--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8529411764705882 --- # deit-tiny-patch16-224-finetuned-papsmear This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4389 - Accuracy: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.8247 | 0.9870 | 19 | 1.6199 | 0.3015 | | 1.415 | 1.9740 | 38 | 1.2594 | 0.5147 | | 1.06 | 2.9610 | 57 | 1.0316 | 0.6471 | | 0.8808 | 4.0 | 77 | 1.0088 | 0.625 | | 0.7646 | 4.9870 | 96 | 0.8211 | 0.6985 | | 0.6798 | 5.9740 | 115 | 0.7383 | 0.7132 | | 0.554 | 6.9610 | 134 | 0.6477 | 0.7574 | | 0.5358 | 8.0 | 154 | 0.5824 | 0.7647 | | 0.4689 | 8.9870 | 173 | 0.5571 | 0.7794 | | 0.4217 | 9.9740 | 192 | 0.5506 | 0.7868 | | 0.4063 | 10.9610 | 211 | 0.4987 | 0.8235 | | 0.3827 | 12.0 | 231 | 0.4793 | 0.8088 | | 0.3095 | 12.9870 | 250 | 0.4724 | 0.8015 | | 0.3521 | 13.9740 | 269 | 0.4389 | 0.8529 | | 0.3397 | 14.8052 | 285 | 0.4383 | 0.8456 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1