a2c-PandaReachDense-v2 / config.json
Malaika's picture
Initial commit
7f17da5
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f16272a2170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1627295500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687270430376695045, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUvXvPmtsTj2engw/UvXvPmtsTj2engw/UvXvPmtsTj2engw/UvXvPmtsTj2engw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWwOtv7Ik2z7VK78/KAgBvgne0L+i88c/KQ2NPnX/pz6Kacc/M9XAvwgavL8pfsE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABS9e8+a2xOPZ6eDD8Zqsu8zAevOYfJMbxS9e8+a2xOPZ6eDD8Zqsu8zAevOYfJMbxS9e8+a2xOPZ6eDD8Zqsu8zAevOYfJMbxS9e8+a2xOPZ6eDD8Zqsu8zAevOYfJMbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46866852 0.05039636 0.5492953 ]\n [0.46866852 0.05039636 0.5492953 ]\n [0.46866852 0.05039636 0.5492953 ]\n [0.46866852 0.05039636 0.5492953 ]]", "desired_goal": "[[-1.3516649 0.42801434 1.4935251 ]\n [-0.12600768 -1.631776 1.5621226 ]\n [ 0.27549103 0.32812086 1.5579083 ]\n [-1.5065063 -1.4695444 1.5116626 ]]", "observation": "[[ 4.68668520e-01 5.03963642e-02 5.49295306e-01 -2.48613823e-02\n 3.33844102e-04 -1.08512705e-02]\n [ 4.68668520e-01 5.03963642e-02 5.49295306e-01 -2.48613823e-02\n 3.33844102e-04 -1.08512705e-02]\n [ 4.68668520e-01 5.03963642e-02 5.49295306e-01 -2.48613823e-02\n 3.33844102e-04 -1.08512705e-02]\n [ 4.68668520e-01 5.03963642e-02 5.49295306e-01 -2.48613823e-02\n 3.33844102e-04 -1.08512705e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9iMJPvRnOj2DdgI+iOdWPex82j1+Wvw9B1XsPUGoFT1VtWk+tUd9PetT1Dxm//U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.13392624 0.04550929 0.12740521]\n [0.0524669 0.10668358 0.12321948]\n [0.11539655 0.03653741 0.22823079]\n [0.06183596 0.02591892 0.12011604]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBOPg0jFHCcCUhpRSlIwBbJRLMowBdJRHQLbJXornTy91fZQoaAZoCWgPQwhOucK7XAQOwJSGlFKUaBVLMmgWR0C2yUGZ7XxwdX2UKGgGaAloD0MI6znpfePrDMCUhpRSlGgVSzJoFkdAtsklq33HrHV9lChoBmgJaA9DCDRLAtTUMgfAlIaUUpRoFUsyaBZHQLbJCBMBZIR1fZQoaAZoCWgPQwjiW1g33r0MwJSGlFKUaBVLMmgWR0C2yj3I+4b0dX2UKGgGaAloD0MIPpRoyeNpCMCUhpRSlGgVSzJoFkdAtsogtqYZ23V9lChoBmgJaA9DCKwA323e+BDAlIaUUpRoFUsyaBZHQLbKBJY1YQt1fZQoaAZoCWgPQwggtYmT+30UwJSGlFKUaBVLMmgWR0C2yebv1DjSdX2UKGgGaAloD0MIPkD35cwWDMCUhpRSlGgVSzJoFkdAtssOg/Tsp3V9lChoBmgJaA9DCAd5PZgUPxrAlIaUUpRoFUsyaBZHQLbK8Vy3kPt1fZQoaAZoCWgPQwh1cobijrcIwJSGlFKUaBVLMmgWR0C2ytVCw8