ManelR commited on
Commit
aafd146
·
1 Parent(s): a64a98c

End of training

Browse files
README.md CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.6633
19
- - Answer: {'precision': 0.7068004459308808, 'recall': 0.7836835599505563, 'f1': 0.7432590855803048, 'number': 809}
20
- - Header: {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119}
21
- - Question: {'precision': 0.757679180887372, 'recall': 0.8338028169014085, 'f1': 0.7939204291461779, 'number': 1065}
22
- - Overall Precision: 0.7121
23
- - Overall Recall: 0.7817
24
- - Overall F1: 0.7453
25
- - Overall Accuracy: 0.8174
26
 
27
  ## Model description
28
 
@@ -52,23 +52,23 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8218 | 1.0 | 10 | 1.6340 | {'precision': 0.012857142857142857, 'recall': 0.011124845488257108, 'f1': 0.011928429423459244, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22849807445442877, 'recall': 0.1671361502347418, 'f1': 0.19305856832971802, 'number': 1065} | 0.1264 | 0.0938 | 0.1077 | 0.3314 |
58
- | 1.4842 | 2.0 | 20 | 1.2777 | {'precision': 0.18856447688564476, 'recall': 0.1915945611866502, 'f1': 0.19006744328632738, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.44694533762057875, 'recall': 0.5220657276995305, 'f1': 0.48159376353399735, 'number': 1065} | 0.3441 | 0.3567 | 0.3503 | 0.5691 |
59
- | 1.1045 | 3.0 | 30 | 0.9751 | {'precision': 0.44747612551159616, 'recall': 0.4054388133498146, 'f1': 0.42542153047989617, 'number': 809} | {'precision': 0.05555555555555555, 'recall': 0.01680672268907563, 'f1': 0.025806451612903226, 'number': 119} | {'precision': 0.6208445642407907, 'recall': 0.6488262910798122, 'f1': 0.6345270890725436, 'number': 1065} | 0.5425 | 0.5123 | 0.5270 | 0.6860 |
60
- | 0.833 | 4.0 | 40 | 0.7763 | {'precision': 0.6252609603340292, 'recall': 0.7404202719406675, 'f1': 0.677985285795133, 'number': 809} | {'precision': 0.1935483870967742, 'recall': 0.10084033613445378, 'f1': 0.13259668508287292, 'number': 119} | {'precision': 0.6614583333333334, 'recall': 0.7154929577464789, 'f1': 0.6874154262516915, 'number': 1065} | 0.6321 | 0.6889 | 0.6593 | 0.7559 |
61
- | 0.6773 | 5.0 | 50 | 0.7051 | {'precision': 0.6295918367346939, 'recall': 0.7626699629171817, 'f1': 0.6897708216880939, 'number': 809} | {'precision': 0.29069767441860467, 'recall': 0.21008403361344538, 'f1': 0.24390243902439027, 'number': 119} | {'precision': 0.6980802792321117, 'recall': 0.7511737089201878, 'f1': 0.7236544549977386, 'number': 1065} | 0.6519 | 0.7235 | 0.6859 | 0.7788 |
62
- | 0.5627 | 6.0 | 60 | 0.6598 | {'precision': 0.6423432682425488, 'recall': 0.7725587144622992, 'f1': 0.7014590347923682, 'number': 809} | {'precision': 0.32098765432098764, 'recall': 0.2184873949579832, 'f1': 0.26, 'number': 119} | {'precision': 0.7032878909382518, 'recall': 0.8234741784037559, 'f1': 0.7586505190311419, 'number': 1065} | 0.6641 | 0.7667 | 0.7117 | 0.7947 |
63
- | 0.4959 | 7.0 | 70 | 0.6625 | {'precision': 0.6652267818574514, 'recall': 0.761433868974042, 'f1': 0.7100864553314121, 'number': 809} | {'precision': 0.2761904761904762, 'recall': 0.24369747899159663, 'f1': 0.2589285714285714, 'number': 119} | {'precision': 0.7452504317789291, 'recall': 0.8103286384976526, 'f1': 0.7764282501124606, 'number': 1065} | 0.6889 | 0.7566 | 0.7212 | 0.7945 |
64
- | 0.4473 | 8.0 | 80 | 0.6402 | {'precision': 0.6684491978609626, 'recall': 0.7725587144622992, 'f1': 0.7167431192660552, 'number': 809} | {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} | {'precision': 0.7415540540540541, 'recall': 0.8244131455399061, 'f1': 0.7807914628723877, 'number': 1065} | 0.6883 | 0.7677 | 0.7258 | 0.8046 |
65
- | 0.3997 | 9.0 | 90 | 0.6381 | {'precision': 0.6879120879120879, 'recall': 0.7737948084054388, 'f1': 0.7283304246655031, 'number': 809} | {'precision': 0.27350427350427353, 'recall': 0.2689075630252101, 'f1': 0.2711864406779661, 'number': 119} | {'precision': 0.7418817651956703, 'recall': 0.8366197183098592, 'f1': 0.7864077669902912, 'number': 1065} | 0.6952 | 0.7772 | 0.7339 | 0.8095 |
66
- | 0.3597 | 10.0 | 100 | 0.6481 | {'precision': 0.6959910913140311, 'recall': 0.7725587144622992, 'f1': 0.7322788517867603, 'number': 809} | {'precision': 0.25984251968503935, 'recall': 0.2773109243697479, 'f1': 0.2682926829268293, 'number': 119} | {'precision': 0.7495769881556683, 'recall': 0.831924882629108, 'f1': 0.7886070315976857, 'number': 1065} | 0.6996 | 0.7747 | 0.7352 | 0.8094 |
67
- | 0.3241 | 11.0 | 110 | 0.6649 | {'precision': 0.6960893854748603, 'recall': 0.7700865265760197, 'f1': 0.7312206572769954, 'number': 809} | {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} | {'precision': 0.7689625108979947, 'recall': 0.828169014084507, 'f1': 0.7974683544303798, 'number': 1065} | 0.7165 | 0.7722 | 0.7433 | 0.8115 |
68
- | 0.3111 | 12.0 | 120 | 0.6584 | {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809} | {'precision': 0.29310344827586204, 'recall': 0.2857142857142857, 'f1': 0.2893617021276596, 'number': 119} | {'precision': 0.7658833768494343, 'recall': 0.8262910798122066, 'f1': 0.7949412827461607, 'number': 1065} | 0.7166 | 0.7827 | 0.7482 | 0.8134 |
69
- | 0.2896 | 13.0 | 130 | 0.6736 | {'precision': 0.7007963594994312, 'recall': 0.761433868974042, 'f1': 0.7298578199052134, 'number': 809} | {'precision': 0.2536231884057971, 'recall': 0.29411764705882354, 'f1': 0.2723735408560311, 'number': 119} | {'precision': 0.7527993109388458, 'recall': 0.8206572769953052, 'f1': 0.7852650494159928, 'number': 1065} | 0.7002 | 0.7652 | 0.7312 | 0.8091 |
70
- | 0.278 | 14.0 | 140 | 0.6619 | {'precision': 0.7066666666666667, 'recall': 0.7861557478368356, 'f1': 0.7442949093036864, 'number': 809} | {'precision': 0.30973451327433627, 'recall': 0.29411764705882354, 'f1': 0.3017241379310345, 'number': 119} | {'precision': 0.7631806395851339, 'recall': 0.8291079812206573, 'f1': 0.7947794779477948, 'number': 1065} | 0.7161 | 0.7797 | 0.7466 | 0.8172 |
71
- | 0.2785 | 15.0 | 150 | 0.6633 | {'precision': 0.7068004459308808, 'recall': 0.7836835599505563, 'f1': 0.7432590855803048, 'number': 809} | {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} | {'precision': 0.757679180887372, 'recall': 0.8338028169014085, 'f1': 0.7939204291461779, 'number': 1065} | 0.7121 | 0.7817 | 0.7453 | 0.8174 |
72
 
