20
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07,
|
73 |
+
"learning_rate": 5.83400774154115e-06,
|
74 |
+
"loss": 0.4374,
|
75 |
+
"step": 22
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.07,
|
79 |
+
"learning_rate": 5.99823228863792e-06,
|
80 |
+
"loss": 0.4171,
|
81 |
+
"step": 24
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.08,
|
85 |
+
"learning_rate": 6.149304227398896e-06,
|
86 |
+
"loss": 0.41,
|
87 |
+
"step": 26
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.08,
|
91 |
+
"learning_rate": 6.289174995846284e-06,
|
92 |
+
"loss": 0.4101,
|
93 |
+
"step": 28
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.09,
|
97 |
+
"learning_rate": 6.419391565964472e-06,
|
98 |
+
"loss": 0.4075,
|
99 |
+
"step": 30
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.1,
|
103 |
+
"learning_rate": 6.541201032390639e-06,
|
104 |
+
"loss": 0.395,
|
105 |
+
"step": 32
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.1,
|
109 |
+
"learning_rate": 6.655623437887147e-06,
|
110 |
+
"loss": 0.3873,
|
111 |
+
"step": 34
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.11,
|
115 |
+
"learning_rate": 6.763503751363326e-06,
|
116 |
+
"loss": 0.4005,
|
117 |
+
"step": 36
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.11,
|
121 |
+
"learning_rate": 6.865549773769684e-06,
|
122 |
+
"loss": 0.3754,
|
123 |
+
"step": 38
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.12,
|
127 |
+
"learning_rate": 6.9623603097171925e-06,
|
128 |
+
"loss": 0.3733,
|
129 |
+
"step": 40
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.13,
|
133 |
+
"learning_rate": 7.054446458571692e-06,
|
134 |
+
"loss": 0.3622,
|
135 |
+
"step": 42
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.13,
|
139 |
+
"learning_rate": 7.1422479480192775e-06,
|
140 |
+
"loss": 0.369,
|
141 |
+
"step": 44
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.14,
|
145 |
+
"learning_rate": 7.226145833886759e-06,
|
146 |
+
"loss": 0.3745,
|
147 |
+
"step": 46
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.14,
|
151 |
+
"learning_rate": 7.306472495116047e-06,
|
152 |
+
"loss": 0.3775,
|
153 |
+
"step": 48
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.15,
|
157 |
+
"learning_rate": 7.3835195870437456e-06,
|
158 |
+
"loss": 0.3652,
|
159 |
+
"step": 50
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.16,
|
163 |
+
"learning_rate": 7.457544433877025e-06,
|
164 |
+
"loss": 0.3645,
|
165 |
+
"step": 52
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.16,
|
169 |
+
"learning_rate": 7.528775214088733e-06,
|
170 |
+
"loss": 0.3554,
|
171 |
+
"step": 54
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.17,
|
175 |
+
"learning_rate": 7.597415202324413e-06,
|
176 |
+
"loss": 0.3591,
|
177 |
+
"step": 56
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.17,
|
181 |
+
"learning_rate": 7.663646266610644e-06,
|
182 |
+
"loss": 0.3797,
|
183 |
+
"step": 58
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.18,
|
187 |
+
"learning_rate": 7.7276317724426e-06,
|
188 |
+
"loss": 0.363,
|
189 |
+
"step": 60
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.19,
|
193 |
+
"learning_rate": 7.789519010511834e-06,
|
194 |
+
"loss": 0.367,
|
195 |
+
"step": 62
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.19,
|
199 |
+
"learning_rate": 7.849441238868767e-06,
|
200 |
+
"loss": 0.367,
|
201 |
+
"step": 64
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.2,
|
205 |
+
"learning_rate": 7.907519410744684e-06,
|
206 |
+
"loss": 0.3696,
|
207 |
+
"step": 66
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.2,
|
211 |
+
"learning_rate": 7.963863644365277e-06,
|
212 |
+
"loss": 0.3627,
|
213 |
+
"step": 68
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.21,
|
217 |
+
"learning_rate": 8.018574479650967e-06,
|
218 |
+
"loss": 0.3689,
|
219 |
+
"step": 70
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.22,
|
223 |
+
"learning_rate": 8.071743957841455e-06,
|
224 |
+
"loss": 0.344,
|
225 |
+
"step": 72
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.22,
|
229 |
+
"learning_rate": 8.123456553166724e-06,
|
230 |
+
"loss": 0.3412,
|
231 |
+
"step": 74
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.23,
|
235 |
+
"learning_rate": 8.173789980247812e-06,
|
236 |
+
"loss": 0.3574,
|
237 |
+
"step": 76
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.23,
|
241 |
+
"learning_rate": 8.222815896602431e-06,
|
242 |
+
"loss": 0.339,
|
243 |
+
"step": 78
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.24,
|
247 |
+
"learning_rate": 8.270600516195319e-06,
|
248 |
+
"loss": 0.3547,
|
249 |
+
"step": 80
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.25,
|
253 |
+
"learning_rate": 8.317205147216999e-06,
|
254 |
+
"loss": 0.358,
|
255 |
+
"step": 82
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.25,
|
259 |
+
"learning_rate": 8.36268666504982e-06,
|
260 |
+
"loss": 0.3475,
|
261 |
+
"step": 84
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.26,
|
265 |
+
"learning_rate": 8.407097929574588e-06,
|
266 |
+
"loss": 0.3554,
|
267 |
+
"step": 86
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.27,
|
271 |
+
"learning_rate": 8.450488154497406e-06,
|
272 |
+
"loss": 0.3406,
|
273 |
+
"step": 88
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.27,
|
277 |
+
"learning_rate": 8.492903235168008e-06,
|
278 |
+
"loss": 0.3267,
|
279 |
+
"step": 90
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.28,
|
283 |
+
"learning_rate": 8.534386040364887e-06,
|
284 |
+
"loss": 0.341,
|
285 |
+
"step": 92
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.28,
|
289 |
+
"learning_rate": 8.574976672697987e-06,
|
290 |
+
"loss": 0.3524,
|
291 |
+
"step": 94
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.29,
|
295 |
+
"learning_rate": 8.614712701594175e-06,
|
296 |
+
"loss": 0.3584,
|
297 |
+
"step": 96
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.3,
