LuisChDev commited on
Commit
46e7a4d
·
1 Parent(s): bd72542

upload LunarLander-v2 PPO model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.31 +/- 20.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a37d2659900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a37d2659990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a37d2659a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a37d2659ab0>", "_build": "<function ActorCriticPolicy._build at 0x7a37d2659b40>", "forward": "<function ActorCriticPolicy.forward at 0x7a37d2659bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a37d2659c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a37d2659cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a37d2659d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a37d2659e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a37d2659ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a37d2659f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a37dc1d64c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694840887719406619, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZmpjhSWPG5QtGHu7FayjdlXHc7PmkutwAAgD8AAIA/ABIWvFxbYrqoV5I6JzqvNcHyuDoAB6i5AACAPwAAgD9Gikg+Lly+Pp2Zkb3j0yy+inZAPfvvkj0AAAAAAAAAAM1MkrnhJKW6nrg0uqNav7Z1yJ668SksNgAAgD8AAIA/zSs8PVLwp7n9IZi8HkKatpuRjLlmpAw2AACAPwAAgD9N0ME9NKyBPVG8Rb4huQe+aBM2vAog8DwAAAAAAAAAAM19HT3DUTu6Zwcku9HynDYyK0C7a3U7OgAAgD8AAIA/mulBvvyQ5z4sJD4+4DGMvmedhbpOAW49AAAAAAAAAAC6Vw4+7C2Gu57IFDqsNY+3+gzEvFwkNLkAAIA/AACAPzP2Dz17CpC6kUnIuiGlo7NIBKU65XbfsgAAgD8AAIA/TaAHPXuCkLpMjyo5M4TOM4Zborqnd0S4AACAPwAAgD+aqOG8j2oVumW8PDskPBc2vnqZu255YboAAIA/AACAP7pEqz5th/0+pjivvc0cPL5f/Mo9/vRcPQAAAAAAAAAAphK+Pay3xT58f6i9LM9QvuMaOj22tSA9AAAAAAAAAABA6J89hTOWuTPa4LxUmAO2vh3bOsaCczUAAAAAAAAAAOblPD1cowW6ILBqOh6SpzXNN406/u2GuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7mxXXAdn2MAWyUTegDjAF0lEdAljJTPBzmwXV9lChoBkdAXPsnLJSzgWgHTegDaAhHQJY9b6eoUBZ1fZQoaAZHQGNaVhb4agpoB03oA2gIR0CWPZ0ygwoLdX2UKGgGR0BfaDTz/ZM+aAdN6ANoCEdAlkYWfseGPHV9lChoBkdAYhir4nF5wGgHTegDaAhHQJZHLE2pAD91fZQoaAZHQGJSAQg9vCNoB03oA2gIR0CWSQoYekpJdX2UKGgGR0Bi2D/IbOu8aAdN6ANoCEdAlkmaEi+tbXV9lChoBkdAS+mby6MBIWgHS8ZoCEdAlk472g398HV9lChoBkdAW9gqkM1CPmgHTegDaAhHQJZQIpSaVlh1fZQoaAZHQGJeS7GvOhVoB03oA2gIR0CWWeWZJCjUdX2UKGgGR0BjxswaisXBaAdN6ANoCEdAllvoWHk92XV9lChoBkdAMQOGKyfL92gHS99oCEdAllwQ+QlrunV9lChoBkfAORfRqoIfKmgHTScBaAhHQJZcO2kSElF1fZQoaAZHQFq3teD3/PxoB03oA2gIR0CWXGymhufmdX2UKGgGR0BmnHwkPczqaAdN6ANoCEdAlnvyCBf8dnV9lChoBkdARz3YcvM8o2gHS/loCEdAln5gEyLyc3V9lChoBkdAYVXi4rjHXGgHTegDaAhHQJaArehwl0J1fZQoaAZHQD61/H5rP+poB00UAWgIR0CWgcW3z+WGdX2UKGgGR0Bgfx/CqIacaAdN6ANoCEdAlohcjJMg2nV9lChoBkdAXJynNxEORWgHTegDaAhHQJaNdkMCtA91fZQoaAZHQGJ5KB/ZuhtoB03oA2gIR0CWjZpXp4bCdX2UKGgGR0Blu7544ZMtaAdN6ANoCEdAlo3f4Irvs3V9lChoBkdASks1CPZIx2gHTQsBaAhHQJaRGiGnGbV1fZQoaAZHQGEPheHBUJhoB03oA2gIR0CWlpiosI3SdX2UKGgGR0BhsgU5+6RRaAdN6ANoCEdAlpx6nWJ79nV9lChoBkdAYtRLeyiVSmgHTegDaAhHQJadOQgcLjR1fZQoaAZHQF+ai+L3sX1oB03oA2gIR0CWnwoGpuMudX2UKGgGR0AxmrrgOz6aaAdNEgFoCEdAlqHUDhcZ+HV9lChoBkdAXvQD1XeWOmgHTegDaAhHQJakoQz1sch1fZQoaAZHQGWm5Wq94/xoB03oA2gIR0CWrnIvrWy1dX2UKGgGR0Bj7DErGza9aAdN6ANoCEdAlrCSeI2wV3V9lChoBkdAYXJeDWbw0GgHTegDaAhHQJawwkxASnN1fZQoaAZHQGBxhmoR7JJoB03oA2gIR0CW1tNsWO6vdX2UKGgGR0BjJMeQuEmIaAdN6ANoCEdAltioS13MZHV9lChoBkdAQtozLwF1S2gHTTQBaAhHQJbZANTcZcd1fZQoaAZHQGQXVI7Njb1oB03oA2gIR0CW2WqEvkBCdX2UKGgGR0BecoMvysjnaAdN6ANoCEdAlt3d0V8CxXV9lChoBkdAYTCnLq2SdWgHTegDaAhHQJbiOYJE6T51fZQoaAZHQGUjJJGvwE1oB03oA2gIR0CW4lgte2NOdX2UKGgGR0BjutSEUTL4aAdN6ANoCEdAluKgxi5NGnV9lChoBkdAZM+Xb/Ot4mgHTegDaAhHQJbreIInjQ11fZQoaAZHQGIMqe05U99oB03oA2gIR0CW9SnssxwidX2UKGgGR0BgpcF2V3UyaAdN6ANoCEdAlvZdKqXF+HV9lChoBkdAY16r2g398GgHTegDaAhHQJb5KGahHsl1fZQoaAZHQF7Vjc2zfJpoB03oA2gIR0CW/cLb5/LDdX2UKGgGR0Bg7m03Ov+waAdN6ANoCEdAlwFj8cdYGXV9lChoBkdAY/JrpJPIn2gHTegDaAhHQJcOshePaL51fZQoaAZHQF2AsTWXkYJoB03oA2gIR0CXDuy2hIvrdX2UKGgGR0Aur6Y3Ns3yaAdNIgFoCEdAlw8UT101ZXV9lChoBkdAXKzvsqril2gHTegDaAhHQJc0TLMcIZ91fZQoaAZHQGBau0LMLWtoB03oA2gIR0CXNszfrKNidX2UKGgGR0BfEBcE/0NCaAdN6ANoCEdAlzdiz5XU6XV9lChoBkdAYkfYPoV2zWgHTegDaAhHQJc4CwTufEp1fZQoaAZHQGFZOiWVu79oB03oA2gIR0CXPYVh1DBudX2UKGgGR0BlibefqX4TaAdN6ANoCEdAl0JBXGOuJXV9lChoBkdAYbbilzltCWgHTegDaAhHQJdCYkGA09B1fZQoaAZHQGMABKtga3toB03oA2gIR0CXQqpz90ihdX2UKGgGR0BCNOnMt9QXaAdNBAFoCEdAl0i0tNBWxXV9lChoBkdAZSuv9tMwlGgHTegDaAhHQJdLUgjhUBJ1fZQoaAZHQGFFOafBeoloB03oA2gIR0CXUekadc0MdX2UKGgGR0Bhb6wljVhDaAdN6ANoCEdAl1K0bLlmvnV9lChoBkdAWzJof0VafWgHTegDaAhHQJdX5uejEeh1fZQoaAZHQGCIvTPSlWRoB03oA2gIR0CXWxkuYhMbdX2UKGgGR0BQbGNNrTH9aAdL9WgIR0CXYvbBXS0CdX2UKGgGR0BQgsvduYQbaAdL12gIR0CXaQPGQ0XQdX2UKGgGR0Bi7j7yhBZ7aAdN6ANoCEdAl2tgmVqveXV9lChoBkdAX/FuYQarFWgHTegDaAhHQJdrsVk+X7d1fZQoaAZHQGNJKv3ai9JoB03oA2gIR0CXa+J0W/JvdX2UKGgGR0BlerynUDuCaAdN6ANoCEdAl5A66BiCrnV9lChoBkdAXrK5wwTM7mgHTegDaAhHQJeSNCiRGMJ1fZQoaAZHQGIv+4b0e2doB03oA2gIR0CXkxJbdJrddX2UKGgGR0BhqbgjyFwlaAdN6ANoCEdAl5h0qDsdDXV9lChoBkdAYCD9UCJXQ2gHTegDaAhHQJed9VOsT391fZQoaAZHQGRP5ftx+8ZoB03oA2gIR0CXnhyB06o3dX2UKGgGR0BlD829+PRzaAdN6ANoCEdAl56Uh3aBZ3V9lChoBkdAZQmEgW8AaWgHTegDaAhHQJeoK938n/l1fZQoaAZHQGDw0W2w3YNoB03oA2gIR0CXrH6AvtdBdX2UKGgGR0BgC2sDGLk0aAdN6ANoCEdAl7W9PLxI8XV9lChoBkdAYLKtvGZNPGgHTegDaAhHQJe+hJbt7a91fZQoaAZHQGVYktVaOghoB03oA2gIR0CXxxVWS2YwdX2UKGgGR0BlCX0yxiXqaAdN6ANoCEdAl8uv+XJHRXV9lChoBkdAXf6T1TR6W2gHTegDaAhHQJfNeG21D0F1fZQoaAZHQF91KODJ2dNoB03oA2gIR0CXzbPiT+vRdX2UKGgGR0Bgw8jkdV/+aAdN6ANoCEdAl83ZtSAH3XV9lChoBkdAYfy5d4Vym2gHTegDaAhHQJf1B+KCQLh1fZQoaAZHQGAeHs9jgAJoB03oA2gIR0CX9uIIF/x2dX2UKGgGR0BkEw8+zMRpaAdN6ANoCEdAl/ewo5PuX3V9lChoBkdAYfpkPMB6r2gHTegDaAhHQJf8mBFuvU11fZQoaAZHQGNxejua4MFoB03oA2gIR0CYAd5ZKWcCdX2UKGgGR0Bh4rFbVz6raAdN6ANoCEdAmAIBtDUmUnV9lChoBkdAZOemv4dp7GgHTegDaAhHQJgCU/C66J91fZQoaAZHQGGJxhttQ9BoB03oA2gIR0CYCc/5+H8CdX2UKGgGR0BkeRi3G4qgaAdN6ANoCEdAmAx6Hj6vaHV9lChoBkdAYiX6FdszmGgHTegDaAhHQJgT3HEMspZ1fZQoaAZHQFfjLM9r435oB03oA2gIR0CYIDdAgPmQdX2UKGgGR0BkMc3EQ5FPaAdN6ANoCEdAmCpF3IMjNnV9lChoBkdAYbbcW0qpcWgHTegDaAhHQJgujbFjurp1fZQoaAZHQGIyr+PzWf9oB03oA2gIR0CYMBpNsWO7dX2UKGgGR0Bi/sY0l7dBaAdN6ANoCEdAmDBNh/iHZnV9lChoBkdAYK4Nb1RLsmgHTegDaAhHQJgwbyvs7dV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-lunar-lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:603225f2b0ee0d87070d5aebbd90aedba15ded3822b5706da2c68a6ec3db45c9
3
+ size 146750
