MRNH commited on
Commit
3221792
1 Parent(s): 26df4ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -15
README.md CHANGED
@@ -14,27 +14,45 @@ This is a fine-tuned version of LLAMA2 trained (7b) on spider, sql-create-contex
14
 
15
  To initialize the model:
16
 
17
-
18
- #from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
19
- #model = MBartForConditionalGeneration.from_pretrained("MRNH/mbart-english-grammar-corrector")
 
 
 
 
 
 
 
 
 
 
20
 
21
 
22
  Use the tokenizer:
23
 
24
 
25
- #tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/mbart-english-grammar-corrector", src_lang="en_XX", tgt_lang="en_XX")
26
-
27
- #input = tokenizer("I was here yesterday to studying",
28
- # text_target="I was here yesterday to study", return_tensors='pt')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- To generate text using the model:
31
-
32
- #output = model.generate(input["input_ids"],attention_mask=input["attention_mask"],
33
- # forced_bos_token_id=tokenizer_it.lang_code_to_id["en_XX"])
34
 
 
35
 
36
- Training of the model is performed using the following loss computation based on the hidden state output h:
37
 
38
- #h.logits, h.loss = model(input_ids=input["input_ids"],
39
- # attention_mask=input["attention_mask"],
40
- # labels=input["labels"])
 
14
 
15
  To initialize the model:
16
 
17
+ bnb_config = BitsAndBytesConfig(
18
+ load_in_4bit=use_4bit,
19
+ bnb_4bit_quant_type=bnb_4bit_quant_type,
20
+ bnb_4bit_compute_dtype=compute_dtype,
21
+ bnb_4bit_use_double_quant=use_nested_quant,
22
+ )
23
+
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ model_name,
26
+ quantization_config=bnb_config,
27
+ device_map=device_map,
28
+ trust_remote_code=True
29
+ )
30
 
31
 
32
  Use the tokenizer:
33
 
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
36
+ tokenizer.pad_token = tokenizer.eos_token
37
+ tokenizer.padding_side = "right"
38
+
39
+ To get the prompt:
40
+ dataset = dataset.map(
41
+ lambda example: {
42
+ "input": "### Instruction: \nYou are a powerful text-to-SQL model. \
43
+ Your job is to answer questions about a database. You are given \
44
+ a question and context regarding one or more tables. \n\nYou must \
45
+ output the SQL query that answers the question. \
46
+ \n\n \
47
+ ### Dialect:\n\nsqlite\n\n \
48
+ ### question:\n\n"+ example["question"]+" \
49
+ \n\n### Context:\n\n"+example["context"],
50
+ "answer": example["answer"]
51
+ }
52
+ )
53
 
 
 
 
 
54
 
55
+ To generate text using the model:
56
 
57
+ output = model.generate(input["input_ids"])
58