|
301 |
+
"learning_rate": 8.653629372258186e-06,
|
302 |
+
"loss": 0.3351,
|
303 |
+
"step": 98
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.3,
|
307 |
+
"learning_rate": 8.691759793521874e-06,
|
308 |
+
"loss": 0.3522,
|
309 |
+
"step": 100
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.31,
|
313 |
+
"learning_rate": 8.729135107090682e-06,
|
314 |
+
"loss": 0.3544,
|
315 |
+
"step": 102
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.31,
|
319 |
+
"learning_rate": 8.765784640355151e-06,
|
320 |
+
"loss": 0.3408,
|
321 |
+
"step": 104
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.32,
|
325 |
+
"learning_rate": 8.80173604464618e-06,
|
326 |
+
"loss": 0.3519,
|
327 |
+
"step": 106
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.33,
|
331 |
+
"learning_rate": 8.837015420566862e-06,
|
332 |
+
"loss": 0.3417,
|
333 |
+
"step": 108
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.33,
|
337 |
+
"learning_rate": 8.87164743182396e-06,
|
338 |
+
"loss": 0.3555,
|
339 |
+
"step": 110
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.34,
|
343 |
+
"learning_rate": 8.90565540880254e-06,
|
344 |
+
"loss": 0.3477,
|
345 |
+
"step": 112
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.34,
|
349 |
+
"learning_rate": 8.93906144297322e-06,
|
350 |
+
"loss": 0.3298,
|
351 |
+
"step": 114
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.35,
|
355 |
+
"learning_rate": 8.971886473088772e-06,
|
356 |
+
"loss": 0.3431,
|
357 |
+
"step": 116
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.36,
|
361 |
+
"learning_rate": 9.004150364012388e-06,
|
362 |
+
"loss": 0.3504,
|
363 |
+
"step": 118
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.36,
|
367 |
+
"learning_rate": 9.035871978920727e-06,
|
368 |
+
"loss": 0.3327,
|
369 |
+
"step": 120
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.37,
|
373 |
+
"learning_rate": 9.067069245538941e-06,
|
374 |
+
"loss": 0.3284,
|
375 |
+
"step": 122
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.37,
|
379 |
+
"learning_rate": 9.09775921698996e-06,
|
380 |
+
"loss": 0.3345,
|
381 |
+
"step": 124
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.38,
|
385 |
+
"learning_rate": 9.127958127775227e-06,
|
386 |
+
"loss": 0.3464,
|
387 |
+
"step": 126
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.39,
|
391 |
+
"learning_rate": 9.157681445346895e-06,
|
392 |
+
"loss": 0.336,
|
393 |
+
"step": 128
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.39,
|
397 |
+
"learning_rate": 9.186943917681705e-06,
|
398 |
+
"loss": 0.3546,
|
399 |
+
"step": 130
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.4,
|
403 |
+
"learning_rate": 9.215759617222812e-06,
|
404 |
+
"loss": 0.3194,
|
405 |
+
"step": 132
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.4,
|
409 |
+
"learning_rate": 9.244141981517345e-06,
|
410 |
+
"loss": 0.3296,
|
411 |
+
"step": 134
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.41,
|
415 |
+
"learning_rate": 9.272103850843403e-06,
|
416 |
+
"loss": 0.3331,
|
417 |
+
"step": 136
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.42,
|
421 |
+
"learning_rate": 9.299657503090295e-06,
|
422 |
+
"loss": 0.3362,
|
423 |
+
"step": 138
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.42,
|
427 |
+
"learning_rate": 9.326814686129093e-06,
|
428 |
+
"loss": 0.3414,
|
429 |
+
"step": 140
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.43,
|
433 |
+
"learning_rate": 9.353586647887207e-06,
|
434 |
+
"loss": 0.3249,
|
435 |
+
"step": 142
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.43,
|
439 |
+
"learning_rate": 9.379984164319582e-06,
|
440 |
+
"loss": 0.3334,
|
441 |
+
"step": 144
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.44,
|
445 |
+
"learning_rate": 9.406017565450707e-06,
|
446 |
+
"loss": 0.3294,
|
447 |
+
"step": 146
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.45,
|
451 |
+
"learning_rate": 9.43169675964485e-06,
|
452 |
+
"loss": 0.3436,
|
453 |
+
"step": 148
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.45,
|
457 |
+
"learning_rate": 9.457031256247281e-06,
|
458 |
+
"loss": 0.3216,
|
459 |
+
"step": 150
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.46,
|
463 |
+
"learning_rate": 9.48203018672594e-06,
|
464 |
+
"loss": 0.3509,
|
465 |
+
"step": 152
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.46,
|
469 |
+
"learning_rate": 9.50670232443118e-06,
|
470 |
+
"loss": 0.326,
|
471 |
+
"step": 154
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.47,
|
475 |
+
"learning_rate": 9.53105610308056e-06,
|
476 |
+
"loss": 0.3391,
|
477 |
+
"step": 156
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.48,
|
481 |
+
"learning_rate": 9.555099634066188e-06,
|
482 |
+
"loss": 0.3264,
|
483 |
+
"step": 158
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.48,
|
487 |
+
"learning_rate": 9.578840722673449e-06,
|
488 |
+
"loss": 0.3245,
|
489 |
+
"step": 160
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.49,
|
493 |
+
"learning_rate": 9.602286883292267e-06,
|
494 |
+
"loss": 0.333,
|
495 |
+
"step": 162
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.49,
|
499 |
+
"learning_rate": 9.625445353695127e-06,
|
500 |
+
"loss": 0.3491,
|
501 |
+
"step": 164
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.5,
|
505 |
+
"learning_rate": 9.648323108449636e-06,
|
506 |
+
"loss": 0.34,
|
507 |
+
"step": 166
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.51,
|
511 |
+
"learning_rate": 9.670926871527948e-06,
|
512 |
+
"loss": 0.3343,
|
513 |
+
"step": 168
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.51,
|
517 |
+
"learning_rate": 9.693263128169957e-06,
|
518 |
+
"loss": 0.3311,
|
519 |
+
"step": 170
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.52,
|
523 |
+
"learning_rate": 9.715338136052716e-06,
|
524 |
+
"loss": 0.333,
|
525 |
+
"step": 172
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.52,
|
