MackinationsAi
commited on
Commit
•
2a3f6b2
1
Parent(s):
6149be1
Upload 4 files
Browse files- README.md +111 -0
- config.json +81 -0
- depth_anything_v2_vitl.safetensors +3 -0
- preprocessor_config.json +26 -0
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: depth-estimation
|
7 |
+
tags:
|
8 |
+
- depth
|
9 |
+
- relative depth
|
10 |
+
---
|
11 |
+
|
12 |
+
# Depth-Anything-V2-Large
|
13 |
+
|
14 |
+
## Introduction
|
15 |
+
Depth Anything V2 is trained from 595K synthetic labeled images & 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features:
|
16 |
+
- more fine-grained details than Depth Anything V1
|
17 |
+
- more robust than Depth Anything V1 & SD-based models (e.g., Marigold, Geowizard)
|
18 |
+
- more efficient (10x faster) & more lightweight than SD-based models
|
19 |
+
- impressive fine-tuned performance with our pre-trained models
|
20 |
+
|
21 |
+
## Installation
|
22 |
+
|
23 |
+
```bash
|
24 |
+
git clone https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2.git
|
25 |
+
cd Upgraded-Depth-Anything-V2
|
26 |
+
one_click_install.bat
|
27 |
+
```
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
Please refer to the [README.md](https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2/blob/main/README.md) for actual usage.
|
32 |
+
|
33 |
+
## Test Code
|
34 |
+
|
35 |
+
```bash
|
36 |
+
cd Upgraded-Depth-Anything-V2
|
37 |
+
venv\scripts\activate
|
38 |
+
python test.py /path/to/your/image.jpg (or .png)
|
39 |
+
```
|
40 |
+
Create a test.py script using the code below:
|
41 |
+
|
42 |
+
```python
|
43 |
+
import cv2
|
44 |
+
import torch
|
45 |
+
import numpy as np
|
46 |
+
import os
|
47 |
+
import argparse
|
48 |
+
|
49 |
+
from safetensors.torch import load_file
|
50 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
51 |
+
|
52 |
+
# Argument parser for input image path
|
53 |
+
parser = argparse.ArgumentParser(description="Depth map inference using DepthAnythingV2 model.")
|
54 |
+
parser.add_argument("input_image_path", type=str, help="Path to the input image")
|
55 |
+
args = parser.parse_args()
|
56 |
+
|
57 |
+
# Determine the directory of this script
|
58 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
59 |
+
|
60 |
+
# Set output path relative to the script directory
|
61 |
+
output_image_path = os.path.join(script_dir, "base_udav2_hf-code-test.png")
|
62 |
+
checkpoint_path = os.path.join(script_dir, "checkpoints", "depth_anything_v2_vitl.safetensors")
|
63 |
+
|
64 |
+
# Device selection: CUDA, MPS, or CPU
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
device = torch.device('cuda')
|
67 |
+
elif torch.backends.mps.is_available():
|
68 |
+
device = torch.device('mps')
|
69 |
+
else:
|
70 |
+
device = torch.device('cpu')
|
71 |
+
|
72 |
+
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024])
|
73 |
+
|
74 |
+
state_dict = load_file(checkpoint_path, device='cpu')
|
75 |
+
|
76 |
+
model.load_state_dict(state_dict)
|
77 |
+
model.to(device)
|
78 |
+
model.eval()
|
79 |
+
|
80 |
+
# Load the input image
|
81 |
+
raw_img = cv2.imread(args.input_image_path)
|
82 |
+
|
83 |
+
# Infer the depth map
|
84 |
+
depth = model.infer_image(raw_img) # HxW raw depth map
|
85 |
+
|
86 |
+
# Normalize the depth map to 0-255 for saving as an image
|
87 |
+
depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX)
|
88 |
+
depth_normalized = depth_normalized.astype(np.uint8)
