MattiaBonfanti-CS commited on
Commit
908cd26
·
1 Parent(s): 04e2da1

Upload 14 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 50257
3
+ }
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Salesforce/codegen-350M-nl",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "CodeGenForCausalLM"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "bos_token_id": 1,
9
+ "embd_pdrop": 0.0,
10
+ "eos_token_id": 50256,
11
+ "gradient_checkpointing": false,
12
+ "initializer_range": 0.02,
13
+ "layer_norm_epsilon": 1e-05,
14
+ "model_type": "codegen",
15
+ "n_ctx": 2048,
16
+ "n_embd": 1024,
17
+ "n_head": 16,
18
+ "n_inner": null,
19
+ "n_layer": 20,
20
+ "n_positions": 2048,
21
+ "resid_pdrop": 0.0,
22
+ "rotary_dim": 32,
23
+ "scale_attn_weights": true,
24
+ "summary_activation": null,
25
+ "summary_first_dropout": 0.1,
26
+ "summary_proj_to_labels": true,
27
+ "summary_type": "cls_index",
28
+ "summary_use_proj": true,
29
+ "task_specific_params": {
30
+ "text-generation": {
31
+ "do_sample": true,
32
+ "max_length": 50,
33
+ "temperature": 1.0
34
+ }
35
+ },
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_class": "GPT2Tokenizer",
38
+ "torch_dtype": "float16",
39
+ "transformers_version": "4.29.2",
40
+ "use_cache": false,
41
+ "vocab_size": 50258
42
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.29.2"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3eed59218a9957c2c3158fb8fff8469556cd818f82f0e1cddad5609020eefde
3
+ size 793507279
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:674676e662eeb93778c2b153ffad13aa90b43355da1956ce0b1e01e72f48c8d7
3
+ size 14503
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 514,
7
+ "padding_side": "right",
8
+ "tokenizer_class": "CodeGenTokenizer",
9
+ "unk_token": "<|endoftext|>"
10
+ }
trainer_state.json ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.7210884353741496,
5
+ "global_step": 200,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "learning_rate": 0.0,
13
+ "loss": 1.1564,
14
+ "step": 2
15
+ },
16
+ {
17
+ "epoch": 0.05,
18
+ "learning_rate": 0.0,
19
+ "loss": 1.4501,
20
+ "step": 4
21
+ },
22
+ {
23
+ "epoch": 0.08,
24
+ "learning_rate": 0.0,
25
+ "loss": 0.9663,
26
+ "step": 6
27
+ },
28
+ {
29
+ "epoch": 0.11,
30
+ "learning_rate": 0.0,
31
+ "loss": 1.1779,
32
+ "step": 8
33
+ },
34
+ {
35
+ "epoch": 0.14,
36
+ "learning_rate": 0.0,
37
+ "loss": 1.0604,
38
+ "step": 10
39
+ },
40
+ {
41
+ "epoch": 0.16,
42
+ "learning_rate": 0.0,
43
+ "loss": 0.9114,
44
+ "step": 12
45
+ },
46
+ {
47
+ "epoch": 0.19,
48
+ "learning_rate": 0.0,
49
+ "loss": 1.0516,
50
+ "step": 14
51
+ },
52
+ {
53
+ "epoch": 0.22,
54
+ "learning_rate": 0.0,
55
+ "loss": 1.2253,
56
+ "step": 16
57
+ },
58
+ {
59
+ "epoch": 0.24,
60
+ "learning_rate": 1.3333333333333334e-06,
61
+ "loss": 0.9658,
62
+ "step": 18
63
+ },
64
+ {
65
+ "epoch": 0.27,
66
