Text Classification
Adapters
Not-For-All-Audiences
Edit model card
A newer version of this model is available: meta-llama/Llama-3.1-8B-Instruct

from adapters import AutoAdapterModel

model_name = "dbmdz/bert-base-german-cased" model = AutoAdapterModel.from_pretrained(model_name) model.load_adapter("LukasKorvas/German", set_active=True)--- license: apache-2.0 datasets: - openai/MMMLU language: - af metrics: - accuracy base_model: - openai/whisper-large-v3-turbo new_version: meta-llama/Llama-3.1-8B-Instruct library_name: adapter-transformers

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

Tento model je prispôsobený pre úlohy spracovania prirodzeného jazyka v nemčine, ako je klasifikácia textu a generovanie konverzačného obsahu.

  • Developed by: [Lukas]
  • Funded by [optional]: [Korvas]
  • Shared by [optional]: [Nemčina pre Samoukov]
  • Model type: [text a video]
  • Language(s) (NLP): [Slovak, German]
  • License: [no]
  • Finetuned from model [optional]: [no]

Model Sources [optional]

  • Repository: [no]
  • Paper [optional]: [no]
  • Demo [optional]: [no]

Uses

Tento model môže byť použitý na konverzačné AI aplikácie, učenie jazykov, automatizáciu zákazníckych služieb a podobne.

Direct Use

[Learn german]

Downstream Use [optional]

[try]

Out-of-Scope Use

[no]

Bias, Risks, and Limitations

[no risk]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[zaklady nemeckého jazyka]

Training Details

Training Data

[kniha nemčina pre samoukov]

Training Procedure

Skúška

Preprocessing [optional]

[book]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[co to je]

Evaluation

co to je

Testing Data, Factors & Metrics

Testing Data

[co to je]

Factors

[nerozumiem ti]

Metrics

[ako na to]

Results

[ idem skusit]

Summary

Model Examination [optional]

[uz to pusti]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [neviem]
  • Hours used: [dve]
  • Cloud Provider: [ano]
  • Compute Region: [neviem]
  • Carbon Emitted: [asi]

Technical Specifications [optional]

Model Architecture and Objective

[neviem]

Compute Infrastructure

[neviem]

Hardware

[neviem]

Software

[neviem]

Citation [optional]

BibTeX:

[neviem]

APA:

[neviem]

Glossary [optional]

[neviem]

More Information [optional]

[kolko este]

Model Card Authors [optional]

[dobre ]

Model Card Contact

[koniec]

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LukasKorvas/German

Adapter
(18)
this model

Dataset used to train LukasKorvas/German