File size: 2,109 Bytes
96771c1 7a62402 5868a9c 2e12da4 7a62402 3d4d2de 7a62402 3d4d2de b9aa955 49b40f7 c8ff945 7a62402 8689b54 7a62402 27feebe 7a62402 a662069 7a62402 ff9d7df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
---
# You Only Sample Once (YOSO)
![overview](overview.jpg)
The YOSO was proposed in You Only Sample Once: Taming One-Step Text-To-Image Synthesis by Self-Cooperative Diffusion GANs by *Yihong Luo, Xiaolong Chen, Jing Tang*.
This model is fine-tuning from [
PixArt-XL-2-512x512](https://huggingface.co/PixArt-alpha/PixArt-XL-2-512x512), enabling one-step inference to perform text-to-image generation.
We wanna highlight that the YOSO-PixArt was originally trained on 512 resolution. However, we found that we can construct a YOSO that enables generating samples with 1024 resolution by merging with [
PixArt-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
) (Section 6.2.1 in the paper) as follows:
![Construction](construction.jpg)
The impressive performance indicates the robust generalization ability of our YOSO.
## usage
```python
import torch
from diffusers import PixArtAlphaPipeline, LCMScheduler, Transformer2DModel, DPMSolverMultistepScheduler
transformer = Transformer2DModel.from_pretrained(
"Luo-Yihong/yoso_pixart1024", torch_dtype=torch.float16).to('cuda')
pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-512x512",
transformer=transformer,
torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to('cuda')
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.config.prediction_type = "v_prediction"
generator = torch.manual_seed(318)
imgs = pipe(prompt="Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
num_inference_steps=1,
num_images_per_prompt = 1,
generator = generator,
guidance_scale=1.,
)[0]
imgs[0]
```
![Ship](ship_1024.jpg) |