Mag-al commited on
Commit
590a4f3
1 Parent(s): 44168e0

Initial upload PPO model for Lunar Lander

Browse files
PPO_LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6e0046092b314c6acdaed36d85107c75a86ce51519b2c93bbaef2ca0d4a227d
3
+ size 147395
PPO_LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
PPO_LunarLander/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bae0ba790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bae0ba820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bae0ba8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bae0ba940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8bae0ba9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8bae0baa60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bae0baaf0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bae0bab80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8bae0bac10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bae0baca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bae0bad30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bae0badc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8bae0c15c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1680982046731578787,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN/kr2f1Xk+ImVYPSFWFr5QOaU8uPowvQAAAAAAAAAAs1u9PVLWnz+s/wQ/T1OfvpTfhjx7XyA+AAAAAAAAAAAa60o+c8cyP/VXKr2d1Da+cXWEPU6ew70AAAAAAAAAAGbJwrw/gDI/pxYWuil6fb6e+1a8iINgvQAAAAAAAAAAZot0vVxocj1SjvQ91dsovkeOiD3DECQ9AAAAAAAAAADNpq49j+ouukljsb29dta3ZOU3u1W0QTcAAAAAAACAP80s9bt7+IO6N0UdOZMcEzQHuwY7Blw3uAAAgD8AAIA/zenGPdwDxD4omw2982yPvhO6Ij25koS8AAAAAAAAAADg0EU+jXAyPwE5Ar7XClq+edysPWDB4zwAAAAAAAAAADMhRr0pyDa6bUTht28cPzLtyUy7fYQCNwAAgD8AAIA/zVK1PMNlfrqSHk+4C2dZs6GdN7s6PHE3AACAPwAAgD+aJz287NGot/Q2obv86YA8OyY2OjQRtrsAAIA/AACAP01oWL1IYIe8Q3JvPVGuIr17vpa97tyQvgAAgD8AAIA/s3NtPY9WArpReg84Se/GMvtysLp+PCi3AACAPwAAgD8Aul89KO6HPq4I1L3g0my+2gXyvK5pvzwAAAAAAAAAACaDuz2F86K5MLBYOQDYA7L7aq+7RTWBuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/g3aq4+LX0CUhpRSlIwBbJRN6AOMAXSUR0ChPZZGKAJ+dX2UKGgGaAloD0MIEZAvoYL+cECUhpRSlGgVTXQBaBZHQKE99ybx3FF1fZQoaAZoCWgPQwjt153uvDFvQJSGlFKUaBVNdAFoFkdAoUBM8q4H5nV9lChoBmgJaA9DCFmjHqLRW2ZAlIaUUpRoFU3oA2gWR0ChQoE56t1ZdX2UKGgGaAloD0MITIxl+iWbZECUhpRSlGgVTegDaBZHQKFDqcQyylh1fZQoaAZoCWgPQwhgeCXJ8w1pQJSGlFKUaBVN6ANoFkdAoUVE5+6RQ3V9lChoBmgJaA9DCKt2TUjr4WJAlIaUUpRoFU3oA2gWR0ChRURx95QhdX2UKGgGaAloD0MIF7ZmKy+5b0CUhpRSlGgVTcEBaBZHQKFGyCLdepp1fZQoaAZoCWgPQwhQVgxXh3RlQJSGlFKUaBVN6ANoFkdAoUjLf51vEXV9lChoBmgJaA9DCFhzgGCOeGJAlIaUUpRoFU3oA2gWR0ChSQnaFmFrdX2UKGgGaAloD0MINpNvtjn4Y0CUhpRSlGgVTegDaBZHQKFM8DQJHAh1fZQoaAZoCWgPQwiDp5Ar9VVkQJSGlFKUaBVN6ANoFkdAoVm/9YOlPHV9lChoBmgJaA9DCD5A9+XM4kRAlIaUUpRoFU02AWgWR0ChXYD8LroodX2UKGgGaAloD0MIZYnOMgvvYUCUhpRSlGgVTegDaBZHQKFePiSaEzx1fZQoaAZoCWgPQwiGH5xPneFuQJSGlFKUaBVNtQNoFkdAoWFhzijtX3V9lChoBmgJaA9DCE1nJ4Mjz2VAlIaUUpRoFU3oA2gWR0ChY7OQyRCAdX2UKGgGaAloD0MIP4ulSL75ZECUhpRSlGgVTegDaBZHQKFm0Bun/DN1fZQoaAZoCWgPQwiMSX8vhaljQJSGlFKUaBVN6ANoFkdAoWc8jJMg2nV9lChoBmgJaA9DCIRm172VaGVAlIaUUpRoFU3oA2gWR0ChZ7C/GlyjdX2UKGgGaAloD0MIo+cWupIJYECUhpRSlGgVTegDaBZHQKFrJD0lJH11fZQoaAZoCWgPQwg7Un3nV4xwQJSGlFKUaBVNFwJoFkdAoWxHjKgZj3V9lChoBmgJaA9DCMKht3i4SHBAlIaUUpRoFU2dA2gWR0ChbPEJrtVrdX2UKGgGaAloD0MIup7ouvByakCUhpRSlGgVTdkDaBZHQKFtv8WKuSx1fZQoaAZoCWgPQwjNrRBWY3lvQJSGlFKUaBVNLAJoFkdAoXGg/gR9PXV9lChoBmgJaA9DCKD5nLvdR2ZAlIaUUpRoFU3oA2gWR0ChchNnf2sadX2UKGgGaAloD0MI1m670FyZXkCUhpRSlGgVTegDaBZHQKFyFHim2st1fZQoaAZoCWgPQwhVvfxOk0FkQJSGlFKUaBVN6ANoFkdAoXOffhuO0nV9lChoBmgJaA9DCBb8NsR4nGRAlIaUUpRoFU3oA2gWR0ChdceirT6SdX2UKGgGaAloD0MIysUYWMf+XECUhpRSlGgVTegDaBZHQKF5SS9M9KV1fZQoaAZoCWgPQwhrR3GOOuxrQJSGlFKUaBVNOQNoFkdAoXptiF0xM3V9lChoBmgJaA9DCJoIG55eeGtAlIaUUpRoFU3WAWgWR0ChhB7AUL2IdX2UKGgGaAloD0MIXMtkOF7xcUCUhpRSlGgVTe0CaBZHQKGFXJ+2E011fZQoaAZoCWgPQwikbJG0W8dwQJSGlFKUaBVNMANoFkdAoYvmYD1XeXV9lChoBmgJaA9DCJX0MLS6N2RAlIaUUpRoFU3oA2gWR0ChjLCA+Y+jdX2UKGgGaAloD0MI4zeFlQqjbUCUhpRSlGgVTTcDaBZHQKGMyGpMpPR1fZQoaAZoCWgPQwgChA8lWkphQJSGlFKUaBVN6ANoFkdAoZN++Eh7mnV9lChoBmgJaA9DCMrC19f6QnBAlIaUUpRoFU0DA2gWR0ChlFRHf/FSdX2UKGgGaAloD0MIs2FNZVFvZECUhpRSlGgVTegDaBZHQKGWIKJEYwZ1fZQoaAZoCWgPQwhREhJpG6xjQJSGlFKUaBVN6ANoFkdAoZdk6V+qi3V9lChoBmgJaA9DCCcTtwpinGZAlIaUUpRoFU3oA2gWR0Chl/sT37DVdX2UKGgGaAloD0MIeNSYEPMRZECUhpRSlGgVTegDaBZHQKGa72PDHfd1fZQoaAZoCWgPQwhQHauUnslxQJSGlFKUaBVNvwFoFkdAoZstLteD4HV9lChoBmgJaA9DCI18XvHUHGFAlIaUUpRoFU3oA2gWR0Chmzqb8WKudX2UKGgGaAloD0MI68n8o+8TZ0CUhpRSlGgVTegDaBZHQKGcdQgLZzx1fZQoaAZoCWgPQwgTYcPTK+E5QJSGlFKUaBVNEQFoFkdAoZ3DU/fO2XV9lChoBmgJaA9DCGixFMlX3mVAlIaUUpRoFU3oA2gWR0Chnnn8CPp7dX2UKGgGaAloD0MI32qduBxrX0CUhpRSlGgVTegDaBZHQKGheZBLPD51fZQoaAZoCWgPQwi9p3La0yJwQJSGlFKUaBVNugNoFkdAoaJlnGsFMnV9lChoBmgJaA9DCPD3i9mSimNAlIaUUpRoFU3oA2gWR0ChomOpbUw0dX2UKGgGaAloD0MIc6JdhRSIZECUhpRSlGgVTegDaBZHQKGvpxb0OEx1fZQoaAZoCWgPQwjJkGPrGexEQJSGlFKUaBVNDAFoFkdAoa+xPfsNUnV9lChoBmgJaA9DCO52vTRF4AXAlIaUUpRoFU0QAWgWR0ChsIgBtDUmdX2UKGgGaAloD0MIfxR15l4WcUCUhpRSlGgVTXIDaBZHQKGwxM36yjZ1fZQoaAZoCWgPQwgoDwu1ZjxwQJSGlFKUaBVNcQFoFkdAobD20iQkonV9lChoBmgJaA9DCEg3wqJiyXBAlIaUUpRoFU0DAmgWR0Chs0E3bVSXdX2UKGgGaAloD0MIU7MHWgEiZUCUhpRSlGgVTegDaBZHQKG0Hy3kPtl1fZQoaAZoCWgPQwh1zeSbbe1xQJSGlFKUaBVNJwJoFkdAobQgpazNU3V9lChoBmgJaA9DCAge3961jmxAlIaUUpRoFU1xA2gWR0ChtsABT4tZdX2UKGgGaAloD0MIv2VOl8WmcECUhpRSlGgVTTwBaBZHQKG4+uTRplB1fZQoaAZoCWgPQwjL8nUZ/ghgQJSGlFKUaBVN6ANoFkdAobliswL3K3V9lChoBmgJaA9DCObN4Vrtc2JAlIaUUpRoFU3oA2gWR0ChvVgrhBJJdX2UKGgGaAloD0MIQu4iTNFRb0CUhpRSlGgVTVEBaBZHQKG9zrylN111fZQoaAZoCWgPQwjy0eKMYQ1iQJSGlFKUaBVN6ANoFkdAob37jLjgh3V9lChoBmgJaA9DCMy3Pqy3D29AlIaUUpRoFU2PAmgWR0ChvzAg5imVdX2UKGgGaAloD0MIbAcj9kkxcUCUhpRSlGgVTbUBaBZHQKHAoYeDFqB1fZQoaAZoCWgPQwiYv0LmytliQJSGlFKUaBVN6ANoFkdAocC2JcgQpXV9lChoBmgJaA9DCKYMHNDScW9AlIaUUpRoFU1GA2gWR0Chw+SPEKmbdX2UKGgGaAloD0MIYqJBCh69cUCUhpRSlGgVTb8