529 |
+
"learning_rate": 9.73715793581418e-06,
|
530 |
+
"loss": 0.3002,
|
531 |
+
"step": 174
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.53,
|
535 |
+
"learning_rate": 9.758728360975532e-06,
|
536 |
+
"loss": 0.3271,
|
537 |
+
"step": 176
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.54,
|
541 |
+
"learning_rate": 9.780055047302923e-06,
|
542 |
+
"loss": 0.323,
|
543 |
+
"step": 178
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.54,
|
547 |
+
"learning_rate": 9.801143441646136e-06,
|
548 |
+
"loss": 0.3562,
|
549 |
+
"step": 180
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.55,
|
553 |
+
"learning_rate": 9.821998810288924e-06,
|
554 |
+
"loss": 0.3228,
|
555 |
+
"step": 182
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.55,
|
559 |
+
"learning_rate": 9.842626246843015e-06,
|
560 |
+
"loss": 0.3422,
|
561 |
+
"step": 184
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.56,
|
565 |
+
"learning_rate": 9.863030679715369e-06,
|
566 |
+
"loss": 0.3296,
|
567 |
+
"step": 186
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.57,
|
571 |
+
"learning_rate": 9.883216879176116e-06,
|
572 |
+
"loss": 0.3176,
|
573 |
+
"step": 188
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.57,
|
577 |
+
"learning_rate": 9.903189464052494e-06,
|
578 |
+
"loss": 0.3297,
|
579 |
+
"step": 190
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.58,
|
583 |
+
"learning_rate": 9.922952908072303e-06,
|
584 |
+
"loss": 0.3246,
|
585 |
+
"step": 192
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.58,
|
589 |
+
"learning_rate": 9.942511545878664e-06,
|
590 |
+
"loss": 0.3261,
|
591 |
+
"step": 194
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.59,
|
595 |
+
"learning_rate": 9.961869578736312e-06,
|
596 |
+
"loss": 0.3258,
|
597 |
+
"step": 196
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.6,
|
601 |
+
"learning_rate": 9.98103107994822e-06,
|
602 |
+
"loss": 0.3269,
|
603 |
+
"step": 198
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.6,
|
607 |
+
"learning_rate": 1e-05,
|
608 |
+
"loss": 0.324,
|
609 |
+
"step": 200
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.61,
|
613 |
+
"learning_rate": 1e-05,
|
614 |
+
"loss": 0.3106,
|
615 |
+
"step": 202
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.61,
|
619 |
+
"learning_rate": 1e-05,
|
620 |
+
"loss": 0.3086,
|
621 |
+
"step": 204
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.62,
|
625 |
+
"learning_rate": 1e-05,
|
626 |
+
"loss": 0.3269,
|
627 |
+
"step": 206
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.63,
|
631 |
+
"learning_rate": 1e-05,
|
632 |
+
"loss": 0.3396,
|
633 |
+
"step": 208
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.63,
|
637 |
+
"learning_rate": 1e-05,
|
638 |
+
"loss": 0.3249,
|
639 |
+
"step": 210
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.64,
|
643 |
+
"learning_rate": 1e-05,
|
644 |
+
"loss": 0.3294,
|
645 |
+
"step": 212
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.64,
|
649 |
+
"learning_rate": 1e-05,
|
650 |
+
"loss": 0.3502,
|
651 |
+
"step": 214
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.65,
|
655 |
+
"learning_rate": 1e-05,
|
656 |
+
"loss": 0.3329,
|
657 |
+
"step": 216
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.66,
|
661 |
+
"learning_rate": 1e-05,
|
662 |
+
"loss": 0.3501,
|
663 |
+
"step": 218
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.66,
|
667 |
+
"learning_rate": 1e-05,
|
668 |
+
"loss": 0.3375,
|
669 |
+
"step": 220
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.67,
|
673 |
+
"learning_rate": 1e-05,
|
674 |
+
"loss": 0.3326,
|
675 |
+
"step": 222
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.67,
|
679 |
+
"learning_rate": 1e-05,
|
680 |
+
"loss": 0.3312,
|
681 |
+
"step": 224
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.68,
|
685 |
+
"learning_rate": 1e-05,
|
686 |
+
"loss": 0.3246,
|
687 |
+
"step": 226
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.69,
|
691 |
+
"learning_rate": 1e-05,
|
692 |
+
"loss": 0.3142,
|
693 |
+
"step": 228
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.69,
|
697 |
+
"learning_rate": 1e-05,
|
698 |
+
"loss": 0.3246,
|
699 |
+
"step": 230
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.7,
|
703 |
+
"learning_rate": 1e-05,
|
704 |
+
"loss": 0.329,
|
705 |
+
"step": 232
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.7,
|
709 |
+
"learning_rate": 1e-05,
|
710 |
+
"loss": 0.3446,
|
711 |
+
"step": 234
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.71,
|
715 |
+
"learning_rate": 1e-05,
|
716 |
+
"loss": 0.3205,
|
717 |
+
"step": 236
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.72,
|
721 |
+
"learning_rate": 1e-05,
|
722 |
+
"loss": 0.3066,
|
723 |
+
"step": 238
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.72,
|
727 |
+
"learning_rate": 1e-05,
|
728 |
+
"loss": 0.3267,
|
729 |
+
"step": 240
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.73,
|
733 |
+
"learning_rate": 1e-05,
|
734 |
+
"loss": 0.3169,
|
735 |
+
"step": 242
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.73,
|
739 |
+
"learning_rate": 1e-05,
|
740 |
+
"loss": 0.333,
|
741 |
+
"step": 244
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.74,
|
745 |
+
"learning_rate": 1e-05,
|
746 |
+
"loss": 0.3155,
|
747 |
+
"step": 246
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.75,
|
751 |
+
"learning_rate": 1e-05,
|
752 |
+
"loss": 0.3263,
|
753 |
+
"step": 248
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.75,
|
757 |
+
"learning_rate": 1e-05,
|
758 |
+
"loss": 0.3154,
|
759 |
+
"step": 250
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.76,
|
763 |
+
"learning_rate": 1e-05,
|
764 |
+
"loss": 0.3303,
|
765 |
+
"step": 252
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.77,
|
769 |
+
"learning_rate": 1e-05,
|
770 |
+
"loss": 0.3298,
|
771 |
+
"step": 254
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.77,
