ppo-LunarLander / config.json
Lzhou286's picture
train a lunar lander for 1000000 steps
f028822
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d3759e440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d3759e4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d3759e560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d3759e5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f9d3759e680>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d3759e710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9d3759e7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d3759e830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d3759e8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d3759e950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d3759e9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d3759ea70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9d375ac840>"}, "verbose": 2, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686712043084499378, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCiSD4Yw7Q+mPXSuvYeir7+dKQ9Ea0ouwAAAAAAAAAAs0JBvRDVPD8OEgy8xusVv0zfCb1yQ7w8AAAAAAAAAADN3LI70p6yu9p2gbvsdaU8qUgBPe2Bi70AAIA/AACAP7M3Jr0h6Lc/6pAMv1I5rD1Ql9c7G5zdvQAAAAAAAAAAjdH3vbygpD+LDee+hiAMvwDiCr7Jpw6+AAAAAAAAAACaD9k9d2ZUPw1zQT6xCBO/lGO9PaWiWL0AAAAAAAAAAKYUIT4pzW28uOdSOV9R77cUQNO9ww+YuAAAgD8AAIA/M9GlvY/efLosqx09B0QbuQASijtGZBK4AACAPwAAgD+tmGE+HzP7Pru5Tb4nYcu+5OBqPUVhpL0AAAAAAAAAAIB9w728R6E/9c3SvlT+Br9QusS9ZvbevQAAAAAAAAAAZqQaPCqkuT8m1p09cU/TPLVqQDsroyA9AAAAAAAAAAAaG5a9MCrAPyvinL6/jvO9fxGpvbKx2L0AAAAAAAAAAMDNv73XmVw8VEQ3PnYJD75lUEw9kz8wvAAAAAAAAAAARiZQPuGNez/TwuI+Gk7qvt5JeT5PW7g9AAAAAAAAAAAt2Qc+jwUuO9OC8L3n/IA8XI9sPXF1PL4AAIA/AACAPwCZGb1Pe028Jt9iPW0Kibzj1hQ9c/1qPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIDdPUKAriMAWyUTQYBjAF0lEdAoWtyDXe3yHV9lChoBkdAciFHwgDA8GgHS8toCEdAoWuenO0LMXV9lChoBkdAX3naFmFrVWgHTegDaAhHQKFr84uK4x11fZQoaAZHQHLYw4S6DoRoB0vPaAhHQKFsDsfJV811fZQoaAZHQHBjyE6DGtJoB0vwaAhHQKFsatK7I1d1fZQoaAZHQHH1LmMfigloB0vaaAhHQKFsgpqh11Z1fZQoaAZHQG3C+On2qT9oB0vaaAhHQKFsvKgZjx11fZQoaAZHQG9QFOO801toB0v1aAhHQKFsxdGAkLR1fZQoaAZHQG+jObZvkzZoB0vzaAhHQKFtQncclw91fZQoaAZHQG9UgKfFrEdoB0vUaAhHQKFtfQY1pCd1fZQoaAZHQHIqH/o7muFoB00mAWgIR0ChbfDDbah6dX2UKGgGR0BvPWl2vB8AaAdLy2gIR0ChbfjRD1GtdX2UKGgGR0BwaMrlNlAeaAdLyWgIR0ChbgLDZUT+dX2UKGgGR0BxdSz4UN8WaAdNFwFoCEdAoW4lL+PzWnV9lChoBkdAcYBNzr/sFGgHS9loCEdAoW6NX5nDi3V9lChoBkdAcdM0+TvAoGgHS/BoCEdAoW6xCOWBz3V9lChoBkdAcN7S3LFGX2gHS9xoCEdAoW7nsu3+dnV9lChoBkdAcHVdxyXD32gHS+loCEdAoW8x5C4SYnV9lChoBkdAce4oJAt4A2gHS+RoCEdAoW+JkGzKLnV9lChoBkdAcT/SaEzwdGgHS/1oCEdAoXBSpR4yGnV9lChoBkdAcc8yTpxFRmgHTRcBaAhHQKFwaJ9Aood1fZQoaAZHQG+lRcmjTKFoB0vcaAhHQKFwZpg1FYx1fZQoaAZHQHKSEkfLcKxoB00TAWgIR0ChcJ495hScdX2UKGgGR0BilUQmNR3vaAdN6ANoCEdAoXCr9wWFe3V9lChoBkdAcLEQb+98JGgHS9FoCEdAoXDuZy+6AnV9lChoBkdAcUTNOdoWYWgHS+hoCEdAoXFCGJvYOHV9lChoBkdAcbukfLcKxGgHS/poCEdAoXGvVEuxr3V9lChoBkdAcg/fOD8Lr2gHS/xoCEdAoXIh5iVjZ3V9lChoBkdAcoW6oESuhmgHS/toCEdAoXJE8Rtgr3V9lChoBkdAcdbNu+AVf2gHTTwBaAhHQKFyaVh1DBx1fZQoaAZHQG5AR8twrDtoB0vZaAhHQKFyo9FF2FF1fZQoaAZHQHJfdjXnQppoB00QAWgIR0ChcsqT8pCsdX2UKGgGR0BxPkkUsWfsaAdNDQFoCEdAoXMIwRGtp3V9lChoBkdAbi1Q0GeMAGgHS9FoCEdAoXNQ+OfdynV9lChoBkdAcAeP2f02+GgHS+hoCEdAoXOTYywfQ3V9lChoBkdAcdFzoEB8yGgHS+9oCEdAoXPAbCJoCnV9lChoBkdAceHhisny/mgHS+poCEdAoXPgrFwT/XV9lChoBkdAcdWdf9gndGgHS/loCEdAoXQisp5NXnV9lChoBkdAcT1OPvKEFmgHS+ZoCEdAoXQpLRKHwnV9lChoBkdAcINCVKPGQ2gHS+xoCEdAoXT8biqABnV9lChoBkdAcWa8Yht+C2gHS9BoCEdAoXUIpnYg73V9lChoBkdAcldj6N2ki2gHTRwBaAhHQKF1Rrl/6O51fZQoaAZHQHJkFSCOFQFoB0vnaAhHQKF1fTQ3PzF1fZQoaAZHQHFofe1rqMZoB0v3aAhHQKF14sFMZgp1fZQoaAZHQGYd349HMEBoB03oA2gIR0Chdi+dK/VRdX2UKGgGR0Bw+DaM72csaAdL8GgIR0ChdiyGahHtdX2UKGgGR0BwYB5NXYDlaAdL/2gIR0ChdjrNwBHTdX2UKGgGR0Bwj2b9ZRsNaAdL+WgIR0ChdorTx5LRdX2UKGgGR0Bw3Hdhy8zzaAdL72gIR0ChdvJfYzzmdX2UKGgGR0BwqaYUnG83aAdL42gIR0ChdxXVkMCtdX2UKGgGR0BxtEiliz9kaAdL92gIR0Chdz4ACGN8dX2UKGgGR0BxzmTTvy9VaAdNHAFoCEdAoXdUWXTmXHV9lChoBkdAccdG1x82JmgHS+toCEdAoXd5sj3VTnV9lChoBkdAcQLqc3EQ5GgHS+ZoCEdAoXgxxT850nV9lChoBkdAcb5Tg2qDLGgHTQ4BaAhHQKF40sCkoF51fZQoaAZHQHI9kPQOWjZoB00JAWgIR0CheQFiBoVVdX2UKGgGR0Br46vX9R77aAdL4WgIR0CheQpRO1v3dX2UKGgGR0BxZYLQXyiFaAdL/WgIR0CheQ+t0V8DdX2UKGgGR0BzsNT2nKnvaAdL1GgIR0CheSeQ+2VndX2UKGgGR0BxO+dsi0OWaAdL42gIR0CheVplar3kdX2UKGgGR0Bx47LQokRjaAdL5mgIR0CheXJeNT99dX2UKGgGR0Bwh7mOlwcYaAdLy2gIR0ChecWkJrtWdX2UKGgGR0BweApe/pMYaAdL9WgIR0CheffsVtXQdX2UKGgGR0BwaI//vOQhaAdL12gIR0ChehD/+85CdX2UKGgGR0Buc9O/L1VYaAdLzmgIR0Chehjafzz3dX2UKGgGR0Bu2AZ62OQyaAdL2mgIR0Chenehf0EpdX2UKGgGR0BzIpcyFfzCaAdNJwFoCEdAoXtmmWMS9XV9lChoBkdAcVMdFOO802gHS+doCEdAoXtuwA2hqXV9lChoBkdAZYds0pEx7GgHTegDaAhHQKF7hznRsuZ1fZQoaAZHQG3bXHim2stoB0vTaAhHQKF7uxnnMdN1fZQoaAZHQHFeVKf4AS5oB0vIaAhHQKF7w0HhS+B1fZQoaAZHQHDGL9ycTaloB0vhaAhHQKF8CWykbgl1fZQoaAZHQHLXwvHtF8ZoB0veaAhHQKF8IFC9h7V1fZQoaAZHQG+K4ZMtbs5oB0vpaAhHQKF8eKP4mC11fZQoaAZHQHDJMW0qpcZoB00DAWgIR0ChfI48Md92dX2UKGgGR0BvGgpe/pMYaAdL3GgIR0ChfMDENvwWdX2UKGgGR0BwQqxs2vSuaAdL4WgIR0ChfPwkgOjJdX2UKGgGR0Bs4eYBvJiiaAdL6GgIR0ChfS7laKUFdX2UKGgGR0Bx3fwnYxtYaAdL0GgIR0ChfUDbSJCTdX2UKGgGR0ByOvP7el9CaAdNJgFoCEdAoX1cnLJSznV9lChoBkdAcRP544ZMtmgHTQoBaAhHQKF9kw+MZP51fZQoaAZHQHGLl0xM361oB0vEaAhHQKF+A20iQkp1fZQoaAZHQHG5ojfNzKdoB0vWaAhHQKF+Km51/2F1fZQoaAZHQG8uZ+x4Y79oB0vSaAhHQKF+Z0mMOwx1fZQoaAZHQHHojfFaSs9oB0vxaAhHQKF+eg4ffXR1fZQoaAZHQG/nCBPKuCBoB0vWaAhHQKF+fT6zmfZ1fZQoaAZHQG/0T1TR6WxoB0vNaAhHQKF+qtZmqYJ1fZQoaAZHQHCCcwco6S1oB0u/aAhHQKF++sjFAFB1fZQoaAZHQHIiukP+XJJoB0vpaAhHQKF/It2cJ+l1fZQoaAZHQHA1KWTot+VoB0vPaAhHQKF/HxZMcp91fZQoaAZHQHDRKgqVhThoB0vfaAhHQKGAdGWD6Fd1fZQoaAZHQHJ0K8QI2O1oB00KAWgIR0ChgIEpI+W4dX2UKGgGR0ByVzXiBGx2aAdNDAFoCEdAoYDmQOnVG3V9lChoBkdAcYWWVNYbKmgHS/xoCEdAoYGOk1uR93V9lChoBkdAcTNVObiIcmgHTRcBaAhHQKGBwPuogmt1fZQoaAZHQHEde98JD3NoB0vvaAhHQKGCCPOIInl1fZQoaAZHQHAJEbYK6WhoB0vmaAhHQKGCFm03OwB1fZQoaAZHQHDBY0Mw1zhoB0vMaAhHQKGCFrLQokR1fZQoaAZHQG6rZYPoV21oB0vZaAhHQKGCTw71Zkl1fZQoaAZHQHEuVyJbdJtoB01GAWgIR0ChgmSgPEsKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}