+ "learning_rate": 2.666666666666667e-06,
67
+ "loss": 0.9407,
68
+ "step": 20
69
+ },
70
+ {
71
+ "epoch": 0.3,
72
+ "learning_rate": 4.000000000000001e-06,
73
+ "loss": 0.9526,
74
+ "step": 22
75
+ },
76
+ {
77
+ "epoch": 0.33,
78
+ "learning_rate": 5.333333333333334e-06,
79
+ "loss": 0.8532,
80
+ "step": 24
81
+ },
82
+ {
83
+ "epoch": 0.35,
84
+ "learning_rate": 6.666666666666667e-06,
85
+ "loss": 0.9836,
86
+ "step": 26
87
+ },
88
+ {
89
+ "epoch": 0.38,
90
+ "learning_rate": 8.000000000000001e-06,
91
+ "loss": 0.6827,
92
+ "step": 28
93
+ },
94
+ {
95
+ "epoch": 0.41,
96
+ "learning_rate": 9.333333333333334e-06,
97
+ "loss": 1.0519,
98
+ "step": 30
99
+ },
100
+ {
101
+ "epoch": 0.44,
102
+ "learning_rate": 1.0666666666666667e-05,
103
+ "loss": 0.7011,
104
+ "step": 32
105
+ },
106
+ {
107
+ "epoch": 0.46,
108
+ "learning_rate": 1.2e-05,
109
+ "loss": 0.8513,
110
+ "step": 34
111
+ },
112
+ {
113
+ "epoch": 0.49,
114
+ "learning_rate": 1.3333333333333333e-05,
115
+ "loss": 0.781,
116
+ "step": 36
117
+ },
118
+ {
119
+ "epoch": 0.52,
120
+ "learning_rate": 1.4666666666666666e-05,
121
+ "loss": 0.7113,
122
+ "step": 38
123
+ },
124
+ {
125
+ "epoch": 0.54,
126
+ "learning_rate": 1.6000000000000003e-05,
127
+ "loss": 0.791,
128
+ "step": 40
129
+ },
130
+ {
131
+ "epoch": 0.57,
132
+ "learning_rate": 1.7333333333333336e-05,
133
+ "loss": 0.7299,
134
+ "step": 42
135
+ },
136
+ {
137
+ "epoch": 0.6,
138
+ "learning_rate": 1.866666666666667e-05,
139
+ "loss": 0.7265,
140
+ "step": 44
141
+ },
142
+ {
143
+ "epoch": 0.63,
144
+ "learning_rate": 2e-05,
145
+ "loss": 0.7213,
146
+ "step": 46
147
+ },
148
+ {
149
+ "epoch": 0.65,
150
+ "learning_rate": 1.999447456932676e-05,
151
+ "loss": 0.7056,
152
+ "step": 48
153
+ },
154
+ {
155
+ "epoch": 0.68,
156
+ "learning_rate": 1.997790438338385e-05,
157
+ "loss": 0.7687,
158
+ "step": 50
159
+ },
160
+ {
161
+ "epoch": 0.71,
162
+ "learning_rate": 1.9950307753654016e-05,
163
+ "loss": 0.6776,
164
+ "step": 52
165
+ },
166
+ {
167
+ "epoch": 0.73,
168
+ "learning_rate": 1.991171517679013e-05,
169
+ "loss": 0.6322,
170
+ "step": 54
171
+ },
172
+ {
173
+ "epoch": 0.76,
174
+ "learning_rate": 1.9862169300913784e-05,
175
+ "loss": 0.7253,
176
+ "step": 56
177
+ },
178
+ {
179
+ "epoch": 0.79,
180
+ "learning_rate": 1.9801724878485438e-05,
181
+ "loss": 0.6503,
182
+ "step": 58
183
+ },
184
+ {
185
+ "epoch": 0.82,
186
+ "learning_rate": 1.973044870579824e-05,
187
+ "loss": 0.7397,
188
+ "step": 60
189
+ },
190
+ {
191
+ "epoch": 0.84,
192
+ "learning_rate": 1.964841954916235e-05,
193
+ "loss": 0.8342,
194
+ "step": 62
195
+ },
196
+ {
197
+ "epoch": 0.87,
198
+ "learning_rate": 1.955572805786141e-05,
199
+ "loss": 0.7061,
200
+ "step": 64
201
+ },
202
+ {
203
+ "epoch": 0.9,
204
+ "learning_rate": 1.945247666397725e-05,
205
+ "loss": 0.6767,
206
+ "step": 66
207
+ },
208
+ {
209
+ "epoch": 0.93,
210
