--- license: mit --- # Unique3d-Normal-Diffuser Model Card [🌟GitHub](https://github.com/TingtingLiao/unique3d_diffuser) | [🦸 Project Page](https://wukailu.github.io/Unique3D/) | [🔋MVImage Diffuser](https://huggingface.co/Luffuly/unique3d-mvimage-diffuser) ![mv-normal](https://github.com/user-attachments/assets/de91a83b-a14f-4878-a950-4d5cba786f69) ## Example Note the input image is suppose to be **white background**. ![mv-normal](https://github.com/user-attachments/assets/f0b56d70-d1fb-4f18-a205-f41f85ec72d7) ```bash import torch import numpy as np from PIL import Image from pipeline import Unique3dDiffusionPipeline # opts seed = -1 generator = torch.Generator(device='cuda').manual_seed(-1) forward_args = dict( width=512, height=512, width_cond=512, height_cond=512, generator=generator, guidance_scale=1.5, num_inference_steps=30, num_images_per_prompt=1, ) # load pipe = Unique3dDiffusionPipeline.from_pretrained( "Luffuly/unique3d-normal-diffuser", torch_dtype=torch.bfloat16, trust_remote_code=True, ).to("cuda") # load image image = Image.open('image.png').convert("RGB") # forward out = pipe(image, **forward_args).images out[0].save(f"out.png") ``` ## Citation ```bash @misc{wu2024unique3d, title={Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image}, author={Kailu Wu and Fangfu Liu and Zhihan Cai and Runjie Yan and Hanyang Wang and Yating Hu and Yueqi Duan and Kaisheng Ma}, year={2024}, eprint={2405.20343}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```