|
775 |
+
"learning_rate": 1e-05,
|
776 |
+
"loss": 0.3319,
|
777 |
+
"step": 256
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.78,
|
781 |
+
"learning_rate": 1e-05,
|
782 |
+
"loss": 0.3178,
|
783 |
+
"step": 258
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.78,
|
787 |
+
"learning_rate": 1e-05,
|
788 |
+
"loss": 0.3178,
|
789 |
+
"step": 260
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.79,
|
793 |
+
"learning_rate": 1e-05,
|
794 |
+
"loss": 0.3163,
|
795 |
+
"step": 262
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.8,
|
799 |
+
"learning_rate": 1e-05,
|
800 |
+
"loss": 0.2977,
|
801 |
+
"step": 264
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.8,
|
805 |
+
"learning_rate": 1e-05,
|
806 |
+
"loss": 0.3184,
|
807 |
+
"step": 266
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.81,
|
811 |
+
"learning_rate": 1e-05,
|
812 |
+
"loss": 0.3359,
|
813 |
+
"step": 268
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.81,
|
817 |
+
"learning_rate": 1e-05,
|
818 |
+
"loss": 0.321,
|
819 |
+
"step": 270
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.82,
|
823 |
+
"learning_rate": 1e-05,
|
824 |
+
"loss": 0.3275,
|
825 |
+
"step": 272
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.83,
|
829 |
+
"learning_rate": 1e-05,
|
830 |
+
"loss": 0.3198,
|
831 |
+
"step": 274
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.83,
|
835 |
+
"learning_rate": 1e-05,
|
836 |
+
"loss": 0.3352,
|
837 |
+
"step": 276
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.84,
|
841 |
+
"learning_rate": 1e-05,
|
842 |
+
"loss": 0.3387,
|
843 |
+
"step": 278
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.84,
|
847 |
+
"learning_rate": 1e-05,
|
848 |
+
"loss": 0.3176,
|
849 |
+
"step": 280
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.85,
|
853 |
+
"learning_rate": 1e-05,
|
854 |
+
"loss": 0.3278,
|
855 |
+
"step": 282
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.86,
|
859 |
+
"learning_rate": 1e-05,
|
860 |
+
"loss": 0.2959,
|
861 |
+
"step": 284
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.86,
|
865 |
+
"learning_rate": 1e-05,
|
866 |
+
"loss": 0.3213,
|
867 |
+
"step": 286
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.87,
|
871 |
+
"learning_rate": 1e-05,
|
872 |
+
"loss": 0.3154,
|
873 |
+
"step": 288
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.87,
|
877 |
+
"learning_rate": 1e-05,
|
878 |
+
"loss": 0.3158,
|
879 |
+
"step": 290
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.88,
|
883 |
+
"learning_rate": 1e-05,
|
884 |
+
"loss": 0.3068,
|
885 |
+
"step": 292
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.89,
|
889 |
+
"learning_rate": 1e-05,
|
890 |
+
"loss": 0.3178,
|
891 |
+
"step": 294
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.89,
|
895 |
+
"learning_rate": 1e-05,
|
896 |
+
"loss": 0.3241,
|
897 |
+
"step": 296
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.9,
|
901 |
+
"learning_rate": 1e-05,
|
902 |
+
"loss": 0.3192,
|
903 |
+
"step": 298
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.9,
|
907 |
+
"learning_rate": 1e-05,
|
908 |
+
"loss": 0.3238,
|
909 |
+
"step": 300
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.91,
|
913 |
+
"learning_rate": 1e-05,
|
914 |
+
"loss": 0.3259,
|
915 |
+
"step": 302
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.92,
|
919 |
+
"learning_rate": 1e-05,
|
920 |
+
"loss": 0.2884,
|
921 |
+
"step": 304
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.92,
|
925 |
+
"learning_rate": 1e-05,
|
926 |
+
"loss": 0.3148,
|
927 |
+
"step": 306
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.93,
|
931 |
+
"learning_rate": 1e-05,
|
932 |
+
"loss": 0.3133,
|
933 |
+
"step": 308
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.93,
|
937 |
+
"learning_rate": 1e-05,
|
938 |
+
"loss": 0.3141,
|
939 |
+
"step": 310
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.94,
|
943 |
+
"learning_rate": 1e-05,
|
944 |
+
"loss": 0.3187,
|
945 |
+
"step": 312
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.95,
|
949 |
+
"learning_rate": 1e-05,
|
950 |
+
"loss": 0.3211,
|
951 |
+
"step": 314
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.95,
|
955 |
+
"learning_rate": 1e-05,
|
956 |
+
"loss": 0.3198,
|
957 |
+
"step": 316
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.96,
|
961 |
+
"learning_rate": 1e-05,
|
962 |
+
"loss": 0.316,
|
963 |
+
"step": 318
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.96,
|
967 |
+
"learning_rate": 1e-05,
|
968 |
+
"loss": 0.329,
|
969 |
+
"step": 320
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.97,
|
973 |
+
"learning_rate": 1e-05,
|
974 |
+
"loss": 0.3008,
|
975 |
+
"step": 322
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.98,
|
979 |
+
"learning_rate": 1e-05,
|
980 |
+
"loss": 0.3184,
|
981 |
+
"step": 324
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.98,
|
985 |
+
"learning_rate": 1e-05,
|
986 |
+
"loss": 0.3329,
|
987 |
+
"step": 326
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.99,
|
991 |
+
"learning_rate": 1e-05,
|
992 |
+
"loss": 0.3106,
|
993 |
+
"step": 328
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.99,
|
997 |
+
"learning_rate": 1e-05,
|
998 |
+
"loss": 0.3133,
|
999 |
+
"step": 330
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.0,
|
1003 |
+
"learning_rate": 1e-05,
|
1004 |
+
"loss": 0.3238,
|
1005 |
+
"step": 332
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 1.01,
|
1009 |
+
"learning_rate": 1e-05,
|
1010 |
+
"loss": 0.3145,
|
1011 |
+
"step": 334
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.01,
|
1015 |
+
"learning_rate": 1e-05,
|
1016 |
+
"loss": 0.3053,
|
1017 |
+
"step": 336
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.02,
|
1021 |
+
"learning_rate": 1e-05,
|
1022 |
+
"loss": 0.3025,
|
1023 |
+
"step": 338
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.02,
|
1027 |
