File size: 10,056 Bytes
9c3a994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-

import math
import torch
import torch.nn as nn
from typing import Optional
import warnings

from michelangelo.models.modules.checkpoint import checkpoint


def _trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    # Values are generated by using a truncated uniform distribution and
    # then using the inverse CDF for the normal distribution.
    # Get upper and lower cdf values
    l = norm_cdf((a - mean) / std)
    u = norm_cdf((b - mean) / std)

    # Uniformly fill tensor with values from [l, u], then translate to
    # [2l-1, 2u-1].
    tensor.uniform_(2 * l - 1, 2 * u - 1)

    # Use inverse cdf transform for normal distribution to get truncated
    # standard normal
    tensor.erfinv_()

    # Transform to proper mean, std
    tensor.mul_(std * math.sqrt(2.))
    tensor.add_(mean)

    # Clamp to ensure it's in the proper range
    tensor.clamp_(min=a, max=b)
    return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
    applied while sampling the normal with mean/std applied, therefore a, b args
    should be adjusted to match the range of mean, std args.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    with torch.no_grad():
        return _trunc_normal_(tensor, mean, std, a, b)


def init_weights(m):
    if isinstance(m, nn.Linear):
        trunc_normal_(m.weight, std=.02)
        if isinstance(m, nn.Linear) and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.LayerNorm):
        nn.init.constant_(m.bias, 0)
        nn.init.constant_(m.weight, 1.0)


class MultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        width: int,
        heads: int,
        qkv_bias: bool
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
        self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)

    def forward(self, x):
        x = self.c_qkv(x)
        x = checkpoint(self.attention, (x,), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadAttention(nn.Module):
    def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
        super().__init__()
        self.device = device
        self.dtype = dtype
        self.heads = heads
        self.n_ctx = n_ctx

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.heads // 3
        scale = 1 / math.sqrt(attn_ch)
        qkv = qkv.view(bs, n_ctx, self.heads, -1)
        q, k, v = torch.split(qkv, attn_ch, dim=-1)
        weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
        wdtype = weight.dtype
        weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
        return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        width: int,
        heads: int,
        qkv_bias: bool = True,
        use_checkpoint: bool = False
    ):
        super().__init__()

        self.use_checkpoint = use_checkpoint

        self.attn = MultiheadAttention(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx,
            width=width,
            heads=heads,
            qkv_bias=qkv_bias
        )
        self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
        self.mlp = MLP(device=device, dtype=dtype, width=width)
        self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)

    def _forward(self, x: torch.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

    def forward(self, x: torch.Tensor):
        return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)


class MultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        width: int,
        heads: int,
        qkv_bias: bool = True,
        n_data: Optional[int] = None,
        data_width: Optional[int] = None,
    ):
        super().__init__()
        self.n_data = n_data
        self.width = width
        self.heads = heads
        self.data_width = width if data_width is None else data_width
        self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
        self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
        self.attention = QKVMultiheadCrossAttention(
            device=device, dtype=dtype, heads=heads, n_data=n_data
        )

    def forward(self, x, data):
        x = self.c_q(x)
        data = self.c_kv(data)
        x = checkpoint(self.attention, (x, data), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadCrossAttention(nn.Module):
    def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
        super().__init__()
        self.device = device
        self.dtype = dtype
        self.heads = heads
        self.n_data = n_data

    def forward(self, q, kv):
        _, n_ctx, _ = q.shape
        bs, n_data, width = kv.shape
        attn_ch = width // self.heads // 2
        scale = 1 / math.sqrt(attn_ch)
        q = q.view(bs, n_ctx, self.heads, -1)
        kv = kv.view(bs, n_data, self.heads, -1)
        k, v = torch.split(kv, attn_ch, dim=-1)
        weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
        wdtype = weight.dtype
        weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
        return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)


class ResidualCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        device: Optional[torch.device],
        dtype: Optional[torch.dtype],
        n_data: Optional[int] = None,
        width: int,
        heads: int,
        data_width: Optional[int] = None,
        qkv_bias: bool = True
    ):
        super().__init__()

        if data_width is None:
            data_width = width

        self.attn = MultiheadCrossAttention(
            device=device,
            dtype=dtype,
            n_data=n_data,
            width=width,
            heads=heads,
            data_width=data_width,
            qkv_bias=qkv_bias
        )
        self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
        self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
        self.mlp = MLP(device=device, dtype=dtype, width=width)
        self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        x = x + self.attn(self.ln_1(x), self.ln_2(data))
        x = x + self.mlp(self.ln_3(x))
        return x


class MLP(nn.Module):
    def __init__(self, *,
                 device: Optional[torch.device],
                 dtype: Optional[torch.dtype],
                 width: int):
        super().__init__()
        self.width = width
        self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
        self.gelu = nn.GELU()

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))


class Transformer(nn.Module):
    def __init__(
        self,
        *,
        device: Optional[torch.device],
        dtype: Optional[torch.dtype],
        n_ctx: int,
        width: int,
        layers: int,
        heads: int,
        qkv_bias: bool = True,
        use_checkpoint: bool = False
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.layers = layers
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(
                    device=device,
                    dtype=dtype,
                    n_ctx=n_ctx,
                    width=width,
                    heads=heads,
                    qkv_bias=qkv_bias,
                    use_checkpoint=use_checkpoint
                )
                for _ in range(layers)
            ]
        )

        self.apply(init_weights)

    def forward(self, x: torch.Tensor):
        for block in self.resblocks:
            x = block(x)
        return x