File size: 4,159 Bytes
fd198a3 0237df9 fd198a3 03f5aa0 a134646 1f1bb49 4ce8cd3 a134646 4ce8cd3 a134646 090ee1c a134646 4ce8cd3 a134646 4ce8cd3 a134646 e6f6455 a134646 44a61bd a134646 a6da6b8 a134646 7b03926 a134646 44a61bd 4ce8cd3 a134646 04f89c5 4ce8cd3 b1425ca a134646 dc983b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
pipeline_tag: visual-question-answering
---
# 😈Imp
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `imp-v1-3b` is a strong MSLM with only **3B** parameters, which is build upon a small yet powerful SLM [Phi-2 ](https://huggingface.co/microsoft/phi-2)(2.7B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on the [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) training set.
As shown in the Table below, `imp-v1-3b` significantly outperforms the counterparts of similar model sizes, and even achieves slightly better performance than the strong LLaVA-7B model on various multimodal benchmarks.
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
## How to use
You can use the following code for model inference. We minimize the required dependency libraries that only the `transformers` and `torch` packages are used. The format of text instructions is similar to [LLaVA](https://github.com/haotian-liu/LLaVA).
```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
torch.set_default_device("cuda")
#Create model
model = AutoModelForCausalLM.from_pretrained(
"MILVLG/imp-v1-3b",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1-3b", trust_remote_code=True)
#Set inputs
text = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are the colors of the bus in the image? ASSISTANT:"
image = Image.open("images/bus.jpg")
input_ids = tokenizer(text, return_tensors='pt').input_ids
image_tensor = model.image_preprocess(image)
#Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=100,
images=image_tensor,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
```
## Model evaluation
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing MSLMs of similar model sizes.
| Models | Size | VQAv2 | GQA |VizWiz | SQA (IMG) | TextVQA | POPE | MME | MMB |MM-Vet|
|:--------:|:-----:|:----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|
| [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | **63.00** |47.80 | 68.40 |58.20| 86.40 | **1476.9** | 66.10 |30.2|
| [TinyGPT-V](https://huggingface.co/Tyrannosaurus/TinyGPT-V) | 3B | - | 33.60 | 24.80 | - | - | -| - | - |-|
| [LLaVA-Phi](https://github.com/zhuyiche/llava-phi) | 3B | 71.40 | - | 35.90 | 68.40 | 48.60 | 85.00 | 1335.1 | 59.80 |28.9|
| [MobileVLM](https://huggingface.co/mtgv/MobileVLM-3B) | 3B | - | 59.00 | - | 61.00 | 47.50 | 84.90 | 1288.9 | 59.60 |-|
| [MC-LLaVA-3b](https://huggingface.co/visheratin/MC-LLaVA-3b) | 3B | 64.24 | 49.60 | 24.88 | - | 38.59 | 80.59 | - | - |-|
| **Imp-v1 (ours)** | 3B | **79.45** | 58.55 | **50.09** |**69.96**| **59.38** | **88.02**| 1434.0 | **66.49** |**33.1**|
### Examples
![example1](images/example1.png)
## License
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
## About us
This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou Dianzi University (HDU) led by Prof. Zhou Yu and Jun Yu, and is mainly developed by Zhenwei Shao and Xuecheng Ouyang. We hope our model may serve as a strong baseline to inspire future research on MSLM, as well as its derivative applications on mobile devices and robots. |