+
"learning_rate": 1e-05,
|
1028 |
+
"loss": 0.2953,
|
1029 |
+
"step": 340
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.03,
|
1033 |
+
"learning_rate": 1e-05,
|
1034 |
+
"loss": 0.302,
|
1035 |
+
"step": 342
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.04,
|
1039 |
+
"learning_rate": 1e-05,
|
1040 |
+
"loss": 0.2956,
|
1041 |
+
"step": 344
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.04,
|
1045 |
+
"learning_rate": 1e-05,
|
1046 |
+
"loss": 0.2763,
|
1047 |
+
"step": 346
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.05,
|
1051 |
+
"learning_rate": 1e-05,
|
1052 |
+
"loss": 0.2848,
|
1053 |
+
"step": 348
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.05,
|
1057 |
+
"learning_rate": 1e-05,
|
1058 |
+
"loss": 0.2664,
|
1059 |
+
"step": 350
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.06,
|
1063 |
+
"learning_rate": 1e-05,
|
1064 |
+
"loss": 0.2641,
|
1065 |
+
"step": 352
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.07,
|
1069 |
+
"learning_rate": 1e-05,
|
1070 |
+
"loss": 0.2783,
|
1071 |
+
"step": 354
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.07,
|
1075 |
+
"learning_rate": 1e-05,
|
1076 |
+
"loss": 0.2757,
|
1077 |
+
"step": 356
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.08,
|
1081 |
+
"learning_rate": 1e-05,
|
1082 |
+
"loss": 0.2647,
|
1083 |
+
"step": 358
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.08,
|
1087 |
+
"learning_rate": 1e-05,
|
1088 |
+
"loss": 0.2725,
|
1089 |
+
"step": 360
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.09,
|
1093 |
+
"learning_rate": 1e-05,
|
1094 |
+
"loss": 0.277,
|
1095 |
+
"step": 362
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.1,
|
1099 |
+
"learning_rate": 1e-05,
|
1100 |
+
"loss": 0.2648,
|
1101 |
+
"step": 364
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.1,
|
1105 |
+
"learning_rate": 1e-05,
|
1106 |
+
"loss": 0.2593,
|
1107 |
+
"step": 366
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.11,
|
1111 |
+
"learning_rate": 1e-05,
|
1112 |
+
"loss": 0.2654,
|
1113 |
+
"step": 368
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.11,
|
1117 |
+
"learning_rate": 1e-05,
|
1118 |
+
"loss": 0.2574,
|
1119 |
+
"step": 370
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.12,
|
1123 |
+
"learning_rate": 1e-05,
|
1124 |
+
"loss": 0.2528,
|
1125 |
+
"step": 372
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.13,
|
1129 |
+
"learning_rate": 1e-05,
|
1130 |
+
"loss": 0.2415,
|
1131 |
+
"step": 374
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.13,
|
1135 |
+
"learning_rate": 1e-05,
|
1136 |
+
"loss": 0.2493,
|
1137 |
+
"step": 376
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.14,
|
1141 |
+
"learning_rate": 1e-05,
|
1142 |
+
"loss": 0.2543,
|
1143 |
+
"step": 378
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.14,
|
1147 |
+
"learning_rate": 1e-05,
|
1148 |
+
"loss": 0.259,
|
1149 |
+
"step": 380
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.15,
|
1153 |
+
"learning_rate": 1e-05,
|
1154 |
+
"loss": 0.2445,
|
1155 |
+
"step": 382
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.16,
|
1159 |
+
"learning_rate": 1e-05,
|
1160 |
+
"loss": 0.2476,
|
1161 |
+
"step": 384
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.16,
|
1165 |
+
"learning_rate": 1e-05,
|
1166 |
+
"loss": 0.2388,
|
1167 |
+
"step": 386
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.17,
|
1171 |
+
"learning_rate": 1e-05,
|
1172 |
+
"loss": 0.2398,
|
1173 |
+
"step": 388
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.17,
|
1177 |
+
"learning_rate": 1e-05,
|
1178 |
+
"loss": 0.2559,
|
1179 |
+
"step": 390
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.18,
|
1183 |
+
"learning_rate": 1e-05,
|
1184 |
+
"loss": 0.2398,
|
1185 |
+
"step": 392
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.19,
|
1189 |
+
"learning_rate": 1e-05,
|
1190 |
+
"loss": 0.245,
|
1191 |
+
"step": 394
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.19,
|
1195 |
+
"learning_rate": 1e-05,
|
1196 |
+
"loss": 0.2502,
|
1197 |
+
"step": 396
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.2,
|
1201 |
+
"learning_rate": 1e-05,
|
1202 |
+
"loss": 0.2541,
|
1203 |
+
"step": 398
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.2,
|
1207 |
+
"learning_rate": 1e-05,
|
1208 |
+
"loss": 0.2433,
|
1209 |
+
"step": 400
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.21,
|
1213 |
+
"learning_rate": 1e-05,
|
1214 |
+
"loss": 0.2486,
|
1215 |
+
"step": 402
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.22,
|
1219 |
+
"learning_rate": 1e-05,
|
1220 |
+
"loss": 0.2297,
|
1221 |
+
"step": 404
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.22,
|
1225 |
+
"learning_rate": 1e-05,
|
1226 |
+
"loss": 0.2286,
|
1227 |
+
"step": 406
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.23,
|
1231 |
+
"learning_rate": 1e-05,
|
1232 |
+
"loss": 0.2425,
|
1233 |
+
"step": 408
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.23,
|
1237 |
+
"learning_rate": 1e-05,
|
1238 |
+
"loss": 0.2271,
|
1239 |
+
"step": 410
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.24,
|
1243 |
+
"learning_rate": 1e-05,
|
1244 |
+
"loss": 0.2394,
|
1245 |
+
"step": 412
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.25,
|
1249 |
+
"learning_rate": 1e-05,
|
1250 |
+
"loss": 0.2446,
|
1251 |
+
"step": 414
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.25,
|
1255 |
+
"learning_rate": 1e-05,
|
1256 |
+
"loss": 0.2342,
|
1257 |
+
"step": 416
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 1.26,
|
1261 |
+
"learning_rate": 1e-05,
|
1262 |
+
"loss": 0.2423,
|
1263 |
+
"step": 418
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.27,
|
1267 |
+
"learning_rate": 1e-05,
|
1268 |
+
"loss": 0.2334,
|
1269 |
+
"step": 420
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.27,
|
1273 |
+
"learning_rate": 1e-05,
|
1274 |
+
"loss": 0.2213,
|