BaBZHQKHEcZuQ6p51fZQoaAZoCWgPQwi0rtFyIE5uQJSGlFKUaBVNRANoFkdAocT+lwcYInV9lChoBmgJaA9DCJRMTu2Mn29AlIaUUpRoFU3QAmgWR0ChyXS2x6fKdX2UKGgGaAloD0MIAWxAhHjacUCUhpRSlGgVTV0BaBZHQKHJst03fhx1fZQoaAZoCWgPQwg3VffIZnxtQJSGlFKUaBVNWQNoFkdAocspFNL13HV9lChoBmgJaA9DCNR+aydKaGRAlIaUUpRoFU3oA2gWR0Ch1gwD/2kBdX2UKGgGaAloD0MIfEW3XlPxYECUhpRSlGgVTegDaBZHQKHWFnSv1UV1fZQoaAZoCWgPQwjiPnJr0nZvQJSGlFKUaBVNEQJoFkdAodbuQGOdXnV9lChoBmgJaA9DCMXGvI44RGRAlIaUUpRoFU3oA2gWR0Ch1wIHLRrrdX2UKGgGaAloD0MITbotkYvBbUCUhpRSlGgVTQUCaBZHQKHZpnNgSe11fZQoaAZoCWgPQwg6ysFsAoRrQJSGlFKUaBVNjgFoFkdAodnrrTpgTnV9lChoBmgJaA9DCMGr5c7MQW5AlIaUUpRoFU0lA2gWR0Ch2m801qFidX2UKGgGaAloD0MIB+5AnfKOcUCUhpRSlGgVTVoBaBZHQKHbmomXw9d1fZQoaAZoCWgPQwiUUPpCyMdhQJSGlFKUaBVN6ANoFkdAoeATNOdoWnV9lChoBmgJaA9DCCmzQSbZPHJAlIaUUpRoFU1hAWgWR0Ch4JBTXJ5ndX2UKGgGaAloD0MIyaze4XYeRECUhpRSlGgVTQkBaBZHQKHhGuSOinJ1fZQoaAZoCWgPQwiMZmX7UKhxQJSGlFKUaBVNIgJoFkdAoeNHHq/ucHV9lChoBmgJaA9DCCo4vCCieHBAlIaUUpRoFU3oAmgWR0Ch42bXQMQVdX2UKGgGaAloD0MIZRwj2SPzZECUhpRSlGgVTegDaBZHQKHley2x6fJ1fZQoaAZoCWgPQwh476gxoYpjQJSGlFKUaBVN6ANoFkdAoec+cnVoYnV9lChoBmgJaA9DCOG2tvD8fHFAlIaUUpRoFU2hAWgWR0Ch59A7PppwdX2UKGgGaAloD0MIfO2ZJYEiYECUhpRSlGgVTegDaBZHQKHpK3eenQ91fZQoaAZoCWgPQwhxyAbSReFxQJSGlFKUaBVNtQFoFkdAoenuVcD8tXV9lChoBmgJaA9DCJIE4QqoT25AlIaUUpRoFU3OAmgWR0Ch63lBIFvAdX2UKGgGaAloD0MIw7ewbjxZY0CUhpRSlGgVTegDaBZHQKHrrbUPQOZ1fZQoaAZoCWgPQwj3j4XokIxvQJSGlFKUaBVNZgFoFkdAoexFgDzRQnV9lChoBmgJaA9DCD/mAwIdlG9AlIaUUpRoFU2CAWgWR0Ch7I6i9IwudX2UKGgGaAloD0MIs7YpHhfQcECUhpRSlGgVTSUDaBZHQKHtPmnwXqJ1fZQoaAZoCWgPQwh8mpMXGd5wQJSGlFKUaBVNcgFoFkdAoe2qYZ2pynV9lChoBmgJaA9DCAHD8udbA2RAlIaUUpRoFU3oA2gWR0Ch7roXsPatdX2UKGgGaAloD0MIbY5zm/CScECUhpRSlGgVTXcBaBZHQKHvNONYKY11fZQoaAZoCWgPQwi4lV6bDeFtQJSGlFKUaBVNEQJoFkdAoe9wFRpDeHV9lChoBmgJaA9DCC/dJAaB+G9AlIaUUpRoFU1aAWgWR0Ch8YpkXk5qdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
PPO_LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b179690f9ecc14254098055e34eae6fa21f29a2fd6e39d0530088c5edf476335
