File size: 2,175 Bytes
329110b
 
accac17
329110b
 
 
 
 
 
 
 
 
 
 
accac17
329110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: Qwen/Qwen2.5-3B-Instruct
datasets: trl-lib/ultrafeedback-prompt
library_name: transformers
model_name: Qwen2.5-3B-WPO-bf16-1
tags:
- generated_from_trainer
- trl
- xpo
licence: license
---

# Model Card for Qwen2.5-3B-WPO-bf16-1

This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [trl-lib/ultrafeedback-prompt](https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MYC081/Qwen2.5-3B-WPO-bf16-1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure



This model was trained with XPO, a method introduced in [Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF](https://huggingface.co/papers/2405.21046).

### Framework versions

- TRL: 0.13.0.dev0
- Transformers: 4.46.2
- Pytorch: 2.1.2
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations

Cite XPO as:

```bibtex
@article{jung2024binary,
    title        = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
    author       = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
    year         = 2024,
    eprint       = {arXiv:2405.21046}
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```