|
|
|
|
|
import importlib |
|
from omegaconf import OmegaConf, DictConfig, ListConfig |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from typing import Union |
|
|
|
|
|
def get_config_from_file(config_file: str) -> Union[DictConfig, ListConfig]: |
|
config_file = OmegaConf.load(config_file) |
|
|
|
if 'base_config' in config_file.keys(): |
|
if config_file['base_config'] == "default_base": |
|
base_config = OmegaConf.create() |
|
|
|
elif config_file['base_config'].endswith(".yaml"): |
|
base_config = get_config_from_file(config_file['base_config']) |
|
else: |
|
raise ValueError(f"{config_file} must be `.yaml` file or it contains `base_config` key.") |
|
|
|
config_file = {key: value for key, value in config_file if key != "base_config"} |
|
|
|
return OmegaConf.merge(base_config, config_file) |
|
|
|
return config_file |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def get_obj_from_config(config): |
|
if "target" not in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
|
|
return get_obj_from_str(config["target"]) |
|
|
|
|
|
def instantiate_from_config(config, **kwargs): |
|
if "target" not in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
|
|
cls = get_obj_from_str(config["target"]) |
|
|
|
params = config.get("params", dict()) |
|
|
|
|
|
kwargs.update(params) |
|
instance = cls(**kwargs) |
|
|
|
return instance |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def all_gather_batch(tensors): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
""" |
|
|
|
world_size = get_world_size() |
|
|
|
if world_size == 1: |
|
return tensors |
|
tensor_list = [] |
|
output_tensor = [] |
|
for tensor in tensors: |
|
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] |
|
dist.all_gather( |
|
tensor_all, |
|
tensor, |
|
async_op=False |
|
) |
|
|
|
tensor_list.append(tensor_all) |
|
|
|
for tensor_all in tensor_list: |
|
output_tensor.append(torch.cat(tensor_all, dim=0)) |
|
return output_tensor |
|
|