|
--- |
|
language: |
|
- pt |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: bertimbau-large-lener_br |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
args: lener_br |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9801301293674859 |
|
model-index: |
|
- name: Luciano/bertimbau-large-lener_br |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9840898731012984 |
|
verified: true |
|
- name: Precision |
|
type: precision |
|
value: 0.9895415357344292 |
|
verified: true |
|
- name: Recall |
|
type: recall |
|
value: 0.9885856878370763 |
|
verified: true |
|
- name: F1 |
|
type: f1 |
|
value: 0.9890633808488363 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.10151929408311844 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bertimbau-large-lener_br |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1271 |
|
- Precision: 0.8965 |
|
- Recall: 0.9198 |
|
- F1: 0.9080 |
|
- Accuracy: 0.9801 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0674 | 1.0 | 1957 | 0.1349 | 0.7617 | 0.8710 | 0.8127 | 0.9594 | |
|
| 0.0443 | 2.0 | 3914 | 0.1867 | 0.6862 | 0.9194 | 0.7858 | 0.9575 | |
|
| 0.0283 | 3.0 | 5871 | 0.1185 | 0.8206 | 0.8766 | 0.8477 | 0.9678 | |
|
| 0.0226 | 4.0 | 7828 | 0.1405 | 0.8072 | 0.8978 | 0.8501 | 0.9708 | |
|
| 0.0141 | 5.0 | 9785 | 0.1898 | 0.7224 | 0.9194 | 0.8090 | 0.9629 | |
|
| 0.01 | 6.0 | 11742 | 0.1655 | 0.9062 | 0.8856 | 0.8958 | 0.9741 | |
|
| 0.012 | 7.0 | 13699 | 0.1271 | 0.8965 | 0.9198 | 0.9080 | 0.9801 | |
|
| 0.0091 | 8.0 | 15656 | 0.1919 | 0.8890 | 0.8886 | 0.8888 | 0.9719 | |
|
| 0.0042 | 9.0 | 17613 | 0.1725 | 0.8977 | 0.8985 | 0.8981 | 0.9744 | |
|
| 0.0043 | 10.0 | 19570 | 0.1530 | 0.8878 | 0.9034 | 0.8955 | 0.9761 | |
|
| 0.0042 | 11.0 | 21527 | 0.1635 | 0.8792 | 0.9108 | 0.8947 | 0.9774 | |
|
| 0.0033 | 12.0 | 23484 | 0.2009 | 0.8155 | 0.9138 | 0.8619 | 0.9719 | |
|
| 0.0008 | 13.0 | 25441 | 0.1766 | 0.8737 | 0.9135 | 0.8932 | 0.9755 | |
|
| 0.0005 | 14.0 | 27398 | 0.1868 | 0.8616 | 0.9129 | 0.8865 | 0.9743 | |
|
| 0.0014 | 15.0 | 29355 | 0.1910 | 0.8694 | 0.9101 | 0.8893 | 0.9746 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.8.2 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.9.0 |
|
- Tokenizers 0.10.3 |
|
|