File size: 11,467 Bytes
9c3a994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import Optional, Tuple, Dict

from michelangelo.models.modules.distributions import DiagonalGaussianDistribution
from michelangelo.utils.eval import compute_psnr
from michelangelo.utils import misc


class KLNearFar(nn.Module):
    def __init__(self,
                 near_weight: float = 0.1,
                 kl_weight: float = 1.0,
                 num_near_samples: Optional[int] = None):

        super().__init__()

        self.near_weight = near_weight
        self.kl_weight = kl_weight
        self.num_near_samples = num_near_samples
        self.geo_criterion = nn.BCEWithLogitsLoss()

    def forward(self,
                posteriors: Optional[DiagonalGaussianDistribution],
                logits: torch.FloatTensor,
                labels: torch.FloatTensor,
                split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:

        """

        Args:
            posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
            logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
            labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
            split (str):
            **kwargs:

        Returns:
            loss (torch.Tensor): (,)
            log (dict):

        """

        if self.num_near_samples is None:
            num_vol = logits.shape[1] // 2
        else:
            num_vol = logits.shape[1] - self.num_near_samples

        vol_logits = logits[:, 0:num_vol]
        vol_labels = labels[:, 0:num_vol]

        near_logits = logits[:, num_vol:]
        near_labels = labels[:, num_vol:]

        # occupancy loss
        # vol_bce = self.geo_criterion(vol_logits, vol_labels)
        # near_bce = self.geo_criterion(near_logits, near_labels)
        vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
        near_bce = self.geo_criterion(near_logits.float(), near_labels.float())

        if posteriors is None:
            kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
        else:
            kl_loss = posteriors.kl(dims=(1, 2))
            kl_loss = torch.mean(kl_loss)

        loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight

        with torch.no_grad():
            preds = logits >= 0
            accuracy = (preds == labels).float()
            accuracy = accuracy.mean()
            pos_ratio = torch.mean(labels)

        log = {
            "{}/total_loss".format(split): loss.clone().detach(),
            "{}/near".format(split): near_bce.detach(),
            "{}/far".format(split): vol_bce.detach(),
            "{}/kl".format(split): kl_loss.detach(),
            "{}/accuracy".format(split): accuracy,
            "{}/pos_ratio".format(split): pos_ratio
        }

        if posteriors is not None:
            log[f"{split}/mean"] = posteriors.mean.mean().detach()
            log[f"{split}/std_mean"] = posteriors.std.mean().detach()
            log[f"{split}/std_max"] = posteriors.std.max().detach()

        return loss, log


class KLNearFarColor(nn.Module):
    def __init__(self,
                 near_weight: float = 0.1,
                 kl_weight: float = 1.0,
                 color_weight: float = 1.0,
                 color_criterion: str = "mse",
                 num_near_samples: Optional[int] = None):

        super().__init__()

        self.color_weight = color_weight
        self.near_weight = near_weight
        self.kl_weight = kl_weight
        self.num_near_samples = num_near_samples

        if color_criterion == "mse":
            self.color_criterion = nn.MSELoss()

        elif color_criterion == "l1":
            self.color_criterion = nn.L1Loss()

        else:
            raise ValueError(f"{color_criterion} must be [`mse`, `l1`].")

        self.geo_criterion = nn.BCEWithLogitsLoss()

    def forward(self,
                posteriors: Optional[DiagonalGaussianDistribution],
                logits: torch.FloatTensor,
                labels: torch.FloatTensor,
                pred_colors: torch.FloatTensor,
                gt_colors: torch.FloatTensor,
                split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:

        """

        Args:
            posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
            logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
            labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
            pred_colors (torch.FloatTensor): [B, M, 3]
            gt_colors (torch.FloatTensor): [B, M, 3]
            split (str):
            **kwargs:

        Returns:
            loss (torch.Tensor): (,)
            log (dict):

        """

        if self.num_near_samples is None:
            num_vol = logits.shape[1] // 2
        else:
            num_vol = logits.shape[1] - self.num_near_samples

        vol_logits = logits[:, 0:num_vol]
        vol_labels = labels[:, 0:num_vol]

        near_logits = logits[:, num_vol:]
        near_labels = labels[:, num_vol:]

        # occupancy loss
        # vol_bce = self.geo_criterion(vol_logits, vol_labels)
        # near_bce = self.geo_criterion(near_logits, near_labels)
        vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
        near_bce = self.geo_criterion(near_logits.float(), near_labels.float())