3
+ size 87929
PPO_LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0a66297f4848e6376ca6938cf2c2092477a688d64bb3f8cbeefa49142bce7fb
3
+ size 43329
PPO_LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.31 +/- 23.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bae0ba790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bae0ba820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bae0ba8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bae0ba940>", "_build": "<function ActorCriticPolicy._build at 0x7f8bae0ba9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8bae0baa60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bae0baaf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bae0bab80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8bae0bac10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bae0baca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bae0bad30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bae0badc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8bae0c15c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680982046731578787, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN/kr2f1Xk+ImVYPSFWFr5QOaU8uPowvQAAAAAAAAAAs1u9PVLWnz+s/wQ/T1OfvpTfhjx7XyA+AAAAAAAAAAAa60o+c8cyP/VXKr2d1Da+cXWEPU6ew70AAAAAAAAAAGbJwrw/gDI/pxYWuil6fb6e+1a8iINgvQAAAAAAAAAAZot0vVxocj1SjvQ91dsovkeOiD3DECQ9AAAAAAAAAADNpq49j+ouukljsb29dta3ZOU3u1W0QTcAAAAAAACAP80s9bt7+IO6N0UdOZMcEzQHuwY7Blw3uAAAgD8AAIA/zenGPdwDxD4omw2982yPvhO6Ij25koS8AAAAAAAAAADg0EU+jXAyPwE5Ar7XClq+edysPWDB4zwAAAAAAAAAADMhRr0pyDa6bUTht28cPzLtyUy7fYQCNwAAgD8AAIA/zVK1PMNlfrqSHk+4C2dZs6GdN7s6PHE3AACAPwAAgD+aJz287NGot/Q2obv86YA8OyY2OjQRtrsAAIA/AACAP01oWL1IYIe8Q3JvPVGuIr17vpa97tyQvgAAgD8AAIA/s3NtPY9WArpReg84Se/GMvtysLp+PCi3AACAPwAAgD8Aul89KO6HPq4I1L3g0my+2gXyvK5pvzwAAAAAAAAAACaDuz2F86K5MLBYOQDYA7L7aq+7RTWBuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/g3aq4+LX0CUhpRSlIwBbJRN6AOMAXSUR0ChPZZGKAJ+dX2UKGgGaAloD0MIEZAvoYL+cECUhpRSlGgVTXQBaBZHQKE99ybx3FF1fZQoaAZoCWgPQwjt153uvDFvQJSGlFKUaBVNdAFoFkdAoUBM8q4H5nV9lChoBmgJaA9DCFmjHqLRW2ZAlIaUUpRoFU3oA2gWR0ChQoE56t1ZdX2UKGgGaAloD0MITIxl+iWbZECUhpRSlGgVTegDaBZHQKFDqcQyylh1fZQoaAZoCWgPQwhgeCXJ8w1pQJSGlFKUaBVN6ANoFkdAoUVE5+6RQ3V9lChoBmgJaA9DCKt2TUjr4WJAlIaUUpRoFU3oA2gWR0ChRURx95QhdX2UKGgGaAloD0MIF7ZmKy+5b0CUhpRSlGgVTcEBaBZHQKFGyCLdepp1fZQoaAZoCWgPQwhQVgxXh3RlQJSGlFKUaBVN6ANoFkdAoUjLf51vEXV9lChoBmgJaA9DCFhzgGCOeGJAlIaUUpRoFU3oA2gWR0ChSQnaFmFrdX2UKGgGaAloD0MINpNvtjn4Y0CUhpRSlGgVTegDaBZHQKFM8DQJHAh1fZQoaAZoCWgPQwiDp5Ar9VVkQJSGlFKUaBVN6ANoFkdAoVm/9YOlPHV9lChoBmgJaA9DCD5A9+XM4kRAlIaUUpRoFU02AWgWR0ChXYD8LroodX2UKGgGaAloD0MIZYnOMgvvYUCUhpRSlGgVTegDaBZHQKFePiSaEzx1fZQoaAZoCWgPQwiGH5xPneFuQJSGlFKUaBVNtQNoFkdAoWFhzijtX3V9lChoBmgJaA9DCE1nJ4Mjz2VAlIaUUpRoFU3oA2gWR0ChY7OQyRCAdX2UKGgGaAloD0MIP4ulSL75ZECUhpRSlGgVTegDaBZHQKFm0Bun/DN1fZQoaAZoCWgPQwiMSX8vhaljQJSGlFKUaBVN6ANoFkdAoWc8jJMg2nV9lChoBmgJaA9DCIRm172VaGVAlIaUUpRoFU3oA2gWR0ChZ7C/GlyjdX2UKGgGaAloD0MIo+cWupIJYECUhpRSlGgVTegDaBZHQKFrJD0lJH11fZQoaAZoCWgPQwg7Un3nV4xwQJSGlFKUaBVNFwJoFkdAoWxHjKgZj3V9lChoBmgJaA9DCMKht3i4SHBAlIaUUpRoFU2dA2gWR0ChbPEJrtVrdX2UKGgGaAloD0MIup7ouvByakCUhpRSlGgVTdkDaBZHQKFtv8WKuSx1fZQoaAZoCWgPQwjNrRBWY3lvQJSGlFKUaBVNLAJoFkdAoXGg/gR9PXV9lChoBmgJaA9DCKD5nLvdR2ZAlIaUUpRoFU3oA2gWR0ChchNnf2sadX2UKGgGaAloD0MI1m670FyZXkCUhpRSlGgVTegDaBZHQKFyFHim2st1fZQoaAZoCWgPQwhVvfxOk0FkQJSGlFKUaBVN6ANoFkdAoXOffhuO0nV9lChoBmgJaA9DCBb8NsR4nGRAlIaUUpRoFU3oA2gWR0ChdceirT6SdX2UKGgGaAloD0MIysUYWMf+XECUhpRSlGgVTegDaBZHQKF5SS9M9KV1fZQoaAZoCWgPQwhrR3GOOuxrQJSGlFKUaBVNOQNoFkdAoXptiF0xM3V9lChoBmgJaA9DCJoIG55eeGtAlIaUUpRoFU3WAWgWR0ChhB7AUL2IdX2UKGgGaAloD0MIXMtkOF7xcUCUhpRSlGgVTe0CaBZHQKGFXJ+2E011fZQoaAZoCWgPQwikbJG0W8dwQJSGlFKUaBVNMANoFkdAoYvmYD1XeXV9lChoBmgJaA9DCJX0MLS6N2RAlIaUUpRoFU3oA2gWR0ChjLCA+Y+jdX