Update readme
Browse files
README.md
CHANGED
@@ -11,6 +11,29 @@ pipeline_tag: text-classification
|
|
11 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
## Usage
|
15 |
|
16 |
To use this model, please install BERTopic:
|
@@ -28,6 +51,12 @@ topic_model = BERTopic.load("MaartenGr/BERTopic_ArXiv")
|
|
28 |
topic_model.get_topic_info()
|
29 |
```
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
## Topic overview
|
32 |
|
33 |
* Number of topics: 107
|
@@ -148,6 +177,55 @@ topic_model.get_topic_info()
|
|
148 |
|
149 |
</details>
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
## Training hyperparameters
|
152 |
|
153 |
* calculate_probabilities: False
|
|
|
11 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
|
14 |
+
This pre-trained model demonstrates the use of several representation models that can be used within BERTopic. This model was trained on ~30000 ArXiv abstracts with the following topic representation methods (`bertopic.representation`):
|
15 |
+
|
16 |
+
* POS
|
17 |
+
* `PartOfSpeech("en_core_web_lg")`
|
18 |
+
* KeyBERTInspired
|
19 |
+
* `KeyBERTInspired()`
|
20 |
+
* MMR
|
21 |
+
* `MaximalMarginalRelevance(diversity=0.3)`
|
22 |
+
* KeyBERT + MMR
|
23 |
+
* `[KeyBERTInspired(), MaximalMarginalRelevance(diversity=0.3)]`
|
24 |
+
* OpenAI_Label
|
25 |
+
* `OpenAI(model="gpt-3.5-turbo", exponential_backoff=True, chat=True, diversity=0.1)`
|
26 |
+
* OpenAI_Summary
|
27 |
+
* `[KeyBERTInspired(), summarization_model]`
|
28 |
+
|
29 |
+
An example of the default c-TF-IDF representations:
|
30 |
+
|
31 |
+
!["multiaspect.png"](visualization_multiaspect.png)
|
32 |
+
|
33 |
+
An example of labels generated by ChatGPT (`gpt-3.5-turbo`):
|
34 |
+
|
35 |
+
!["multiaspect.png"](visualization_multiaspect_openai.png)
|
36 |
+
|
37 |
## Usage
|
38 |
|
39 |
To use this model, please install BERTopic:
|
|
|
51 |
topic_model.get_topic_info()
|
52 |
```
|
53 |
|
54 |
+
To view all different topic representations (keywords, labels, summary, etc.) you can run the following:
|
55 |
+
|
56 |
+
```python
|
57 |
+
topic_model.get_topic(1, full=True)
|
58 |
+
```
|
59 |
+
|
60 |
## Topic overview
|
61 |
|
62 |
* Number of topics: 107
|
|
|
177 |
|
178 |
</details>
|
179 |
|
180 |
+
## Training Procedure
|
181 |
+
|
182 |
+
The model was trained as follows:
|
183 |
+
|
184 |
+
```python
|
185 |
+
from cuml.manifold import UMAP
|
186 |
+
from cuml.cluster import HDBSCAN
|
187 |
+
from bertopic import BERTopic
|
188 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
189 |
+
from bertopic.representation import PartOfSpeech, KeyBERTInspired, MaximalMarginalRelevance, OpenAI
|
190 |
+
|
191 |
+
# Prepare sub-models
|
192 |
+
embedding_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
193 |
+
umap_model = UMAP(n_components=5, n_neighbors=50, random_state=42, metric="cosine", verbose=True)
|
194 |
+
hdbscan_model = HDBSCAN(min_samples=20, gen_min_span_tree=True, prediction_data=False, min_cluster_size=20, verbose=True)
|
195 |
+
vectorizer_model = CountVectorizer(stop_words="english", ngram_range=(1, 3), min_df=5)
|
196 |
+
|
197 |
+
# Summarization with ChatGPT
|
198 |
+
summarization_prompt = """
|
199 |
+
I have a topic that is described by the following keywords: [KEYWORDS]
|
200 |
+
In this topic, the following documents are a small but representative subset of all documents in the topic:
|
201 |
+
[DOCUMENTS]
|
202 |
+
|
203 |
+
Based on the information above, please give a description of this topic in the following format:
|
204 |
+
topic: <description>
|
205 |
+
"""
|
206 |
+
summarization_model = OpenAI(model="gpt-3.5-turbo", chat=True, prompt=summarization_prompt, nr_docs=5, exponential_backoff=True, diversity=0.1)
|
207 |
+
|
208 |
+
# Representation models
|
209 |
+
representation_models = {
|
210 |
+
"POS": PartOfSpeech("en_core_web_lg"),
|
211 |
+
"KeyBERTInspired": KeyBERTInspired(),
|
212 |
+
"MMR": MaximalMarginalRelevance(diversity=0.3),
|
213 |
+
"KeyBERT + MMR": [KeyBERTInspired(), MaximalMarginalRelevance(diversity=0.3)],
|
214 |
+
"OpenAI_Label": OpenAI(model="gpt-3.5-turbo", exponential_backoff=True, chat=True, diversity=0.1),
|
215 |
+
"OpenAI_Summary": [KeyBERTInspired(), summarization_model],
|
216 |
+
}
|
217 |
+
|
218 |
+
# Fit BERTopic
|
219 |
+
topic_model= BERTopic(
|
220 |
+
embedding_model=embedding_model,
|
221 |
+
umap_model=umap_model,
|
222 |
+
hdbscan_model=hdbscan_model,
|
223 |
+
vectorizer_model=vectorizer_model,
|
224 |
+
representation_model=representation_models,
|
225 |
+
verbose=True
|
226 |
+
).fit(docs)
|
227 |
+
```
|
228 |
+
|
229 |
## Training hyperparameters
|
230 |
|
231 |
* calculate_probabilities: False
|