File size: 4,066 Bytes
477a2db 7256c50 477a2db ddd6b0a 7256c50 43933b3 477a2db 6cce9c0 477a2db 9eec408 477a2db 6cce9c0 22e8baa 7256c50 477a2db 22e8baa 477a2db 22e8baa 7256c50 ddd6b0a 22e8baa aeb4c55 22e8baa ddd6b0a 6cce9c0 ddd6b0a 22e8baa 477a2db 7256c50 477a2db 22e8baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: apache-2.0
tags:
- generated_from_trainer
- instruction fine-tuning
model-index:
- name: flan-t5-small-distil-v2
results: []
language:
- en
pipeline_tag: text2text-generation
widget:
- text: >-
how can I become more healthy?
example_title: example
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LaMini-FLAN-T5-77M
This model is one of our LaMini model series in paper "[LaMini: Distilling Knowledge from Large Language Models]()". This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [LaMini dataset]() that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository]().
You can view other LaMini model series as follow. Note that not all models are performing as well. Models with ✩ are those with the best overall performance given their size/architecture. More details can be seen in our paper.
<table>
<thead>
<tr>
<th>Base model</th>
<th colspan="4">LaMini series (#parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>LaMini-T5-61M</td>
<td>LaMini-T5-223M</td>
<td>LaMini-T5-738M</td>
<td></td>
</tr>
<tr>
<td>Flan-T5</td>
<td>LaMini-Flan-T5-77M</td>
<td>LaMini-Flan-T5-248M</td>
<td>LaMini-Flan-T5-783M</td>
<td></td>
</tr>
<tr>
<td>Cerebras-GPT</td>
<td>LaMini-Cerebras-111M</td>
<td>LaMini-Cerebras-256M</td>
<td>LaMini-Cerebras-590M</td>
<td>LaMini-Cerebras-1.3B</td>
</tr>
<tr>
<td>GPT-2</td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a></td>
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a></td>
<td></td>
</tr>
<tr>
<td>GPT-Neo</td>
<td>LaMini-Neo-125M</td>
<td>LaMini-Neo-1.3B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT-J</td>
<td colspan="4">coming soon</td>
</tr>
<tr>
<td>LLaMA</td>
<td colspan="4">coming soon</td>
</tr>
</tbody>
</table>
## Training Procedure
We initialize with [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) and fine-tune it on our [LaMini dataset](). Its total number of parameters is 61M.
### Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
## Evaluation
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper]().
## Use
### Intended use
We recommend to use model to reponse to human instructions wrote in natural language.
We now show you how to load and use our model using HuggingFace `pipline()`.
```python
# pip install -q transformers
from transformers import pipeline
checkpoint = "{model_name}"
model = pipeline('text2text-generation', model=checkpoint, use_auth_token=True, device=0)
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = generator(input_prompt, max_length=512, do_sample=True)[0]['generated_text']
print("Response": generated_text)
```
## Limitations
More information needed
# Citation
```bibtex
@misc{,
title={LaMini: Distilling Knowledge from Large Language Models},
author={},
year={2023},
eprint={},
archivePrefix={},
primaryClass={}
}
``` |