Maelstrome commited on
Commit
577d99b
·
verified ·
1 Parent(s): dfd430c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -9
README.md CHANGED
@@ -13,9 +13,6 @@ model-index:
13
  results: []
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
  # gemma-2b-storytelling
20
 
21
  This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
@@ -24,15 +21,15 @@ It achieves the following results on the evaluation set:
24
 
25
  ## Model description
26
 
27
- More information needed
28
 
29
  ## Intended uses & limitations
30
 
31
- More information needed
32
 
33
  ## Training and evaluation data
34
 
35
- More information needed
36
 
37
  ## Training procedure
38
 
@@ -45,7 +42,7 @@ The following hyperparameters were used during training:
45
  - seed: 42
46
  - gradient_accumulation_steps: 8
47
  - total_train_batch_size: 32
48
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
  - lr_scheduler_warmup_ratio: 0.05
51
  - training_steps: 154
@@ -56,11 +53,10 @@ The following hyperparameters were used during training:
56
  |:----------------:|:------:|:----:|:---------------:|
57
  | 1454737970954.24 | 0.9164 | 100 | nan |
58
 
59
-
60
  ### Framework versions
61
 
62
  - PEFT 0.10.0
63
  - Transformers 4.40.1
64
  - Pytorch 2.2.2+cu121
65
  - Datasets 2.19.0
66
- - Tokenizers 0.19.1
 
13
  results: []
14
  ---
15
 
 
 
 
16
  # gemma-2b-storytelling
17
 
18
  This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
 
21
 
22
  ## Model description
23
 
24
+ This model has been fine-tuned specifically for the task of text generation, focusing on various storytelling themes. It utilizes advanced language modeling techniques to produce coherent and contextually relevant narratives based on user prompts.
25
 
26
  ## Intended uses & limitations
27
 
28
+ This model is intended for use in applications requiring high-quality narrative text generation, such as content creation, interactive storytelling, or game design. Users should be aware of potential limitations in the model's understanding of complex contexts or subtleties in language, which may affect the output quality.
29
 
30
  ## Training and evaluation data
31
 
32
+ The model was trained using the `PocketDoc/RUCAIBox-Story-Generation-Alpaca` dataset, which contains diverse storytelling prompts and responses, ensuring a robust ability to generate varied narrative content.
33
 
34
  ## Training procedure
35
 
 
42
  - seed: 42
43
  - gradient_accumulation_steps: 8
44
  - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.05
48
  - training_steps: 154
 
53
  |:----------------:|:------:|:----:|:---------------:|
54
  | 1454737970954.24 | 0.9164 | 100 | nan |
55
 
 
56
  ### Framework versions
57
 
58
  - PEFT 0.10.0
59
  - Transformers 4.40.1
60
  - Pytorch 2.2.2+cu121
61
  - Datasets 2.19.0
62
+ - Tokenizers 0.19.1