--- base_model: klue/roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: emotion_classification_model results: [] --- # emotion_classification_model This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2954 - Accuracy: 0.9079 - F1: 0.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4771 | 1.0 | 1829 | 0.3789 | 0.8669 | 0.8650 | | 0.2378 | 2.0 | 3658 | 0.2954 | 0.9079 | 0.9074 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1