File size: 4,986 Bytes
477a2db 7256c50 477a2db ddd6b0a 7256c50 43933b3 477a2db 7256c50 477a2db 9eec408 477a2db 22e8baa 7256c50 477a2db 22e8baa 477a2db 22e8baa 7256c50 22e8baa c40ca08 a701e25 944519f 7256c50 a701e25 7a50f15 ddd6b0a 22e8baa aeb4c55 22e8baa ddd6b0a 22e8baa 477a2db 7256c50 477a2db 22e8baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
license: apache-2.0
tags:
- generated_from_trainer
- instruction fine-tuning
model-index:
- name: flan-t5-small-distil-v2
results: []
language:
- en
pipeline_tag: text2text-generation
widget:
- text: >-
how can I become more healthy?
example_title: example
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LaMini-FLAN-T5-Small
This model is one of our LaMini model series in paper "[LaMini: Distilling Knowledge from Large Language Models]()". This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [LaMini dataset]() that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository]().
## Training Procedure
We initialize with [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) and fine-tune it on our [LaMini dataset](). Its total number of parameters is 61M.
### Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
## Evaluation
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper]().
## More Models
You can download LaMini model series as follow. Note that not all models are performing as well. More details can be seen in our [paper]().
<details>
<summary> Click to expand </summary>
<table>
<caption>
LaMini Language Models collection.
</caption>
<thead>
<tr>
<th>Name</th>
<th>Architecture</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMini-T5-61M</td>
<td>encoder-decoder</td>
<td>T5-small</td>
</tr>
<tr>
<td>LaMini-T5-223M</td>
<td>encoder-decoder</td>
<td>T5-base</td>
</tr>
<tr>
<td>LaMini-T5-738M</td>
<td>encoder-decoder</td>
<td>T5-large</td>
</tr>
<tr>
<td>LaMini-Flan-T5-77M</td>
<td>encoder-decoder</td>
<td>Flan-T5-small</td>
</tr>
<tr>
<td>LaMini-Flan-T5-248M</td>
<td>encoder-decoder</td>
<td>Flan-T5-base</td>
</tr>
<tr>
<td>LaMini-Flan-T5-783M</td>
<td>encoder-decoder</td>
<td>Flan-T5-large</td>
</tr>
<tr>
<td>LaMini-Cb-111M</td>
<td>decoder-only</td>
<td>Cerebras-GPT-111M</td>
</tr>
<tr>
<td>LaMini-Cb-256M</td>
<td>decoder-only</td>
<td>Cerebras-GPT-256M</td>
</tr>
<tr>
<td>LaMini-Cb-590M</td>
<td>decoder-only</td>
<td>Cerebras-GPT-590M</td>
</tr>
<tr>
<td>LaMini-Cb-1.3B</td>
<td>decoder-only</td>
<td>Cerebras-GPT-1.3B</td>
</tr>
<tr>
<td>LaMini-GPT-124M</td>
<td>decoder-only</td>
<td>GPT-2</td>
</tr>
<tr>
<td>LaMini-GPT-774M</td>
<td>decoder-only</td>
<td>GPT-2 large</td>
</tr>
<tr>
<td>LaMini-GPT-1.5B</td>
<td>decoder-only</td>
<td>GPT-2 xl</td>
</tr>
</tbody>
</table>
</details>
## Use
### Intended use
We recommend to use model to reponse to human instructions wrote in natural language.
We now show you how to load and use our model using HuggingFace `pipline()`.
### CPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import pipeline
checkpoint = "{model_name}"
model = pipeline('text2text-generation', model=checkpoint, use_auth_token=True)
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = generator(input_prompt, max_length=512, do_sample=True, repetition_penalty=1.5)[0]['generated_text']
print("Response": generated_text)
```
</details>
### GPU
<details>
<summary> Click to expand </summary>
```python
# pip install -q transformers
from transformers import pipeline
checkpoint = "{model_name}"
model = pipeline('text2text-generation', model=checkpoint, use_auth_token=True, device=0)
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = generator(input_prompt, max_length=512, do_sample=True, repetition_penalty=1.5)[0]['generated_text']
print("Response": generated_text)
```
</details>
## Limitations
More information needed
# Citation
```bibtex
@misc{,
title={LaMini: Distilling Knowledge from Large Language Models},
author={},
year={2023},
eprint={},
archivePrefix={},
primaryClass={}
}
``` |