+ "learning_rate": 1.9338779469193638e-05,
211
+ "loss": 0.7581,
212
+ "step": 68
213
+ },
214
+ {
215
+ "epoch": 0.95,
216
+ "learning_rate": 1.921476211870408e-05,
217
+ "loss": 0.6546,
218
+ "step": 70
219
+ },
220
+ {
221
+ "epoch": 0.98,
222
+ "learning_rate": 1.908056166236305e-05,
223
+ "loss": 0.8286,
224
+ "step": 72
225
+ },
226
+ {
227
+ "epoch": 1.01,
228
+ "learning_rate": 1.8936326403234125e-05,
229
+ "loss": 0.8036,
230
+ "step": 74
231
+ },
232
+ {
233
+ "epoch": 1.03,
234
+ "learning_rate": 1.8782215733702286e-05,
235
+ "loss": 0.7079,
236
+ "step": 76
237
+ },
238
+ {
239
+ "epoch": 1.06,
240
+ "learning_rate": 1.8618399959331642e-05,
241
+ "loss": 0.6375,
242
+ "step": 78
243
+ },
244
+ {
245
+ "epoch": 1.09,
246
+ "learning_rate": 1.844506011066308e-05,
247
+ "loss": 0.4525,
248
+ "step": 80
249
+ },
250
+ {
251
+ "epoch": 1.12,
252
+ "learning_rate": 1.826238774315995e-05,
253
+ "loss": 0.5356,
254
+ "step": 82
255
+ },
256
+ {
257
+ "epoch": 1.14,
258
+ "learning_rate": 1.8070584725522763e-05,
259
+ "loss": 0.536,
260
+ "step": 84
261
+ },
262
+ {
263
+ "epoch": 1.17,
264
+ "learning_rate": 1.7869863016606893e-05,
265
+ "loss": 0.6215,
266
+ "step": 86
267
+ },
268
+ {
269
+ "epoch": 1.2,
270
+ "learning_rate": 1.766044443118978e-05,
271
+ "loss": 0.4808,
272
+ "step": 88
273
+ },
274
+ {
275
+ "epoch": 1.22,
276
+ "learning_rate": 1.7442560394846518e-05,
277
+ "loss": 0.5008,
278
+ "step": 90
279
+ },
280
+ {
281
+ "epoch": 1.25,
282
+ "learning_rate": 1.7216451688204623e-05,
283
+ "loss": 0.6458,
284
+ "step": 92
285
+ },
286
+ {
287
+ "epoch": 1.28,
288
+ "learning_rate": 1.698236818086073e-05,
289
+ "loss": 0.5105,
290
+ "step": 94
291
+ },
292
+ {
293
+ "epoch": 1.31,
294
+ "learning_rate": 1.6740568555253153e-05,
295
+ "loss": 0.4312,
296
+ "step": 96
297
+ },
298
+ {
299
+ "epoch": 1.33,
300
+ "learning_rate": 1.649132002079552e-05,
301
+ "loss": 0.5643,
302
+ "step": 98
303
+ },
304
+ {
305
+ "epoch": 1.36,
306
+ "learning_rate": 1.6234898018587336e-05,
307
+ "loss": 0.6065,
308
+ "step": 100
309
+ },
310
+ {
311
+ "epoch": 1.39,
312
+ "learning_rate": 1.5971585917027864e-05,
313
+ "loss": 0.4018,
314
+ "step": 102
315
+ },
316
+ {
317
+ "epoch": 1.41,
318
+ "learning_rate": 1.570167469866962e-05,
319
+ "loss": 0.496,
320
+ "step": 104
321
+ },
322
+ {
323
+ "epoch": 1.44,
324
+ "learning_rate": 1.5425462638657597e-05,
325
+ "loss": 0.429,
326
+ "step": 106
327
+ },
328
+ {
329
+ "epoch": 1.47,
330
+ "learning_rate": 1.5143254975109538e-05,
331
+ "loss": 0.6738,
332
+ "step": 108
333
+ },
334
+ {
335
+ "epoch": 1.5,
336
+ "learning_rate": 1.4855363571801523e-05,
337
+ "loss": 0.5518,
338
+ "step": 110
339
+ },
340
+ {
341
+ "epoch": 1.52,
342
+ "learning_rate": 1.4562106573531632e-05,
343
+ "loss": 0.5336,
344
+ "step": 112
345
+ },
346
+ {
347
+ "epoch": 1.55,
348
+ "learning_rate": 1.4263808054542541e-05,
