LordSomen's picture
initial_commit
aa204f8
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb78da7a5f0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb78da7a680>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb78da7a710>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb78da7a7a0>",
"_build": "<function ActorCriticPolicy._build at 0x7fb78da7a830>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb78da7a8c0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb78da7a950>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb78da7a9e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb78da7aa70>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb78da7ab00>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb78da7ab90>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb78da7ac20>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb78da803c0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1686936650906937643,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC464x1xKiMAWyUS7uMAXSUR0CZKWV1Oj7AdX2UKGgGR0BwbPsTnJT3aAdLzmgIR0CZKtmpVCHAdX2UKGgGR0BgrfKQq7ROaAdN6ANoCEdAmSwAKWszVXV9lChoBkdAcpWUXYUWVWgHS+doCEdAmSwnlXA/LXV9lChoBkdAb6srWiDdxmgHS81oCEdAmSxcZ1mrbXV9lChoBkdAYYbOUt7KJWgHTegDaAhHQJksozch1T11fZQoaAZHQHHMw/keZG9oB0vZaAhHQJkuAuoP07N1fZQoaAZHQHDbjaoMrmRoB0vEaAhHQJkuT3SKFZh1fZQoaAZHQHF1BxPwd81oB0vPaAhHQJkwJWIXTE11fZQoaAZHQHKHfyf+S8toB0v3aAhHQJkwotf5ULl1fZQoaAZHQHBzI7NjbztoB0vIaAhHQJkxENMGorF1fZQoaAZHQG+SJZwGW2RoB0vHaAhHQJkxQR02cax1fZQoaAZHQGTjXkHUtqZoB03oA2gIR0CZMnV09yLidX2UKGgGR0Bwvjp5eJHiaAdNAgFoCEdAmTJybH6uXHV9lChoBkdAcexW5Yoy9GgHS81oCEdAmTQRT850bXV9lChoBkdAcRP/bj94vGgHS9JoCEdAmTQPnwG4Z3V9lChoBkdAcUgAM2FWXGgHS9hoCEdAmTQmHLzPKXV9lChoBkdAb8bIikfs/2gHS9ZoCEdAmTSf8Q7LdXV9lChoBkdAcbKxhUipvWgHTQkBaAhHQJk1ClDWsil1fZQoaAZHQGEgJz1bqyJoB03oA2gIR0CZNkuscQyzdX2UKGgGR0BxmY6hg3LnaAdL5GgIR0CZNxi6QNkOdX2UKGgGR0ByR/GLk0aZaAdL4GgIR0CZN0BMzuWsdX2UKGgGR0ByGjK+zt1IaAdLr2gIR0CZOILs8gZCdX2UKGgGR0ByUHhn8KoiaAdL0WgIR0CZOVJJ5E+gdX2UKGgGR0Bvo2dqcmShaAdLyGgIR0CZOWj5bhWHdX2UKGgGR0ByU2GZeAuqaAdL7GgIR0CZOeZtelbedX2UKGgGR0Bxsmvs7dSEaAdLs2gIR0CZOgCa7VawdX2UKGgGR0BkFblV94NaaAdN6ANoCEdAmTp9wrDqGHV9lChoBkdAblIEr5IpY2gHS+toCEdAmTw9PpIMB3V9lChoBkdAbvm7rcCYC2gHS8VoCEdAmTxuUt7KJXV9lChoBkdAbugVkc0cfmgHS8RoCEdAmT0Jj+aScXV9lChoBkdAcIOe40/GEWgHS8BoCEdAmT1EZaV2R3V9lChoBkdAcBjm29cry2gHS+NoCEdAmT3JbhWHUXV9lChoBkdAci9zo2XLNmgHS/BoCEdAmT44SDh99nV9lChoBkdAcMvZssQNC2gHS8RoCEdAmT925Yoy9HV9lChoBkdAcWe0ygwoLGgHS6xoCEdAmUCpeu3c6HV9lChoBkdAcxh6Zpi7TWgHS/JoCEdAmUCqyWzF/HV9lChoBkdAcBDV/MGHHmgHS6BoCEdAmUFiTdLxqnV9lChoBkdAcyB