LuozzzzzzzzzzzzzzY
commited on
Upload inference.py
Browse files- inference.py +94 -0
inference.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoConfig,
|
3 |
+
AutoTokenizer,
|
4 |
+
BitsAndBytesConfig,
|
5 |
+
AutoProcessor,
|
6 |
+
LlamaForCausalLM,
|
7 |
+
MllamaForConditionalGeneration,
|
8 |
+
AutoModelForCausalLM
|
9 |
+
)
|
10 |
+
import torch
|
11 |
+
from peft import PeftModel
|
12 |
+
from datasets import load_from_disk
|
13 |
+
import pandas as pd
|
14 |
+
from tqdm import tqdm
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
|
17 |
+
|
18 |
+
mode_path = '/gemini/pretrain/meta-llamaLlama-3.2-11B-Vision-Instruct'
|
19 |
+
lora_path = '/gemini/code/FMD/model/final_model_4/checkpoint-2440' # lora 输出对应 checkpoint 路径
|
20 |
+
|
21 |
+
# 加载tokenizer
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)
|
23 |
+
|
24 |
+
# 加载模型
|
25 |
+
model = MllamaForConditionalGeneration.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
|
26 |
+
|
27 |
+
# 加载lora权重
|
28 |
+
model = PeftModel.from_pretrained(model, model_id=lora_path)
|
29 |
+
test_dataset = load_from_disk("/gemini/code/FMD/final_dataset/Test")
|
30 |
+
results = []
|
31 |
+
with torch.no_grad():
|
32 |
+
for data in tqdm(test_dataset):
|
33 |
+
model_input = tokenizer(
|
34 |
+
data['instruction_1'], # 输入文本
|
35 |
+
add_special_tokens=False, # 不添加特殊标记
|
36 |
+
truncation=True, # 启用截断
|
37 |
+
max_length=3000 # 设置最大长度
|
38 |
+
)
|
39 |
+
model_input = tokenizer.decode(model_input["input_ids"], skip_special_tokens=False)
|
40 |
+
|
41 |
+
model_inputs = tokenizer(f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are an expert in financial misinformation detection.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{model_input}\nimage information: {data['image_info']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", truncation=True, max_length=3600, add_special_tokens=False,return_tensors="pt").to('cuda')
|
42 |
+
# 生成模型输出
|
43 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=1024)
|
44 |
+
|
45 |
+
# 去除输入部分的 token,以保留生成的预测结果
|
46 |
+
generated_ids = [
|
47 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
48 |
+
]
|
49 |
+
|
50 |
+
# 解码生成的预测结果
|
51 |
+
responses = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
52 |
+
print(responses)
|
53 |
+
# 将每个结果按顺序存储到列表中
|
54 |
+
results.append({
|
55 |
+
"ID": data['ID'],
|
56 |
+
"response": responses
|
57 |
+
})
|
58 |
+
def split_response(text):
|
59 |
+
#获取Prediction的内容
|
60 |
+
prediction_pattern = r"Prediction:\s*(False|True|NEI)\s*$"
|
61 |
+
prediction_match = re.search(prediction_pattern, text, re.MULTILINE)
|
62 |
+
if prediction_match:
|
63 |
+
prediction = prediction_match.group(1).strip()
|
64 |
+
else:
|
65 |
+
prediction = 'None'
|
66 |
+
print("没有找到匹配的内容")
|
67 |
+
#获取Explanation的内容
|
68 |
+
explanation_pattern = r"Explanation:\s*(.*)"
|
69 |
+
explanation_match = re.search(explanation_pattern, text, re.MULTILINE)
|
70 |
+
if explanation_match:
|
71 |
+
explanation = explanation_match.group(1).strip()
|
72 |
+
else:
|
73 |
+
explanation = None # 如果没有匹配项,设置为 None
|
74 |
+
return prediction, explanation
|
75 |
+
|
76 |
+
if results:
|
77 |
+
df = pd.DataFrame(results)
|
78 |
+
|
79 |
+
for index, row in df.iterrows():
|
80 |
+
text = row['response']
|
81 |
+
prediction, explanation= split_response(text)
|
82 |
+
df.at[index, 'Prediction'] = prediction
|
83 |
+
df.at[index, 'Explanation'] = explanation
|
84 |
+
|
85 |
+
df['ID'] = df['ID'].str.replace('FMD_test_', '', regex=False)
|
86 |
+
df = df.rename(columns={'ID': 'id','Prediction': 'pred','Explanation': 'explanation'})
|
87 |
+
df = df.drop('response',axis=1)
|
88 |
+
mapping = {
|
89 |
+
'False': 0,
|
90 |
+
'True': 1,
|
91 |
+
'NEI': 2
|
92 |
+
}
|
93 |
+
df['pred'] = df['pred'].replace(mapping)
|
94 |
+
df.to_csv("/gemini/code/FMD/inference/result_final_model_4/result.csv",index = False)
|