349
+ "loss": 0.6872,
350
+ "step": 114
351
+ },
352
+ {
353
+ "epoch": 1.58,
354
+ "learning_rate": 1.396079766039157e-05,
355
+ "loss": 0.5226,
356
+ "step": 116
357
+ },
358
+ {
359
+ "epoch": 1.61,
360
+ "learning_rate": 1.3653410243663953e-05,
361
+ "loss": 0.6211,
362
+ "step": 118
363
+ },
364
+ {
365
+ "epoch": 1.63,
366
+ "learning_rate": 1.3341985493931877e-05,
367
+ "loss": 0.5429,
368
+ "step": 120
369
+ },
370
+ {
371
+ "epoch": 1.66,
372
+ "learning_rate": 1.3026867562368262e-05,
373
+ "loss": 0.6971,
374
+ "step": 122
375
+ },
376
+ {
377
+ "epoch": 1.69,
378
+ "learning_rate": 1.2708404681430054e-05,
379
+ "loss": 0.5812,
380
+ "step": 124
381
+ },
382
+ {
383
+ "epoch": 1.71,
384
+ "learning_rate": 1.238694878003138e-05,
385
+ "loss": 0.4746,
386
+ "step": 126
387
+ },
388
+ {
389
+ "epoch": 1.74,
390
+ "learning_rate": 1.2062855094631777e-05,
391
+ "loss": 0.4972,
392
+ "step": 128
393
+ },
394
+ {
395
+ "epoch": 1.77,
396
+ "learning_rate": 1.1736481776669307e-05,
397
+ "loss": 0.4216,
398
+ "step": 130
399
+ },
400
+ {
401
+ "epoch": 1.8,
402
+ "learning_rate": 1.1408189496772369e-05,
403
+ "loss": 0.5295,
404
+ "step": 132
405
+ },
406
+ {
407
+ "epoch": 1.82,
408
+ "learning_rate": 1.1078341046187588e-05,
409
+ "loss": 0.4123,
410
+ "step": 134
411
+ },
412
+ {
413
+ "epoch": 1.85,
414
+ "learning_rate": 1.0747300935864245e-05,
415
+ "loss": 0.5449,
416
+ "step": 136
417
+ },
418
+ {
419
+ "epoch": 1.88,
420
+ "learning_rate": 1.0415434993638269e-05,
421
+ "loss": 0.5406,
422
+ "step": 138
423
+ },
424
+ {
425
+ "epoch": 1.9,
426
+ "learning_rate": 1.0083109959960974e-05,
427
+ "loss": 0.553,
428
+ "step": 140
429
+ },
430
+ {
431
+ "epoch": 1.93,
432
+ "learning_rate": 9.750693082619274e-06,
433
+ "loss": 0.4892,
434
+ "step": 142
435
+ },
436
+ {
437
+ "epoch": 1.96,
438
+ "learning_rate": 9.418551710895243e-06,
439
+ "loss": 0.5435,
440
+ "step": 144
441
+ },
442
+ {
443
+ "epoch": 1.99,
444
+ "learning_rate": 9.087052889613519e-06,
445
+ "loss": 0.4862,
446
+ "step": 146
447
+ },
448
+ {
449
+ "epoch": 2.01,
450
+ "learning_rate": 8.756562953525151e-06,
451
+ "loss": 0.4767,
452
+ "step": 148
453
+ },
454
+ {
455
+ "epoch": 2.04,
456
+ "learning_rate": 8.427447122476148e-06,
457
+ "loss": 0.3959,
458
+ "step": 150
459
+ },
460
+ {
461
+ "epoch": 2.07,
462
+ "learning_rate": 8.100069097808103e-06,
463
+ "loss": 0.3562,
464
+ "step": 152
465
+ },
466
+ {
467
+ "epoch": 2.1,
468
+ "learning_rate": 7.774790660436857e-06,
469
+ "loss": 0.3327,
470
+ "step": 154
471
+ },
472
+ {
473
+ "epoch": 2.12,
474
+ "learning_rate": 7.451971271053455e-06,
475
+ "loss": 0.352,
476
+ "step": 156
477
+ },
478
+ {
479
+ "epoch": 2.15,
480
+ "learning_rate": 7.131967672889101e-06,
481
+ "loss": 0.36,
482
+ "step": 158
483
+ },
484
+ {
485
+ "epoch": 2.18,
486
+ "learning_rate": 6.815133497483157e-06,