nvdX2UKGgGaAloD0MIqg1ORL82CcCUhpRSlGgVSzJoFkdAtsq3n+yZ8nV9lChoBmgJaA9DCBBaD18mahDAlIaUUpRoFUsyaBZHQLbL4I3R5Tt1fZQoaAZoCWgPQwixahDmdg8PwJSGlFKUaBVLMmgWR0C2y8NNi6QOdX2UKGgGaAloD0MIidNJtrrMF8CUhpRSlGgVSzJoFkdAtsunDziCKHV9lChoBmgJaA9DCGyWy0bnnBLAlIaUUpRoFUsyaBZHQLbLiVaOgg51fZQoaAZoCWgPQwjy7shYbT4SwJSGlFKUaBVLMmgWR0C2zI0T6BRRdX2UKGgGaAloD0MIHHv2XKZ2E8CUhpRSlGgVSzJoFkdAtsxvYnOSn3V9lChoBmgJaA9DCJp7SPjePxHAlIaUUpRoFUsyaBZHQLbMUtw71Zl1fZQoaAZoCWgPQwhJaMu5FHcKwJSGlFKUaBVLMmgWR0C2zDTGDL8rdX2UKGgGaAloD0MIkYE8u3yLDcCUhpRSlGgVSzJoFkdAts0G1Z1V53V9lChoBmgJaA9DCM2rOqsFhhDAlIaUUpRoFUsyaBZHQLbM6Tq0MPV1fZQoaAZoCWgPQwjtRbQdU1cEwJSGlFKUaBVLMmgWR0C2zMzENvwWdX2UKGgGaAloD0MIvEG0VrQZCMCUhpRSlGgVSzJoFkdAtsyuvFFUhnV9lChoBmgJaA9DCHzzGyYaJBDAlIaUUpRoFUsyaBZHQLbNd40dilV1fZQoaAZoCWgPQwhxdmuZDAcTwJSGlFKUaBVLMmgWR0C2zVnbypaSdX2UKGgGaAloD0MItRmnIaoQFMCUhpRSlGgVSzJoFkdAts09Wp6yB3V9lChoBmgJaA9DCA9G7BNAcQ/AlIaUUpRoFUsyaBZHQLbNH0gr6Lx1fZQoaAZoCWgPQwhXzAhvD3IRwJSGlFKUaBVLMmgWR0C2zfC00FbFdX2UKGgGaAloD0MInrXbLjTXDsCUhpRSlGgVSzJoFkdAts3TF0gbInV9lChoBmgJaA9DCB8TKc3msQvAlIaUUpRoFUsyaBZHQLbNtpuuRtB1fZQoaAZoCWgPQwgcCMkCJrAQwJSGlFKUaBVLMmgWR0C2zZiR0U48dX2UKGgGaAloD0MIXcR3YtY7EMCUhpRSlGgVSzJoFkdAts5r1K5CnnV9lChoBmgJaA9DCM7BM6FJUhLAlIaUUpRoFUsyaBZHQLbOTiD/VAl1fZQoaAZoCWgPQwh8RiI0gn0RwJSGlFKUaBVLMmgWR0C2zjGzfJmvdX2UKGgGaAloD0MIJhsPttj9HMCUhpRSlGgVSzJoFkdAts4TmYBvJnV9lChoBmgJaA9DCLMmFviKPhPAlIaUUpRoFUsyaBZHQLbO4jXWe6J1fZQoaAZoCWgPQwhCWmPQCaEGwJSGlFKUaBVLMmgWR0C2zsSPp6hQdX2UKGgGaAloD0MIJ9wr81Y9C8CUhpRSlGgVSzJoFkdAts6oC4jKPnV9lChoBmgJaA9DCIrlllZDog3AlIaUUpRoFUsyaBZHQLbOifnfVI91fZQoaAZoCWgPQwjEzhQ6r8EQwJSGlFKUaBVLMmgWR0C2z1mBas6rdX2UKGgGaAloD0MIr5RliGP9D8CUhpRSlGgVSzJoFkdAts874ZdfLXV9lChoBmgJaA9DCJtZSwFpvwfAlIaUUpRoFUsyaBZHQLbPH2XLNfR1fZQoaAZoCWgPQwjxnZj1YggLwJSGlFKUaBVLMmgWR0C2zwFOCXhPdX2UKGgGaAloD0MIXoJTH0ieBsCUhpRSlGgVSzJoFkdAts/OlXRw63V9lChoBmgJaA9DCPW6RWCsjxLAlIaUUpRoFUsyaBZHQLbPsOcUdrB1fZQoaAZoCWgPQwiyE16CUz8NwJSGlFKUaBVLMmgWR0C2z5Rqj8DTdX2UKGgGaAloD0MIjgHZ690vFMCUhpRSlGgVSzJoFkdAts92Wldka3V9lChoBmgJaA9DCIenV8oypBLAlIaUUpRoFUsyaBZHQLbQPk+X7ch1fZQoaAZoCWgPQwi6wOWxZmQOwJSGlFKUaBVLMmgWR0C20CCbQTmGdX2UKGgGaAloD0MIGhU42QaeEMCUhpRSlGgVSzJoFkdAttAEHAymAXV9lChoBmgJaA9DCNrLttPWOBHAlIaUUpRoFUsyaBZHQLbP5gs9SuR1fZQoaAZoCWgPQwhMiLmkajsPwJSGlFKUaBVLMmgWR0C20LTGDL8rdX2UKGgGaAloD0MI3UPC9/52EMCUhpRSlGgVSzJoFkdAttCXGT9sJ3V9lChoBmgJaA9DCIgP7PgvwBLAlIaUUpRoFUsyaBZHQLbQepZOi351fZQoaAZoCWgPQwg34V6Zt7oVwJSGlFKUaBVLMmgWR0C20FyGFi8