2UKGgGaAloD0MI4zeFlQqjbUCUhpRSlGgVTTcDaBZHQKGMyGpMpPR1fZQoaAZoCWgPQwgChA8lWkphQJSGlFKUaBVN6ANoFkdAoZN++Eh7mnV9lChoBmgJaA9DCMrC19f6QnBAlIaUUpRoFU0DA2gWR0ChlFRHf/FSdX2UKGgGaAloD0MIs2FNZVFvZECUhpRSlGgVTegDaBZHQKGWIKJEYwZ1fZQoaAZoCWgPQwhREhJpG6xjQJSGlFKUaBVN6ANoFkdAoZdk6V+qi3V9lChoBmgJaA9DCCcTtwpinGZAlIaUUpRoFU3oA2gWR0Chl/sT37DVdX2UKGgGaAloD0MIeNSYEPMRZECUhpRSlGgVTegDaBZHQKGa72PDHfd1fZQoaAZoCWgPQwhQHauUnslxQJSGlFKUaBVNvwFoFkdAoZstLteD4HV9lChoBmgJaA9DCI18XvHUHGFAlIaUUpRoFU3oA2gWR0Chmzqb8WKudX2UKGgGaAloD0MI68n8o+8TZ0CUhpRSlGgVTegDaBZHQKGcdQgLZzx1fZQoaAZoCWgPQwgTYcPTK+E5QJSGlFKUaBVNEQFoFkdAoZ3DU/fO2XV9lChoBmgJaA9DCGixFMlX3mVAlIaUUpRoFU3oA2gWR0Chnnn8CPp7dX2UKGgGaAloD0MI32qduBxrX0CUhpRSlGgVTegDaBZHQKGheZBLPD51fZQoaAZoCWgPQwi9p3La0yJwQJSGlFKUaBVNugNoFkdAoaJlnGsFMnV9lChoBmgJaA9DCPD3i9mSimNAlIaUUpRoFU3oA2gWR0ChomOpbUw0dX2UKGgGaAloD0MIc6JdhRSIZECUhpRSlGgVTegDaBZHQKGvpxb0OEx1fZQoaAZoCWgPQwjJkGPrGexEQJSGlFKUaBVNDAFoFkdAoa+xPfsNUnV9lChoBmgJaA9DCO52vTRF4AXAlIaUUpRoFU0QAWgWR0ChsIgBtDUmdX2UKGgGaAloD0MIfxR15l4WcUCUhpRSlGgVTXIDaBZHQKGwxM36yjZ1fZQoaAZoCWgPQwgoDwu1ZjxwQJSGlFKUaBVNcQFoFkdAobD20iQkonV9lChoBmgJaA9DCEg3wqJiyXBAlIaUUpRoFU0DAmgWR0Chs0E3bVSXdX2UKGgGaAloD0MIU7MHWgEiZUCUhpRSlGgVTegDaBZHQKG0Hy3kPtl1fZQoaAZoCWgPQwh1zeSbbe1xQJSGlFKUaBVNJwJoFkdAobQgpazNU3V9lChoBmgJaA9DCAge3961jmxAlIaUUpRoFU1xA2gWR0ChtsABT4tZdX2UKGgGaAloD0MIv2VOl8WmcECUhpRSlGgVTTwBaBZHQKG4+uTRplB1fZQoaAZoCWgPQwjL8nUZ/ghgQJSGlFKUaBVN6ANoFkdAobliswL3K3V9lChoBmgJaA9DCObN4Vrtc2JAlIaUUpRoFU3oA2gWR0ChvVgrhBJJdX2UKGgGaAloD0MIQu4iTNFRb0CUhpRSlGgVTVEBaBZHQKG9zrylN111fZQoaAZoCWgPQwjy0eKMYQ1iQJSGlFKUaBVN6ANoFkdAob37jLjgh3V9lChoBmgJaA9DCMy3Pqy3D29AlIaUUpRoFU2PAmgWR0ChvzAg5imVdX2UKGgGaAloD0MIbAcj9kkxcUCUhpRSlGgVTbUBaBZHQKHAoYeDFqB1fZQoaAZoCWgPQwiYv0LmytliQJSGlFKUaBVN6ANoFkdAocC2JcgQpXV9lChoBmgJaA9DCKYMHNDScW9AlIaUUpRoFU1GA2gWR0Chw+SPEKmbdX2UKGgGaAloD0MIYqJBCh69cUCUhpRSlGgVTb8BaBZHQKHEcZuQ6p51fZQoaAZoCWgPQwi0rtFyIE5uQJSGlFKUaBVNRANoFkdAocT+lwcYInV9lChoBmgJaA9DCJRMTu2Mn29AlIaUUpRoFU3QAmgWR0ChyXS2x6fKdX2UKGgGaAloD0MIAWxAhHjacUCUhpRSlGgVTV0BaBZHQKHJst03fhx1fZQoaAZoCWgPQwg3VffIZnxtQJSGlFKUaBVNWQNoFkdAocspFNL13HV9lChoBmgJaA9DCNR+aydKaGRAlIaUUpRoFU3oA2gWR0Ch1gwD/2kBdX2UKGgGaAloD0MIfEW3XlPxYECUhpRSlGgVTegDaBZHQKHWFnSv1UV1fZQoaAZoCWgPQwjiPnJr0nZvQJSGlFKUaBVNEQJoFkdAodbuQGOdXnV9lChoBmgJaA9DCMXGvI44RGRAlIaUUpRoFU3oA2gWR0Ch1wIHLRrrdX2UKGgGaAloD0MITbotkYvBbUCUhpRSlGgVTQUCaBZHQKHZpnNgSe11fZQoaAZoCWgPQwg6ysFsAoRrQJSGlFKUaBVNjgFoFkdAodnrrTpgTnV9lChoBmgJaA9DCMGr5c7MQW5AlIaUUpRoFU0lA2gWR0Ch2m801qFidX2UKGgGaAloD0MIB+5AnfKOcUCUhpRSlGgVTVoBaBZHQKHbmomXw9d1fZQoaAZoCWgPQwiUUPpCyMdhQJSGlFKUaBVN6ANoFkdAoeATNOdoWnV9lChoBmgJaA9DCCmzQSbZPHJAlIaUUpRoFU1hAWgWR0Ch4JBTXJ5ndX2UKGgGaAloD0MIyaze4XYeRECUhpRSlGgVTQkBaBZHQKHhGuSOinJ1fZQoaAZoCWgPQwiMZmX7UKhxQJSGlFKUaBVNIgJoFkdAoeNHHq/ucHV9lChoBmgJaA9DCCo4vCCieHBAlIaUUpRoFU3oAmgWR0Ch42bXQMQVdX2UKGgGaAloD0MIZRwj2SPzZECUhpRSlGgVTegDaBZHQKHley2x6fJ1fZQoaAZoCWgPQwh476gxoYpjQJSGlFKUaBVN6ANoFkdAoec+cnVoYnV9lChoBmgJaA9DCOG2tvD8fHFAlIaUUpRoFU2hAWgWR0Ch59A7PppwdX2UKGgGaAloD0MIfO2ZJYEiYECUhpRSlGgVTegDaBZHQKHpK3eenQ91fZQoaAZoCWgPQwhxyAbSReFxQJSGlFKUaBVNtQFoFkdAoenuVcD8tXV9lChoBmgJaA9DCJIE4QqoT25AlIaUUpRoFU3OAmgWR0Ch63lBIFvAdX2UKGgGaAloD0MIw7ewbjxZY0CUhpRSlGgVTegDaBZHQKHrrbUPQOZ1fZQoaAZoCWgPQwj3j4XokIxvQJSGlFKUaBVNZgFoFkdAoexFgDzRQnV9lChoBmgJaA9DCD/mAwIdlG9AlIaUUpRoFU2CAWgWR0Ch7I6i9IwudX2UKGgGaAloD0MIs7YpHhfQcECUhpRSlGgVTSUDaBZHQKHtPmnwXqJ1fZQoaAZoCWgPQwh8mpMXGd5wQJSGlFKUaBVNcgFoFkdAoe2qYZ2pynV9lChoBmgJaA9DCAHD8udbA2RAlIaUUpRoFU3oA2gWR0Ch7roXsPatdX2UKGgGaAloD0MIbY5zm/CScECUhpRSlGgVTXcBaBZHQKHvNONYKY11fZQoaAZoCWgPQwi4lV6bDeFtQJSGlFKUaBVNEQJoFkdAoe9wFRpDeHV9lChoBmgJaA9DCC/dJAaB+G9AlIaUUpRoFU1aAWgWR0Ch8YpkXk5qdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.3147879233302, "std_reward": 23.398218424321495, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T20:42:55.511495"}