487
+ "loss": 0.391,
488
+ "step": 160
489
+ },
490
+ {
491
+ "epoch": 2.2,
492
+ "learning_rate": 6.501818873889856e-06,
493
+ "loss": 0.3324,
494
+ "step": 162
495
+ },
496
+ {
497
+ "epoch": 2.23,
498
+ "learning_rate": 6.192370041755505e-06,
499
+ "loss": 0.2525,
500
+ "step": 164
501
+ },
502
+ {
503
+ "epoch": 2.26,
504
+ "learning_rate": 5.887128968693887e-06,
505
+ "loss": 0.2986,
506
+ "step": 166
507
+ },
508
+ {
509
+ "epoch": 2.29,
510
+ "learning_rate": 5.586432972382561e-06,
511
+ "loss": 0.3165,
512
+ "step": 168
513
+ },
514
+ {
515
+ "epoch": 2.31,
516
+ "learning_rate": 5.290614347797802e-06,
517
+ "loss": 0.3816,
518
+ "step": 170
519
+ },
520
+ {
521
+ "epoch": 2.34,
522
+ "learning_rate": 5.000000000000003e-06,
523
+ "loss": 0.3999,
524
+ "step": 172
525
+ },
526
+ {
527
+ "epoch": 2.37,
528
+ "learning_rate": 4.714911082875446e-06,
529
+ "loss": 0.3504,
530
+ "step": 174
531
+ },
532
+ {
533
+ "epoch": 2.39,
534
+ "learning_rate": 4.435662644233594e-06,
535
+ "loss": 0.3623,
536
+ "step": 176
537
+ },
538
+ {
539
+ "epoch": 2.42,
540
+ "learning_rate": 4.162563277652104e-06,
541
+ "loss": 0.4049,
542
+ "step": 178
543
+ },
544
+ {
545
+ "epoch": 2.45,
546
+ "learning_rate": 3.89591478145437e-06,
547
+ "loss": 0.3554,
548
+ "step": 180
549
+ },
550
+ {
551
+ "epoch": 2.48,
552
+ "learning_rate": 3.636011825196365e-06,
553
+ "loss": 0.4636,
554
+ "step": 182
555
+ },
556
+ {
557
+ "epoch": 2.5,
558
+ "learning_rate": 3.3831416240314085e-06,
559
+ "loss": 0.2884,
560
+ "step": 184
561
+ },
562
+ {
563
+ "epoch": 2.53,
564
+ "learning_rate": 3.1375836213126653e-06,
565
+ "loss": 0.2063,
566
+ "step": 186
567
+ },
568
+ {
569
+ "epoch": 2.56,
570
+ "learning_rate": 2.8996091797841976e-06,
571
+ "loss": 0.4578,
572
+ "step": 188
573
+ },
574
+ {
575
+ "epoch": 2.59,
576
+ "learning_rate": 2.669481281701739e-06,
577
+ "loss": 0.2891,
578
+ "step": 190
579
+ },
580
+ {
581
+ "epoch": 2.61,
582
+ "learning_rate": 2.447454238214654e-06,
583
+ "loss": 0.3871,
584
+ "step": 192
585
+ },
586
+ {
587
+ "epoch": 2.64,
588
+ "learning_rate": 2.2337734083302164e-06,
589
+ "loss": 0.3701,
590
+ "step": 194
591
+ },
592
+ {
593
+ "epoch": 2.67,
594
+ "learning_rate": 2.0286749277707783e-06,
595
+ "loss": 0.236,
596
+ "step": 196
597
+ },
598
+ {
599
+ "epoch": 2.69,
600
+ "learning_rate": 1.8323854480234348e-06,
601
+ "loss": 0.2797,
602
+ "step": 198
603
+ },
604
+ {
605
+ "epoch": 2.72,
606
+ "learning_rate": 1.6451218858706374e-06,
607
+ "loss": 0.2397,
608
+ "step": 200
609
+ }
610
+ ],
611
+ "max_steps": 219,
612
+ "num_train_epochs": 3,
613
+ "total_flos": 1906858253312.0,
614
+ "trial_name": null,
615
+ "trial_params": null
616
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3605f28a8901ab7bfced047095e893870a362227b8573e1ca4b3bc0bac1dc4c4
3
+ size 4975
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)