WdX2UKGgGaAloD0MIhA8lWvKYDsCUhpRSlGgVSzJoFkdAttEzN5dGAnV9lChoBmgJaA9DCBgl6C/0KALAlIaUUpRoFUsyaBZHQLbRFYrrgO11fZQoaAZoCWgPQwjQ7SWN0UoSwJSGlFKUaBVLMmgWR0C20PkKJEYwdX2UKGgGaAloD0MIiqw1lNrrBsCUhpRSlGgVSzJoFkdAttDbIcR15nV9lChoBmgJaA9DCCaKkLqdfQXAlIaUUpRoFUsyaBZHQLbRqdMTN+t1fZQoaAZoCWgPQwi2LF+X4W8QwJSGlFKUaBVLMmgWR0C20Ywfp2U0dX2UKGgGaAloD0MIM/0S8dZZDMCUhpRSlGgVSzJoFkdAttFvpOerdXV9lChoBmgJaA9DCG4w1GGFmxrAlIaUUpRoFUsyaBZHQLbRUZzxPO91fZQoaAZoCWgPQwjNH9PaNBYKwJSGlFKUaBVLMmgWR0C20iOotL+QdX2UKGgGaAloD0MIlQ1rKoviCsCUhpRSlGgVSzJoFkdAttIGExqO93V9lChoBmgJaA9DCFzknq7uCBPAlIaUUpRoFUsyaBZHQLbR6Z/CqId1fZQoaAZoCWgPQwh+i06WWk8OwJSGlFKUaBVLMmgWR0C20cuM2m52dX2UKGgGaAloD0MIBRkBFY6gD8CUhpRSlGgVSzJoFkdAttKYLXtjTnV9lChoBmgJaA9DCMbbSq/NZgvAlIaUUpRoFUsyaBZHQLbSenrIHTt1fZQoaAZoCWgPQwgTfT7KiDsUwJSGlFKUaBVLMmgWR0C20l35SFXadX2UKGgGaAloD0MIZi/bTluDD8CUhpRSlGgVSzJoFkdAttI/4mCyyHV9lChoBmgJaA9DCERuhhvwOQvAlIaUUpRoFUsyaBZHQLbTDJrLyMF1fZQoaAZoCWgPQwjPa+wS1VsKwJSGlFKUaBVLMmgWR0C20u78zhxYdX2UKGgGaAloD0MICKpGrwZoD8CUhpRSlGgVSzJoFkdAttLSuIRAbHV9lChoBmgJaA9DCH/aqE4HYhfAlIaUUpRoFUsyaBZHQLbStLTx5LR1fZQoaAZoCWgPQwg58Gq5MxMRwJSGlFKUaBVLMmgWR0C204coc7yQdX2UKGgGaAloD0MILXsS2JwDC8CUhpRSlGgVSzJoFkdAttNplHz6J3V9lChoBmgJaA9DCBSX4xWIzhvAlIaUUpRoFUsyaBZHQLbTTRvFWGR1fZQoaAZoCWgPQwgrweJw5rcLwJSGlFKUaBVLMmgWR0C20y8O09hadX2UKGgGaAloD0MIcmw9QzgGCsCUhpRSlGgVSzJoFkdAttQDUd7v5XV9lChoBmgJaA9DCJG6nX3lwQvAlIaUUpRoFUsyaBZHQLbT5aUA1el1fZQoaAZoCWgPQwh32a873fkMwJSGlFKUaBVLMmgWR0C208kjLSuydX2UKGgGaAloD0MISRPvAE8aBsCUhpRSlGgVSzJoFkdAttOrGdZq23V9lChoBmgJaA9DCJOrWPymsBPAlIaUUpRoFUsyaBZHQLbUeMUypJh1fZQoaAZoCWgPQwiqtwa2SlAMwJSGlFKUaBVLMmgWR0C21FsXenAJdX2UKGgGaAloD0MIh8CRQINtCMCUhpRSlGgVSzJoFkdAttQ+nNxEOXV9lChoBmgJaA9DCEpE+BdBMxXAlIaUUpRoFUsyaBZHQLbUIJTVDrt1fZQoaAZoCWgPQwjJdOj0vDsMwJSGlFKUaBVLMmgWR0C21O/R/mT1dX2UKGgGaAloD0MIW7VrQlrjB8CUhpRSlGgVSzJoFkdAttTSN96Tn3V9lChoBmgJaA9DCJUqUfaW4hPAlIaUUpRoFUsyaBZHQLbUtdY4hll1fZQoaAZoCWgPQwjNj7+0qA8SwJSGlFKUaBVLMmgWR0C21JfSDyvtdX2UKGgGaAloD0MIoIobt5hPHcCUhpRSlGgVSzJoFkdAttVp9x6v7nV9lChoBmgJaA9DCFD/WfPjTwvAlIaUUpRoFUsyaBZHQLbVTFjurp91fZQoaAZoCWgPQwjiOsYVF7cQwJSGlFKUaBVLMmgWR0C21S/z8P4EdX2UKGgGaAloD0MI6pEGt7VFCMCUhpRSlGgVSzJoFkdAttUSA9V3lnV9lChoBmgJaA9DCJqZmZmZWQbAlIaUUpRoFUsyaBZHQLbV4wsoUi91fZQoaAZoCWgPQwih8q/llcsSwJSGlFKUaBVLMmgWR0C21cV/2Cd0dX2UKGgGaAloD0MIhjdr8L7q/r+UhpRSlGgVSzJoFkdAttWo+IMz/XV9lChoBmgJaA9DCGFPO/w1uQnAlIaUUpRoFUsyaBZHQLbVivTPSlZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}