/Ue+23WgHS+JoCEdAmUNdV/+bVnV9lChoBkdActQZuAI6bWgHS+loCEdAmURTLfUF0XV9lChoBkdAcdt1ivxH5WgHTRgBaAhHQJlFD8CPp6h1fZQoaAZHQHJa7blA/s5oB0vEaAhHQJlFZK15Sm91fZQoaAZHQHHrkQ9RrJtoB00SAWgIR0CZRofmcOLBdX2UKGgGR0Bxiqtr9EThaAdL3WgIR0CZRuezlcQidX2UKGgGR0BvikdcSoOyaAdLsmgIR0CZRubaAWi2dX2UKGgGR0Bv9y+HrQgLaAdLymgIR0CZR49HMEA6dX2UKGgGR0BxaqLR8c+8aAdLs2gIR0CZSFLL6k6+dX2UKGgGR0Bxo+Gh24d7aAdLw2gIR0CZSiuUD+zddX2UKGgGR0ByQ9YmsvIwaAdNFgFoCEdAmUpBcu8K5XV9lChoBkdAcNS4RmK64GgHS8ZoCEdAmUpE34sVcnV9lChoBkdAc3H9HMEA52gHTRMBaAhHQJlKVK3/gix1fZQoaAZHQHCrBiw0O3FoB0vPaAhHQJlLAMOPNml1fZQoaAZHQGTmZq/M4cZoB03oA2gIR0CZS2X+2mYTdX2UKGgGR0Bw6ASpR4yHaAdLyGgIR0CZS/FvhqCZdX2UKGgGR0BxFGu3c580aAdLq2gIR0CZTD1zySV4dX2UKGgGR0BwQ8189fTkaAdLrGgIR0CZTPrsByS3dX2UKGgGR0Bwm1Whh6SlaAdL3mgIR0CZTZHHWBjGdX2UKGgGR0BuPZb+tKZlaAdLvGgIR0CZTf4d6sySdX2UKGgGR0Bvgls3yZrpaAdLyWgIR0CZTfuOCGvfdX2UKGgGR0Bug7Z39rGjaAdLs2gIR0CZTi2JBPbgdX2UKGgGR0BwVOcslLOBaAdLpGgIR0CZTwFCswL3dX2UKGgGR0BwMCaw2VFAaAdL/mgIR0CZT5dznzQNdX2UKGgGR0BxnLaK1og3aAdNNgFoCEdAmU+7aAWi13V9lChoBkdAchQPhAGB4GgHS7BoCEdAmVAcsYl6aHV9lChoBkdAco/Bo24usmgHS9RoCEdAmVBVghKUV3V9lChoBkdAcJn2TPjXF2gHS9toCEdAmVCbYK6WgXV9lChoBkdAcQD/JvHcUWgHS+ZoCEdAmVDzI7vG63V9lChoBkdAcjQhOgxrSGgHS7loCEdAmVE8NlRP43V9lChoBkdAcTzRdQfp2WgHS5poCEdAmVJPHo5ggHV9lChoBkdAcKWbfxc3VGgHS/ZoCEdAmVJTi83+/HV9lChoBkdAchQwNsnAqWgHS9hoCEdAmVJhaLXL/3V9lChoBkdAcLerZrYXf2gHS89oCEdAmVLFWGRFJHV9lChoBkdAbnAIN3GGVWgHS81oCEdAmVO6qGUOeHV9lChoBkdAcSWkDZDiO2gHS+RoCEdAmVSTOLR8dHV9lChoBkdAcJRA+6iCa2gHS8ZoCEdAmVUN4JNTLnV9lChoBkdAb94xUNrj52gHS8RoCEdAmVWPIXCTEHV9lChoBkdAcOaMkQf6oGgHS7VoCEdAmVWuLiuMdnV9lChoBkdAccWI9kjHGWgHS+9oCEdAmVXDjBEa2nV9lChoBkdAcnSK0UoKD2gHS8loCEdAmVX6PfbblHV9lChoBkdAcgb17IDHO2gHS/BoCEdAmVZzI7vG63V9lChoBkdAcgwvQ4S6D2gHS9FoCEdAmVcoRZlnRXV9lChoBkdAc9gnxaxHG2gHS8NoCEdAmVf0i2UjcHV9lChoBkdAcFlH+ZPVNGgHS8hoCEdAmVinVCojwHV9lChoBkdAciMMOf/WD2gHTR8BaAhHQJlZSETQE6l1fZQoaAZHQHH78lC1JDpoB00IAWgIR0CZWlLiuMdcdX2UKGgGR0BwY/j4pMHsaAdL2WgIR0CZWmPo3aSLdX2UKGgGR0ByQw33pOeraAdLzGgIR0CZWvZSNwR5dX2UKGgGR0Bj4wUeuFHsaAdN6ANoCEdAmVtNW+49YHV9lChoBkdAcOjBkZrHl2gHS75oCEdAmVwLbg0j1XV9lChoBkdAcRzk1Muez2gHS71oCEdAmVyRLsa86HV9lChoBkdAbxc0kWykbmgHS+ZoCEdAmV0CIpH7QHV9lChoBkdAcQojua4MF2gHS+doCEdAmV0hS9/SY3V9lChoBkdAcvXYWtU4rGgHS/9oCEdAmV0r5dnkDXV9lChoBkdAcM3DYAbQ1WgHS75oCEdAmV1dbcGke3V9lChoBkdAcvECdSVGC2gHS/ZoCEdAmV1jmKZUk3V9lChoBkdAbnPjwQUYbmgHS75oCEdAmV9MNlRP43V9lChoBkdAcNzNzbN8mmgHS8xoCEdAmWDGS6lLvnV9lChoBkdAcJudilSCOGgHS8doCEdAmWE+JP69CnV9lChoBkdAc0fML4N7SmgHTQ4BaAhHQJlhVucc2it1fZQoaAZHQHN6LaVUuL9oB00AAWgIR0CZYoiAlOXWdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}