        # surface color loss
        color = self.color_criterion(pred_colors, gt_colors)

        if posteriors is None:
            kl_loss = torch.tensor(0.0, dtype=pred_colors.dtype, device=pred_colors.device)
        else:
            kl_loss = posteriors.kl(dims=(1, 2))
            kl_loss = torch.mean(kl_loss)

        loss = vol_bce + near_bce * self.near_weight + color * self.color_weight + kl_loss * self.kl_weight

        with torch.no_grad():
            preds = logits >= 0
            accuracy = (preds == labels).float()
            accuracy = accuracy.mean()
            psnr = compute_psnr(pred_colors, gt_colors)

        log = {
            "{}/total_loss".format(split): loss.clone().detach(),
            "{}/near".format(split): near_bce.detach(),
            "{}/far".format(split): vol_bce.detach(),
            "{}/color".format(split): color.detach(),
            "{}/kl".format(split): kl_loss.detach(),
            "{}/psnr".format(split): psnr.detach(),
            "{}/accuracy".format(split): accuracy
        }

        return loss, log


class ContrastKLNearFar(nn.Module):
    def __init__(self,
                 contrast_weight: float = 1.0,
                 near_weight: float = 0.1,
                 kl_weight: float = 1.0,
                 num_near_samples: Optional[int] = None):

        super().__init__()

        self.labels = None
        self.last_local_batch_size = None

        self.contrast_weight = contrast_weight
        self.near_weight = near_weight
        self.kl_weight = kl_weight
        self.num_near_samples = num_near_samples
        self.geo_criterion = nn.BCEWithLogitsLoss()

    def forward(self,
                shape_embed: torch.FloatTensor,
                text_embed: torch.FloatTensor,
                image_embed: torch.FloatTensor,
                logit_scale: torch.FloatTensor,
                posteriors: Optional[DiagonalGaussianDistribution],
                shape_logits: torch.FloatTensor,
                shape_labels: torch.FloatTensor,
                split: Optional[str] = "train", **kwargs):

        local_batch_size = shape_embed.size(0)

        if local_batch_size != self.last_local_batch_size:
            self.labels = local_batch_size * misc.get_rank() + torch.arange(
                local_batch_size, device=shape_embed.device
            ).long()
            self.last_local_batch_size = local_batch_size

        # normalized features
        shape_embed = F.normalize(shape_embed, dim=-1, p=2)
        text_embed = F.normalize(text_embed, dim=-1, p=2)
        image_embed = F.normalize(image_embed, dim=-1, p=2)

        # gather features from all GPUs
        shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
            [shape_embed, text_embed, image_embed]
        )

        # cosine similarity as logits
        logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
        logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
        logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
        logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
        contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
                         F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
                        (F.cross_entropy(logits_per_shape_image, self.labels) +
                         F.cross_entropy(logits_per_image_shape, self.labels)) / 2

        # shape reconstruction
        if self.num_near_samples is None:
            num_vol = shape_logits.shape[1] // 2
        else:
            num_vol = shape_logits.shape[1] - self.num_near_samples

        vol_logits = shape_logits[:, 0:num_vol]
        vol_labels = shape_labels[:, 0:num_vol]

        near_logits = shape_logits[:, num_vol:]
        near_labels = shape_labels[:, num_vol:]

        # occupancy loss
        vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
        near_bce = self.geo_criterion(near_logits.float(), near_labels.float())

        if posteriors is None:
            kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
        else:
            kl_loss = posteriors.kl(dims=(1, 2))
            kl_loss = torch.mean(kl_loss)

        loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight

        # compute accuracy
        with torch.no_grad():
            pred = torch.argmax(logits_per_shape_text, dim=-1)
            correct = pred.eq(self.labels).sum()
            shape_text_acc = 100 * correct / local_batch_size

            pred = torch.argmax(logits_per_shape_image, dim=-1)
            correct = pred.eq(self.labels).sum()
            shape_image_acc = 100 * correct / local_batch_size

            preds = shape_logits >= 0
            accuracy = (preds == shape_labels).float()
            accuracy = accuracy.mean()

            log = {
                "{}/contrast".format(split): contrast_loss.clone().detach(),
                "{}/near".format(split): near_bce.detach(),
                "{}/far".format(split): vol_bce.detach(),
                "{}/kl".format(split): kl_loss.detach(),
                "{}/shape_text_acc".format(split): shape_text_acc,
                "{}/shape_image_acc".format(split): shape_image_acc,
                "{}/total_loss".format(split): loss.clone().detach(),
                "{}/accuracy".format(split): accuracy,
            }

            if posteriors is not None:
                log[f"{split}/mean"] = posteriors.mean.mean().detach()
                log[f"{split}/std_mean"] = posteriors.std.mean().detach()
                log[f"{split}/std_max"] = posteriors.std.max().detach()

        return loss, log