metadata
base_model: meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
model_name: Llama-3.1-8B-KAM
tags:
- generated_from_trainer
- trl
- sft
licence: license
Model Card for Llama-3.1-8B-KAM
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MaRyAm1295/Llama-3.1-8B-KAM", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Step Training Loss
- 50 2.155100
- 100 1.866100
- 150 1.836300
- 200 1.814600
- 250 1.810600
- 300 1.790900
- 350 1.774300
- 400 1.777800
- 450 1.787600
- 500 1.759000
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1