File size: 2,310 Bytes
9e474da a5b5efb 9e474da a5b5efb 9e474da a5b5efb 9e474da a5b5efb 9e474da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- ru
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-tiny
datasets:
- bond005/podlodka_speech
metrics:
- wer
model-index:
- name: whisper-tiny-ru
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Podlodka Speech
type: bond005/podlodka_speech
args: 'config: ru, split: test'
metrics:
- type: wer
value: 99.38757655293088
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-ru
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Podlodka Speech dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4991
- Wer: 99.3876
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.295 | 5.5556 | 50 | 1.1982 | 83.2896 |
| 0.1297 | 11.1111 | 100 | 1.2768 | 76.0280 |
| 0.0517 | 16.6667 | 150 | 1.3594 | 72.5284 |
| 0.0203 | 22.2222 | 200 | 1.3969 | 85.4768 |
| 0.0094 | 27.7778 | 250 | 1.4394 | 104.2870 |
| 0.0061 | 33.3333 | 300 | 1.4646 | 87.8390 |
| 0.0049 | 38.8889 | 350 | 1.4813 | 90.4637 |
| 0.0043 | 44.4444 | 400 | 1.4909 | 86.7017 |
| 0.004 | 50.0 | 450 | 1.4973 | 99.6500 |
| 0.0038 | 55.5556 | 500 | 1.4991 | 99.3876 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|