1275 |
+
"step": 422
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 1.28,
|
1279 |
+
"learning_rate": 1e-05,
|
1280 |
+
"loss": 0.2254,
|
1281 |
+
"step": 424
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.28,
|
1285 |
+
"learning_rate": 1e-05,
|
1286 |
+
"loss": 0.2385,
|
1287 |
+
"step": 426
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.29,
|
1291 |
+
"learning_rate": 1e-05,
|
1292 |
+
"loss": 0.2439,
|
1293 |
+
"step": 428
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.3,
|
1297 |
+
"learning_rate": 1e-05,
|
1298 |
+
"loss": 0.2314,
|
1299 |
+
"step": 430
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 1.3,
|
1303 |
+
"learning_rate": 1e-05,
|
1304 |
+
"loss": 0.2423,
|
1305 |
+
"step": 432
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.31,
|
1309 |
+
"learning_rate": 1e-05,
|
1310 |
+
"loss": 0.2387,
|
1311 |
+
"step": 434
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.31,
|
1315 |
+
"learning_rate": 1e-05,
|
1316 |
+
"loss": 0.2283,
|
1317 |
+
"step": 436
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.32,
|
1321 |
+
"learning_rate": 1e-05,
|
1322 |
+
"loss": 0.2358,
|
1323 |
+
"step": 438
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.33,
|
1327 |
+
"learning_rate": 1e-05,
|
1328 |
+
"loss": 0.2271,
|
1329 |
+
"step": 440
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.33,
|
1333 |
+
"learning_rate": 1e-05,
|
1334 |
+
"loss": 0.2403,
|
1335 |
+
"step": 442
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.34,
|
1339 |
+
"learning_rate": 1e-05,
|
1340 |
+
"loss": 0.2365,
|
1341 |
+
"step": 444
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.34,
|
1345 |
+
"learning_rate": 1e-05,
|
1346 |
+
"loss": 0.2206,
|
1347 |
+
"step": 446
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.35,
|
1351 |
+
"learning_rate": 1e-05,
|
1352 |
+
"loss": 0.2329,
|
1353 |
+
"step": 448
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.36,
|
1357 |
+
"learning_rate": 1e-05,
|
1358 |
+
"loss": 0.23,
|
1359 |
+
"step": 450
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.36,
|
1363 |
+
"learning_rate": 1e-05,
|
1364 |
+
"loss": 0.2177,
|
1365 |
+
"step": 452
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.37,
|
1369 |
+
"learning_rate": 1e-05,
|
1370 |
+
"loss": 0.219,
|
1371 |
+
"step": 454
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.37,
|
1375 |
+
"learning_rate": 1e-05,
|
1376 |
+
"loss": 0.226,
|
1377 |
+
"step": 456
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.38,
|
1381 |
+
"learning_rate": 1e-05,
|
1382 |
+
"loss": 0.2267,
|
1383 |
+
"step": 458
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 1.39,
|
1387 |
+
"learning_rate": 1e-05,
|
1388 |
+
"loss": 0.2249,
|
1389 |
+
"step": 460
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.39,
|
1393 |
+
"learning_rate": 1e-05,
|
1394 |
+
"loss": 0.2368,
|
1395 |
+
"step": 462
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.4,
|
1399 |
+
"learning_rate": 1e-05,
|
1400 |
+
"loss": 0.2146,
|
1401 |
+
"step": 464
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.4,
|
1405 |
+
"learning_rate": 1e-05,
|
1406 |
+
"loss": 0.218,
|
1407 |
+
"step": 466
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.41,
|
1411 |
+
"learning_rate": 1e-05,
|
1412 |
+
"loss": 0.2304,
|
1413 |
+
"step": 468
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.42,
|
1417 |
+
"learning_rate": 1e-05,
|
1418 |
+
"loss": 0.2314,
|
1419 |
+
"step": 470
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.42,
|
1423 |
+
"learning_rate": 1e-05,
|
1424 |
+
"loss": 0.2295,
|
1425 |
+
"step": 472
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.43,
|
1429 |
+
"learning_rate": 1e-05,
|
1430 |
+
"loss": 0.22,
|
1431 |
+
"step": 474
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.43,
|
1435 |
+
"learning_rate": 1e-05,
|
1436 |
+
"loss": 0.2172,
|
1437 |
+
"step": 476
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.44,
|
1441 |
+
"learning_rate": 1e-05,
|
1442 |
+
"loss": 0.2244,
|
1443 |
+
"step": 478
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.45,
|
1447 |
+
"learning_rate": 1e-05,
|
1448 |
+
"loss": 0.2301,
|
1449 |
+
"step": 480
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.45,
|
1453 |
+
"learning_rate": 1e-05,
|
1454 |
+
"loss": 0.2069,
|
1455 |
+
"step": 482
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.46,
|
1459 |
+
"learning_rate": 1e-05,
|
1460 |
+
"loss": 0.2342,
|
1461 |
+
"step": 484
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.46,
|
1465 |
+
"learning_rate": 1e-05,
|
1466 |
+
"loss": 0.2162,
|
1467 |
+
"step": 486
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.47,
|
1471 |
+
"learning_rate": 1e-05,
|
1472 |
+
"loss": 0.2184,
|
1473 |
+
"step": 488
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.48,
|
1477 |
+
"learning_rate": 1e-05,
|
1478 |
+
"loss": 0.2369,
|
1479 |
+
"step": 490
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.48,
|
1483 |
+
"learning_rate": 1e-05,
|
1484 |
+
"loss": 0.2053,
|
1485 |
+
"step": 492
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.49,
|
1489 |
+
"learning_rate": 1e-05,
|
1490 |
+
"loss": 0.2148,
|
1491 |
+
"step": 494
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.49,
|
1495 |
+
"learning_rate": 1e-05,
|
1496 |
+
"loss": 0.227,
|
1497 |
+
"step": 496
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.5,
|
1501 |
+
"learning_rate": 1e-05,
|
1502 |
+
"loss": 0.2252,
|
1503 |
+
"step": 498
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 1.51,
|
1507 |
+
"learning_rate": 1e-05,
|
1508 |
+
"loss": 0.2183,
|
1509 |
+
"step": 500
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.51,
|
1513 |
+
"learning_rate": 1e-05,
|
1514 |
+
"loss": 0.2222,
|
1515 |
+
"step": 502
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.52,
|
1519 |
+
"learning_rate": 1e-05,
|
1520 |
+
"loss": 0.2158,
|
1521 |
+
"step": 504
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.52,