ppo-lunar-lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-lunar-lander/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a37d2659900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a37d2659990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a37d2659a20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a37d2659ab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a37d2659b40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a37d2659bd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a37d2659c60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a37d2659cf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a37d2659d80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a37d2659e10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a37d2659ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a37d2659f30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a37dc1d64c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694840887719406619,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZmpjhSWPG5QtGHu7FayjdlXHc7PmkutwAAgD8AAIA/ABIWvFxbYrqoV5I6JzqvNcHyuDoAB6i5AACAPwAAgD9Gikg+Lly+Pp2Zkb3j0yy+inZAPfvvkj0AAAAAAAAAAM1MkrnhJKW6nrg0uqNav7Z1yJ668SksNgAAgD8AAIA/zSs8PVLwp7n9IZi8HkKatpuRjLlmpAw2AACAPwAAgD9N0ME9NKyBPVG8Rb4huQe+aBM2vAog8DwAAAAAAAAAAM19HT3DUTu6Zwcku9HynDYyK0C7a3U7OgAAgD8AAIA/mulBvvyQ5z4sJD4+4DGMvmedhbpOAW49AAAAAAAAAAC6Vw4+7C2Gu57IFDqsNY+3+gzEvFwkNLkAAIA/AACAPzP2Dz17CpC6kUnIuiGlo7NIBKU65XbfsgAAgD8AAIA/TaAHPXuCkLpMjyo5M4TOM4Zborqnd0S4AACAPwAAgD+aqOG8j2oVumW8PDskPBc2vnqZu255YboAAIA/AACAP7pEqz5th/0+pjivvc0cPL5f/Mo9/vRcPQAAAAAAAAAAphK+Pay3xT58f6i9LM9QvuMaOj22tSA9AAAAAAAAAABA6J89hTOWuTPa4LxUmAO2vh3bOsaCczUAAAAAAAAAAOblPD1cowW6ILBqOh6SpzXNN406/u2GuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7mxXXAdn2MAWyUTegDjAF0lEdAljJTPBzmwXV9lChoBkdAXPsnLJSzgWgHTegDaAhHQJY9b6eoUBZ1fZQoaAZHQGNaVhb4agpoB03oA2gIR0CWPZ0ygwoLdX2UKGgGR0BfaDTz/ZM+aAdN6ANoCEdAlkYWfseGPHV9lChoBkdAYhir4nF5wGgHTegDaAhHQJZHLE2pAD91fZQoaAZHQGJSAQg9vCNoB03oA2gIR0CWSQoYekpJdX2UKGgGR0Bi2D/IbOu8aAdN6ANoCEdAlkmaEi+tbXV9lChoBkdAS+mby6MBIWgHS8ZoCEdAlk472g398HV9lChoBkdAW9gqkM1CPmgHTegDaAhHQJZQIpSaVlh1fZQoaAZHQGJeS7GvOhVoB03oA2gIR0CWWeWZJCjUdX2UKGgGR0BjxswaisXBaAdN6ANoCEdAllvoWHk92XV9lChoBkdAMQOGKyfL92gHS99oCEdAllwQ+QlrunV9lChoBkfAORfRqoIfKmgHTScBaAhHQJZcO2kSElF1fZQoaAZHQFq