File size: 4,066 Bytes
477a2db
 
 
 
7256c50
477a2db
 
 
ddd6b0a
 
7256c50
43933b3
 
 
 
477a2db
 
 
 
 
6cce9c0
477a2db
9eec408
477a2db
6cce9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e8baa
7256c50
477a2db
22e8baa
477a2db
 
 
 
 
 
 
 
 
 
 
 
22e8baa
7256c50
 
ddd6b0a
 
22e8baa
aeb4c55
22e8baa
 
ddd6b0a
 
 
 
 
 
 
 
 
 
6cce9c0
ddd6b0a
 
 
 
22e8baa
477a2db
7256c50
477a2db
 
22e8baa
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
tags:
- generated_from_trainer
- instruction fine-tuning
model-index:
- name: flan-t5-small-distil-v2
  results: []
language:
- en
pipeline_tag: text2text-generation
widget:
  - text: >-
      how can I become more healthy?
    example_title: example
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LaMini-FLAN-T5-77M

This model is one of our LaMini model series in paper "[LaMini: Distilling Knowledge from Large Language Models]()". This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [LaMini dataset]() that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository]().  

You can view other LaMini model series as follow. Note that not all models are performing as well. Models with ✩ are those with the best overall performance given their size/architecture. More details can be seen in our paper. 

<table>
<thead>
  <tr>
    <th>Base model</th>
    <th colspan="4">LaMini series (#parameters)</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>T5</td>
    <td>LaMini-T5-61M</td>
    <td>LaMini-T5-223M</td>
    <td>LaMini-T5-738M</td>
    <td></td>
  </tr>
   <tr>
        <td>Flan-T5</td>
        <td>LaMini-Flan-T5-77M</td>
        <td>LaMini-Flan-T5-248M</td>
        <td>LaMini-Flan-T5-783M</td>
    <td></td>
  </tr>
    <tr>
    <td>Cerebras-GPT</td>
    <td>LaMini-Cerebras-111M</td>
    <td>LaMini-Cerebras-256M</td>
    <td>LaMini-Cerebras-590M</td>
    <td>LaMini-Cerebras-1.3B</td>
  </tr>
  <tr>
    <td>GPT-2</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a></td>
    <td></td>
  </tr>
  <tr>
    <td>GPT-Neo</td>
    <td>LaMini-Neo-125M</td>
    <td>LaMini-Neo-1.3B</td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td>GPT-J</td>
    <td colspan="4">coming soon</td>
  </tr>
  <tr>
    <td>LLaMA</td>
    <td colspan="4">coming soon</td>
  </tr>

  
</tbody>
</table>

## Training Procedure
We initialize with [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) and fine-tune it on our [LaMini dataset](). Its total number of parameters is 61M. 

### Training Hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

## Evaluation
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). 

## Use

### Intended use
We recommend to use model to reponse to human instructions wrote in natural language. 

We now show you how to load and use our model using HuggingFace `pipline()`. 

```python
# pip install -q transformers
from transformers import pipeline

checkpoint = "{model_name}"

model = pipeline('text2text-generation', model=checkpoint, use_auth_token=True, device=0)

input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = generator(input_prompt, max_length=512, do_sample=True)[0]['generated_text']

print("Response": generated_text)
```

## Limitations

More information needed


# Citation
```bibtex
@misc{,
      title={LaMini: Distilling Knowledge from Large Language Models}, 
      author={},
      year={2023},
      eprint={},
      archivePrefix={},
      primaryClass={}
}
```