|
1525 |
+
"learning_rate": 1e-05,
|
1526 |
+
"loss": 0.1991,
|
1527 |
+
"step": 506
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.53,
|
1531 |
+
"learning_rate": 1e-05,
|
1532 |
+
"loss": 0.2093,
|
1533 |
+
"step": 508
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.54,
|
1537 |
+
"learning_rate": 1e-05,
|
1538 |
+
"loss": 0.2021,
|
1539 |
+
"step": 510
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.54,
|
1543 |
+
"learning_rate": 1e-05,
|
1544 |
+
"loss": 0.2392,
|
1545 |
+
"step": 512
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.55,
|
1549 |
+
"learning_rate": 1e-05,
|
1550 |
+
"loss": 0.2119,
|
1551 |
+
"step": 514
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.55,
|
1555 |
+
"learning_rate": 1e-05,
|
1556 |
+
"loss": 0.2261,
|
1557 |
+
"step": 516
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.56,
|
1561 |
+
"learning_rate": 1e-05,
|
1562 |
+
"loss": 0.2138,
|
1563 |
+
"step": 518
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.57,
|
1567 |
+
"learning_rate": 1e-05,
|
1568 |
+
"loss": 0.2029,
|
1569 |
+
"step": 520
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.57,
|
1573 |
+
"learning_rate": 1e-05,
|
1574 |
+
"loss": 0.2107,
|
1575 |
+
"step": 522
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.58,
|
1579 |
+
"learning_rate": 1e-05,
|
1580 |
+
"loss": 0.2078,
|
1581 |
+
"step": 524
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.58,
|
1585 |
+
"learning_rate": 1e-05,
|
1586 |
+
"loss": 0.2187,
|
1587 |
+
"step": 526
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.59,
|
1591 |
+
"learning_rate": 1e-05,
|
1592 |
+
"loss": 0.2174,
|
1593 |
+
"step": 528
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.6,
|
1597 |
+
"learning_rate": 1e-05,
|
1598 |
+
"loss": 0.2165,
|
1599 |
+
"step": 530
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.6,
|
1603 |
+
"learning_rate": 1e-05,
|
1604 |
+
"loss": 0.2098,
|
1605 |
+
"step": 532
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.61,
|
1609 |
+
"learning_rate": 1e-05,
|
1610 |
+
"loss": 0.199,
|
1611 |
+
"step": 534
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.61,
|
1615 |
+
"learning_rate": 1e-05,
|
1616 |
+
"loss": 0.2002,
|
1617 |
+
"step": 536
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.62,
|
1621 |
+
"learning_rate": 1e-05,
|
1622 |
+
"loss": 0.2137,
|
1623 |
+
"step": 538
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.63,
|
1627 |
+
"learning_rate": 1e-05,
|
1628 |
+
"loss": 0.2176,
|
1629 |
+
"step": 540
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.63,
|
1633 |
+
"learning_rate": 1e-05,
|
1634 |
+
"loss": 0.2153,
|
1635 |
+
"step": 542
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.64,
|
1639 |
+
"learning_rate": 1e-05,
|
1640 |
+
"loss": 0.2164,
|
1641 |
+
"step": 544
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.64,
|
1645 |
+
"learning_rate": 1e-05,
|
1646 |
+
"loss": 0.2305,
|
1647 |
+
"step": 546
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.65,
|
1651 |
+
"learning_rate": 1e-05,
|
1652 |
+
"loss": 0.2182,
|
1653 |
+
"step": 548
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.66,
|
1657 |
+
"learning_rate": 1e-05,
|
1658 |
+
"loss": 0.2228,
|
1659 |
+
"step": 550
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.66,
|
1663 |
+
"learning_rate": 1e-05,
|
1664 |
+
"loss": 0.2207,
|
1665 |
+
"step": 552
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.67,
|
1669 |
+
"learning_rate": 1e-05,
|
1670 |
+
"loss": 0.224,
|
1671 |
+
"step": 554
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.67,
|
1675 |
+
"learning_rate": 1e-05,
|
1676 |
+
"loss": 0.2201,
|
1677 |
+
"step": 556
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.68,
|
1681 |
+
"learning_rate": 1e-05,
|
1682 |
+
"loss": 0.2137,
|
1683 |
+
"step": 558
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.69,
|
1687 |
+
"learning_rate": 1e-05,
|
1688 |
+
"loss": 0.2097,
|
1689 |
+
"step": 560
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.69,
|
1693 |
+
"learning_rate": 1e-05,
|
1694 |
+
"loss": 0.2155,
|
1695 |
+
"step": 562
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.7,
|
1699 |
+
"learning_rate": 1e-05,
|
1700 |
+
"loss": 0.2166,
|
1701 |
+
"step": 564
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.7,
|
1705 |
+
"learning_rate": 1e-05,
|
1706 |
+
"loss": 0.2302,
|
1707 |
+
"step": 566
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.71,
|
1711 |
+
"learning_rate": 1e-05,
|
1712 |
+
"loss": 0.2078,
|
1713 |
+
"step": 568
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.72,
|
1717 |
+
"learning_rate": 1e-05,
|
1718 |
+
"loss": 0.1972,
|
1719 |
+
"step": 570
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.72,
|
1723 |
+
"learning_rate": 1e-05,
|
1724 |
+
"loss": 0.2198,
|
1725 |
+
"step": 572
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.73,
|
1729 |
+
"learning_rate": 1e-05,
|
1730 |
+
"loss": 0.213,
|
1731 |
+
"step": 574
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.73,
|
1735 |
+
"learning_rate": 1e-05,
|
1736 |
+
"loss": 0.2183,
|
1737 |
+
"step": 576
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.74,
|
1741 |
+
"learning_rate": 1e-05,
|
1742 |
+
"loss": 0.2044,
|
1743 |
+
"step": 578
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.75,
|
1747 |
+
"learning_rate": 1e-05,
|
1748 |
+
"loss": 0.2163,
|
1749 |
+
"step": 580
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 1.75,
|
1753 |
+
"learning_rate": 1e-05,
|
1754 |
+
"loss": 0.2031,
|
1755 |
+
"step": 582
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.76,
|
1759 |
+
"learning_rate": 1e-05,
|
1760 |
+
"loss": 0.2228,
|
1761 |
+
"step": 584
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.77,
|
1765 |
+
"learning_rate": 1e-05,
|
1766 |
+
"loss": 0.2271,
|
1767 |
+
"step": 586
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.77,
|
1771 |
+
"learning_rate": 1e-05,