3teD3/PxoB03oA2gIR0CWXGymhufmdX2UKGgGR0BmnHwkPczqaAdN6ANoCEdAlnvyCBf8dnV9lChoBkdARz3YcvM8o2gHS/loCEdAln5gEyLyc3V9lChoBkdAYVXi4rjHXGgHTegDaAhHQJaArehwl0J1fZQoaAZHQD61/H5rP+poB00UAWgIR0CWgcW3z+WGdX2UKGgGR0Bgfx/CqIacaAdN6ANoCEdAlohcjJMg2nV9lChoBkdAXJynNxEORWgHTegDaAhHQJaNdkMCtA91fZQoaAZHQGJ5KB/ZuhtoB03oA2gIR0CWjZpXp4bCdX2UKGgGR0Blu7544ZMtaAdN6ANoCEdAlo3f4Irvs3V9lChoBkdASks1CPZIx2gHTQsBaAhHQJaRGiGnGbV1fZQoaAZHQGEPheHBUJhoB03oA2gIR0CWlpiosI3SdX2UKGgGR0BhsgU5+6RRaAdN6ANoCEdAlpx6nWJ79nV9lChoBkdAYtRLeyiVSmgHTegDaAhHQJadOQgcLjR1fZQoaAZHQF+ai+L3sX1oB03oA2gIR0CWnwoGpuMudX2UKGgGR0AxmrrgOz6aaAdNEgFoCEdAlqHUDhcZ+HV9lChoBkdAXvQD1XeWOmgHTegDaAhHQJakoQz1sch1fZQoaAZHQGWm5Wq94/xoB03oA2gIR0CWrnIvrWy1dX2UKGgGR0Bj7DErGza9aAdN6ANoCEdAlrCSeI2wV3V9lChoBkdAYXJeDWbw0GgHTegDaAhHQJawwkxASnN1fZQoaAZHQGBxhmoR7JJoB03oA2gIR0CW1tNsWO6vdX2UKGgGR0BjJMeQuEmIaAdN6ANoCEdAltioS13MZHV9lChoBkdAQtozLwF1S2gHTTQBaAhHQJbZANTcZcd1fZQoaAZHQGQXVI7Njb1oB03oA2gIR0CW2WqEvkBCdX2UKGgGR0BecoMvysjnaAdN6ANoCEdAlt3d0V8CxXV9lChoBkdAYTCnLq2SdWgHTegDaAhHQJbiOYJE6T51fZQoaAZHQGUjJJGvwE1oB03oA2gIR0CW4lgte2NOdX2UKGgGR0BjutSEUTL4aAdN6ANoCEdAluKgxi5NGnV9lChoBkdAZM+Xb/Ot4mgHTegDaAhHQJbreIInjQ11fZQoaAZHQGIMqe05U99oB03oA2gIR0CW9SnssxwidX2UKGgGR0BgpcF2V3UyaAdN6ANoCEdAlvZdKqXF+HV9lChoBkdAY16r2g398GgHTegDaAhHQJb5KGahHsl1fZQoaAZHQF7Vjc2zfJpoB03oA2gIR0CW/cLb5/LDdX2UKGgGR0Bg7m03Ov+waAdN6ANoCEdAlwFj8cdYGXV9lChoBkdAY/JrpJPIn2gHTegDaAhHQJcOshePaL51fZQoaAZHQF2AsTWXkYJoB03oA2gIR0CXDuy2hIvrdX2UKGgGR0Aur6Y3Ns3yaAdNIgFoCEdAlw8UT101ZXV9lChoBkdAXKzvsqril2gHTegDaAhHQJc0TLMcIZ91fZQoaAZHQGBau0LMLWtoB03oA2gIR0CXNszfrKNidX2UKGgGR0BfEBcE/0NCaAdN6ANoCEdAlzdiz5XU6XV9lChoBkdAYkfYPoV2zWgHTegDaAhHQJc4CwTufEp1fZQoaAZHQGFZOiWVu79oB03oA2gIR0CXPYVh1DBudX2UKGgGR0BlibefqX4TaAdN6ANoCEdAl0JBXGOuJXV9lChoBkdAYbbilzltCWgHTegDaAhHQJdCYkGA09B1fZQoaAZHQGMABKtga3toB03oA2gIR0CXQqpz90ihdX2UKGgGR0BCNOnMt9QXaAdNBAFoCEdAl0i0tNBWxXV9lChoBkdAZSuv9tMwlGgHTegDaAhHQJdLUgjhUBJ1fZQoaAZHQGFFOafBeoloB03oA2gIR0CXUekadc0MdX2UKGgGR0Bhb6wljVhDaAdN6ANoCEdAl1K0bLlmvnV9lChoBkdAWzJof0VafWgHTegDaAhHQJdX5uejEeh1fZQoaAZHQGCIvTPSlWRoB03oA2gIR0CXWxkuYhMbdX2UKGgGR0BQbGNNrTH9aAdL9WgIR0CXYvbBXS0CdX2UKGgGR0BQgsvduYQbaAdL12gIR0CXaQPGQ0XQdX2UKGgGR0Bi7j7yhBZ7aAdN6ANoCEdAl2tgmVqveXV9lChoBkdAX/FuYQarFWgHTegDaAhHQJdrsVk+X7d1fZQoaAZHQGNJKv3ai9JoB03oA2gIR0CXa+J0W/JvdX2UKGgGR0BlerynUDuCaAdN6ANoCEdAl5A66BiCrnV9lChoBkdAXrK5wwTM7mgHTegDaAhHQJeSNCiRGMJ1fZQoaAZHQGIv+4b0e2doB03oA2gIR0CXkxJbdJrddX2UKGgGR0BhqbgjyFwlaAdN6ANoCEdAl5h0qDsdDXV9lChoBkdAYCD9UCJXQ2gHTegDaAhHQJed9VOsT391fZQoaAZHQGRP5ftx+8ZoB03oA2gIR0CXnhyB06o3dX2UKGgGR0BlD829+PRzaAdN6ANoCEdAl56Uh3aBZ3V9lChoBkdAZQmEgW8AaWgHTegDaAhHQJeoK938n/l1fZQoaAZHQGDw0W2w3YNoB03oA2gIR0CXrH6AvtdBdX2UKGgGR0BgC2sDGLk0aAdN6ANoCEdAl7W9PLxI8XV9lChoBkdAYLKtvGZNPGgHTegDaAhHQJe+hJbt7a91fZQoaAZHQGVYktVaOghoB03oA2gIR0CXxxVWS2YwdX2UKGgGR0BlCX0yxiXqaAdN6ANoCEdAl8uv+XJHRXV9lChoBkdAXf6T1TR6W2gHTegDaAhHQJfNeG21D0F1fZQoaAZHQF91KODJ2dNoB03oA2gIR0CXzbPiT+vRdX2UKGgGR0Bgw8jkdV/+aAdN6ANoCEdAl83ZtSAH3XV9lChoBkdAYfy5d4Vym2gHTegDaAhHQJf1B+KCQLh1fZQoaAZHQGAeHs9jgAJoB03oA2gIR0CX9uIIF/x2dX2UKGgGR0BkEw8+zMRpaAdN6ANoCEdAl/ewo5PuX3V9lChoBkdAYfpkPMB6r2gHTegDaAhHQJf8mBFuvU11fZQoaAZHQGNxejua4MFoB03oA2gIR0CYAd5ZKWcCdX2UKGgGR0Bh4rFbVz6raAdN6ANoCEdAmAIBtDUmUnV9lChoBkdAZOemv4dp7GgHTegDaAhHQJgCU/C66J91fZQoaAZHQGGJxhttQ9BoB03oA2gIR0CYCc/5+H8CdX2UKGgGR0BkeRi3G4qgaAdN6ANoCEdAmAx6Hj6vaHV9lChoBkdAYiX6FdszmGgHTegDaAhHQJgT3HEMspZ1fZQoaAZHQFfjLM9r435oB03oA2gIR0CYIDdAgPmQdX2UKGgGR0BkMc3EQ5FPaAdN6ANoCEdAmCpF3IMjNnV9lChoBkdAYbbcW0qpcWgHTegDaAhHQJgujbFjurp1fZQoaAZHQGIyr+PzWf9oB03oA2gIR0CYMBpNsWO7dX2UKGgGR0Bi/sY0l7dBaAdN6ANoCEdAmDBNh/iHZnV9lChoBkdAYK4Nb1RLsmgHTegDaAhHQJgwbyvs7dV1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-lunar-lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f95dde7b56e73a0dc8f52e86d8519250f5830c2f5441d7bc877b90aedf13dc8
3
+ size 87929
ppo-lunar-lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4914ba40c084b2b7e8a57d11a20b5046cca7f6021e62f69766a0addc5c1d9ec
3
+ size 43329
ppo-lunar-lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunar-lander/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (173 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.310239, "std_reward": 20.059055874127488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-16T06:04:27.089305"}