Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,12 @@
|
|
2 |
language:
|
3 |
- it
|
4 |
pipeline_tag: translation
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
This is a fine-tuned version of Multilingual Bart trained on Italian in particular on the public dataset MERLIN for Grammatical Error Correction.
|
@@ -18,4 +24,4 @@ To generate text using the model:
|
|
18 |
|
19 |
tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/finetuned-mbart-it-gec", src_lang="it_IT", tgt_lang="it_IT")
|
20 |
input = tokenizer("I was here yesterday to studying",text_target="I was here yesterday to study", return_tensors='pt')
|
21 |
-
output = model.generate(input["input_ids"],attention_mask=input["attention_mask"],forced_bos_token_id=tokenizer_it.lang_code_to_id["it_IT"])
|
|
|
2 |
language:
|
3 |
- it
|
4 |
pipeline_tag: translation
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
tags:
|
8 |
+
- grammatical error correction
|
9 |
+
- GEC
|
10 |
+
- italian
|
11 |
---
|
12 |
|
13 |
This is a fine-tuned version of Multilingual Bart trained on Italian in particular on the public dataset MERLIN for Grammatical Error Correction.
|
|
|
24 |
|
25 |
tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/finetuned-mbart-it-gec", src_lang="it_IT", tgt_lang="it_IT")
|
26 |
input = tokenizer("I was here yesterday to studying",text_target="I was here yesterday to study", return_tensors='pt')
|
27 |
+
output = model.generate(input["input_ids"],attention_mask=input["attention_mask"],forced_bos_token_id=tokenizer_it.lang_code_to_id["it_IT"])
|