|
1772 |
+
"loss": 0.2196,
|
1773 |
+
"step": 588
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.78,
|
1777 |
+
"learning_rate": 1e-05,
|
1778 |
+
"loss": 0.2134,
|
1779 |
+
"step": 590
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.78,
|
1783 |
+
"learning_rate": 1e-05,
|
1784 |
+
"loss": 0.2019,
|
1785 |
+
"step": 592
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.79,
|
1789 |
+
"learning_rate": 1e-05,
|
1790 |
+
"loss": 0.1986,
|
1791 |
+
"step": 594
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.8,
|
1795 |
+
"learning_rate": 1e-05,
|
1796 |
+
"loss": 0.1943,
|
1797 |
+
"step": 596
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.8,
|
1801 |
+
"learning_rate": 1e-05,
|
1802 |
+
"loss": 0.206,
|
1803 |
+
"step": 598
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.81,
|
1807 |
+
"learning_rate": 1e-05,
|
1808 |
+
"loss": 0.2154,
|
1809 |
+
"step": 600
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.81,
|
1813 |
+
"learning_rate": 1e-05,
|
1814 |
+
"loss": 0.2103,
|
1815 |
+
"step": 602
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.82,
|
1819 |
+
"learning_rate": 1e-05,
|
1820 |
+
"loss": 0.2167,
|
1821 |
+
"step": 604
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 1.83,
|
1825 |
+
"learning_rate": 1e-05,
|
1826 |
+
"loss": 0.209,
|
1827 |
+
"step": 606
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 1.83,
|
1831 |
+
"learning_rate": 1e-05,
|
1832 |
+
"loss": 0.2208,
|
1833 |
+
"step": 608
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.84,
|
1837 |
+
"learning_rate": 1e-05,
|
1838 |
+
"loss": 0.2252,
|
1839 |
+
"step": 610
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.84,
|
1843 |
+
"learning_rate": 1e-05,
|
1844 |
+
"loss": 0.2092,
|
1845 |
+
"step": 612
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 1.85,
|
1849 |
+
"learning_rate": 1e-05,
|
1850 |
+
"loss": 0.2099,
|
1851 |
+
"step": 614
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 1.86,
|
1855 |
+
"learning_rate": 1e-05,
|
1856 |
+
"loss": 0.1955,
|
1857 |
+
"step": 616
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.86,
|
1861 |
+
"learning_rate": 1e-05,
|
1862 |
+
"loss": 0.2176,
|
1863 |
+
"step": 618
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 1.87,
|
1867 |
+
"learning_rate": 1e-05,
|
1868 |
+
"loss": 0.2053,
|
1869 |
+
"step": 620
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 1.87,
|
1873 |
+
"learning_rate": 1e-05,
|
1874 |
+
"loss": 0.2119,
|
1875 |
+
"step": 622
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 1.88,
|
1879 |
+
"learning_rate": 1e-05,
|
1880 |
+
"loss": 0.1986,
|
1881 |
+
"step": 624
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 1.89,
|
1885 |
+
"learning_rate": 1e-05,
|
1886 |
+
"loss": 0.2136,
|
1887 |
+
"step": 626
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 1.89,
|
1891 |
+
"learning_rate": 1e-05,
|
1892 |
+
"loss": 0.2154,
|
1893 |
+
"step": 628
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 1.9,
|
1897 |
+
"learning_rate": 1e-05,
|
1898 |
+
"loss": 0.2091,
|
1899 |
+
"step": 630
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.9,
|
1903 |
+
"learning_rate": 1e-05,
|
1904 |
+
"loss": 0.2161,
|
1905 |
+
"step": 632
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 1.91,
|
1909 |
+
"learning_rate": 1e-05,
|
1910 |
+
"loss": 0.2107,
|
1911 |
+
"step": 634
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 1.92,
|
1915 |
+
"learning_rate": 1e-05,
|
1916 |
+
"loss": 0.1814,
|
1917 |
+
"step": 636
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.92,
|
1921 |
+
"learning_rate": 1e-05,
|
1922 |
+
"loss": 0.2097,
|
1923 |
+
"step": 638
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 1.93,
|
1927 |
+
"learning_rate": 1e-05,
|
1928 |
+
"loss": 0.2078,
|
1929 |
+
"step": 640
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 1.93,
|
1933 |
+
"learning_rate": 1e-05,
|
1934 |
+
"loss": 0.1985,
|
1935 |
+
"step": 642
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.94,
|
1939 |
+
"learning_rate": 1e-05,
|
1940 |
+
"loss": 0.2115,
|
1941 |
+
"step": 644
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.95,
|
1945 |
+
"learning_rate": 1e-05,
|
1946 |
+
"loss": 0.2128,
|
1947 |
+
"step": 646
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 1.95,
|
1951 |
+
"learning_rate": 1e-05,
|
1952 |
+
"loss": 0.2133,
|
1953 |
+
"step": 648
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.96,
|
1957 |
+
"learning_rate": 1e-05,
|
1958 |
+
"loss": 0.2109,
|
1959 |
+
"step": 650
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.96,
|
1963 |
+
"learning_rate": 1e-05,
|
1964 |
+
"loss": 0.2133,
|
1965 |
+
"step": 652
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.97,
|
1969 |
+
"learning_rate": 1e-05,
|
1970 |
+
"loss": 0.198,
|
1971 |
+
"step": 654
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 1.98,
|
1975 |
+
"learning_rate": 1e-05,
|
1976 |
+
"loss": 0.2068,
|
1977 |
+
"step": 656
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.98,
|
1981 |
+
"learning_rate": 1e-05,
|
1982 |
+
"loss": 0.2222,
|
1983 |
+
"step": 658
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.99,
|
1987 |
+
"learning_rate": 1e-05,
|
1988 |
+
"loss": 0.2035,
|
1989 |
+
"step": 660
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 1.99,
|
1993 |
+
"learning_rate": 1e-05,
|
1994 |
+
"loss": 0.2067,
|
1995 |
+
"step": 662
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 2.0,
|
1999 |
+
"learning_rate": 1e-05,
|
2000 |
+
"loss": 0.207,
|
2001 |
+
"step": 664
|
2002 |
+
}
|
2003 |
+
],
|
2004 |
+
"logging_steps": 2,
|
2005 |
+
"max_steps": 1992,
|
2006 |
+
"num_train_epochs": 6,
|
2007 |
+
"save_steps": 64.0,
|
2008 |
+
"total_flos": 148901009686528.0,
|
2009 |
+
"trial_name": null,
|
2010 |
+
"trial_params": null
|
2011 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6da0167127a217efe26c78d229b99ad905ad18eecd77581e01cd9a087834755f
|
3 |
+
size 6456
|