|
89 |
+
|
90 |
+
cv2.imwrite(output_image_path, depth_normalized)
|
91 |
+
print(f"Depth map saved at {output_image_path}")
|
92 |
+
```
|
93 |
+
|
94 |
+
## Citation
|
95 |
+
|
96 |
+
If you find this project useful, please consider citing [MackinationsAi](https://github.com/MackinationsAi/) & the following:
|
97 |
+
|
98 |
+
```bibtex
|
99 |
+
@article{depth_anything_v2,
|
100 |
+
title={Depth Anything V2},
|
101 |
+
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Zhao, Zhen & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
|
102 |
+
journal={arXiv:2406.09414},
|
103 |
+
year={2024}
|
104 |
+
}
|
105 |
+
|
106 |
+
@inproceedings{depth_anything_v1,
|
107 |
+
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
|
108 |
+
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
|
109 |
+
booktitle={CVPR},
|
110 |
+
year={2024}
|
111 |
+
}
|
config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"DepthAnythingV2ForDepthEstimation"
|
5 |
+
],
|
6 |
+
"backbone": null,
|
7 |
+
"backbone_config": {
|
8 |
+
"architectures": [
|
9 |
+
"Dinov2Model"
|
10 |
+
],
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"image_size": 518,
|
13 |
+
"model_type": "dinov2",
|
14 |
+
"num_attention_heads": 16,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"out_features": [
|
17 |
+
"stage21",
|
18 |
+
"stage22",
|
19 |
+
"stage23",
|
20 |
+
"stage24"
|
21 |
+
],
|
22 |
+
"out_indices": [
|
23 |
+
21,
|
24 |
+
22,
|
25 |
+
23,
|
26 |
+
24
|
27 |
+
],
|
28 |
+
"patch_size": 14,
|
29 |
+
"reshape_hidden_states": false,
|
30 |
+
"stage_names": [
|
31 |
+
"stem",
|
32 |
+
"stage1",
|
33 |
+
"stage2",
|
34 |
+
"stage3",
|
35 |
+
"stage4",
|
36 |
+
"stage5",
|
37 |
+
"stage6",
|
38 |
+
"stage7",
|
39 |
+
"stage8",
|
40 |
+
"stage9",
|
41 |
+
"stage10",
|
42 |
+
"stage11",
|
43 |
+
"stage12",
|
44 |
+
"stage13",
|
45 |
+
"stage14",
|
46 |
+
"stage15",
|
47 |
+
"stage16",
|
48 |
+
"stage17",
|
49 |
+
"stage18",
|
50 |
+
"stage19",
|
51 |
+
"stage20",
|
52 |
+
"stage21",
|
53 |
+
"stage22",
|
54 |
+
"stage23",
|
55 |
+
"stage24"
|
56 |
+
],
|
57 |
+
"torch_dtype": "float32"
|
58 |
+
},
|
59 |
+
"fusion_hidden_size": 256,
|
60 |
+
"head_hidden_size": 32,
|
61 |
+
"head_in_index": -1,
|
62 |
+
"initializer_range": 0.02,
|
63 |
+
"model_type": "depth_anything_v2",
|
64 |
+
"neck_hidden_sizes": [
|
65 |
+
256,
|
66 |
+
512,
|
67 |
+
1024,
|
68 |
+
1024
|
69 |
+
],
|
70 |
+
"patch_size": 14,
|
71 |
+
"reassemble_factors": [
|
72 |
+
4,
|
73 |
+
2,
|
74 |
+
1,
|
75 |
+
0.5
|
76 |
+
],
|
77 |
+
"reassemble_hidden_size": 1024,
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": null,
|
80 |
+
"use_pretrained_backbone": false
|
81 |
+
}
|
depth_anything_v2_vitl.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f075a9099f94bae54a5bfe21a1423346429309bae40abb85b9935985b1f35a09
|
3 |
+
size 670674810
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_pad": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"ensure_multiple_of": 14,
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_processor_type": "DPTImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.229,
|
15 |
+
0.224,
|
16 |
+
0.225
|
17 |
+
],
|
18 |
+
"keep_aspect_ratio": true,
|
19 |
+
"resample": 3,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 518,
|
23 |
+
"width": 518
|
24 |
+
},
|
25 |
+
"size_divisor": null
|
26 |
+
}
|