File size: 6,738 Bytes
96ed42b 826de2e 96ed42b c58a89d 2e03180 96ed42b 59ca7cb 96ed42b 5988290 59c4c44 6138e69 684d079 6138e69 684d079 6138e69 b72a5ef 6138e69 684d079 6138e69 684d079 6138e69 b72a5ef 6138e69 59c4c44 96ed42b 5ffe8ae 96ed42b 4fd96f0 96ed42b fd84ee3 7ee6d92 fd84ee3 5da6e9e ce7071f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language:
- en
- ko
license: apache-2.0
library_name: transformers
base_model:
- meta-llama/Meta-Llama-3-8B
---
<a href="https://github.com/MLP-Lab/Bllossom">
<img src="https://github.com/teddysum/bllossom/blob/main//bllossom_icon.png?raw=true" width="40%" height="50%">
</a>
# Bllossom | [Demo](https://ee68c3f24513b01f81.gradio.live/) | [Homepage](https://www.bllossom.ai/) | [Github](https://github.com/MLP-Lab/Bllossom) |
The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:
* **Knowledge Linking**: Linking Korean and English knowledge through additional training
* **Vocabulary Expansion**: Expansion of Korean vocabulary to enhance Korean expressiveness.
* **Instruction Tuning**: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
* **Human Feedback**: DPO has been applied
* **Vision-Language Alignment**: Aligning the vision transformer with this language model
**This model devel by [MLPLab at Seoultech](http://mlp.seoultech.ac.kr), [Teddysum](http://teddysum.ai/) and [Yonsei Univ](https://sites.google.com/view/hansaemkim/hansaem-kim)**
## Demo Video
<div style="display: flex; justify-content: space-between;">
<!-- 첫 λ²μ§Έ μ»¬λΌ -->
<div style="width: 49%;">
<a>
<img src="https://github.com/lhsstn/lhsstn/blob/main/x-llava_dem.gif?raw=true" style="width: 100%; height: auto;">
</a>
<p style="text-align: center;">Bllossom-V Demo</p>
</div>
<!-- λ λ²μ§Έ μ»¬λΌ (νμνλ€λ©΄) -->
<div style="width: 49%;">
<a>
<img src="https://github.com/lhsstn/lhsstn/blob/main/bllossom_demo_kakao.gif?raw=true" style="width: 70%; height: auto;">
</a>
<p style="text-align: center;">Bllossom Demo(Kakao)γ
€γ
€γ
€γ
€γ
€γ
€γ
€γ
€</p>
</div>
</div>
## NEWS
* [2024/04] We released Bllossom v2.0, based on llama-3
* [2023/12] We released Bllossom-Vision v1.0, based on Bllossom
* [2023/08] We released Bllossom v1.0, based on llama-2.
* [2023/07] We released Bllossom v0.7, based on polyglot-ko.
## Example code
### Install Dependencies
```bash
pip install torch transformers==4.40.0 accelerate
```
### Python code with Pipeline
```python
import transformers
import torch
model_id = "MLP-KTLim/Bllossom"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
pipeline.model.eval()
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€.'''
instruction = "μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λν΄ μκ°ν΄μ€"
messages = [
{"role": "system", "content": f"{PROMPT}"},
{"role": "user", "content": f"{instruction}"}
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
repetition_penalty = 1.1
)
print(outputs[0]["generated_text"][len(prompt):])
# μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λ©ν°λͺ¨λ¬ μμ°μ΄μ²λ¦¬ μ°κ΅¬λ₯Ό νκ³ μμ΅λλ€. ꡬμ±μμ μκ²½ν κ΅μμ κΉλ―Όμ€, κΉμλ―Ό, μ΅μ°½μ, μμΈνΈ, μ νκ²°, μνμ, μ‘μΉμ°, μ‘μ ν, μ λμ¬ νμμ΄ μμ΅λλ€.
```
### Python code with AutoModel
```python
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = 'MLP-KTLim/Bllossom'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€.'''
instruction = "μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λν΄ μκ°ν΄μ€"
messages = [
{"role": "system", "content": f"{PROMPT}"},
{"role": "user", "content": f"{instruction}"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
repetition_penalty = 1.1
)
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
# μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λ©ν°λͺ¨λ¬ μμ°μ΄μ²λ¦¬ μ°κ΅¬λ₯Ό νκ³ μμ΅λλ€. ꡬμ±μμ μκ²½ν κ΅μμ κΉλ―Όμ€, κΉμλ―Ό, μ΅μ°½μ, μμΈνΈ, μ νκ²°, μνμ, μ‘μΉμ°, μ‘μ ν, μ λμ¬ νμμ΄ μμ΅λλ€.
```
## Citation
**Language Model**
```text
@misc{bllossom,
author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
year = {2024},
journal = {LREC-COLING 2024},
paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
},
}
```
**Vision-Language Model**
```text
@misc{bllossom-V,
author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
year = {2024},
publisher = {GitHub},
journal = {NAACL 2024 findings},
paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
},
}
```
## Contact
- μκ²½ν(KyungTae Lim), Professor at Seoultech. `ktlim@seoultech.ac.kr`
- ν¨μκ· (Younggyun Hahm), CEO of Teddysum. `hahmyg@teddysum.ai`
- κΉνμ(Hansaem Kim), Professor at Yonsei. `khss@yonsei.ac.kr`
## Contributor
- μ΅μ°½μ(Chansu Choi), choics2623@seoultech.ac.kr
- κΉμλ―Ό(Sangmin Kim), sangmin9708@naver.com
- μμΈνΈ(Inho Won), wih1226@seoultech.ac.kr
- κΉλ―Όμ€(Minjun Kim), mjkmain@seoultech.ac.kr
- μ‘μΉμ°(Seungwoo Song), sswoo@seoultech.ac.kr
- μ λμ¬(Dongjae Shin), dylan1998@seoultech.ac.kr
- μνμ(Hyeonseok Lim), gustjrantk@seoultech.ac.kr
- μ‘μ ν(Jeonghun Yuk), usually670@gmail.com
- μ νκ²°(Hangyeol Yoo), 21102372@seoultech.ac.kr
- μ‘μν(Seohyun Song), alexalex225225@gmail.com
|