73
 
74
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.6865
19
+ - Answer: {'precision': 0.6990185387131952, 'recall': 0.792336217552534, 'f1': 0.7427578215527232, 'number': 809}
20
+ - Header: {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119}
21
+ - Question: {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065}
22
+ - Overall Precision: 0.7268
23
+ - Overall Recall: 0.7888
24
+ - Overall F1: 0.7565
25
+ - Overall Accuracy: 0.8047
26
 
27
  ## Model description
28
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7784 | 1.0 | 10 | 1.6271 | {'precision': 0.01841620626151013, 'recall': 0.012360939431396786, 'f1': 0.014792899408284023, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.11462450592885376, 'recall': 0.054460093896713614, 'f1': 0.07383831954169319, 'number': 1065} | 0.0648 | 0.0341 | 0.0447 | 0.3258 |
58
+ | 1.4893 | 2.0 | 20 | 1.2865 | {'precision': 0.18452935694315004, 'recall': 0.24474660074165636, 'f1': 0.21041445270988307, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4293563579277865, 'recall': 0.5136150234741784, 'f1': 0.4677212483967507, 'number': 1065} | 0.3174 | 0.3738 | 0.3433 | 0.5703 |
59
+ | 1.1173 | 3.0 | 30 | 0.9566 | {'precision': 0.4382845188284519, 'recall': 0.5179233621755254, 'f1': 0.4747875354107649, 'number': 809} | {'precision': 0.045454545454545456, 'recall': 0.01680672268907563, 'f1': 0.024539877300613498, 'number': 119} | {'precision': 0.5686113393590797, 'recall': 0.6497652582159624, 'f1': 0.6064855390008765, 'number': 1065} | 0.5020 | 0.5585 | 0.5287 | 0.6883 |
60
+ | 0.8579 | 4.0 | 40 | 0.8042 | {'precision': 0.5834932821497121, 'recall': 0.7515451174289246, 'f1': 0.6569421934089681, 'number': 809} | {'precision': 0.18055555555555555, 'recall': 0.1092436974789916, 'f1': 0.13612565445026178, 'number': 119} | {'precision': 0.6401480111008325, 'recall': 0.6497652582159624, 'f1': 0.6449207828518173, 'number': 1065} | 0.5982 | 0.6588 | 0.6270 | 0.7438 |
61
+ | 0.711 | 5.0 | 50 | 0.7251 | {'precision': 0.6355140186915887, 'recall': 0.7564894932014833, 'f1': 0.6907449209932279, 'number': 809} | {'precision': 0.25252525252525254, 'recall': 0.21008403361344538, 'f1': 0.22935779816513763, 'number': 119} | {'precision': 0.6740237691001698, 'recall': 0.7455399061032864, 'f1': 0.7079803834150691, 'number': 1065} | 0.6388 | 0.7180 | 0.6761 | 0.7764 |
62
+ | 0.5916 | 6.0 | 60 | 0.6914 | {'precision': 0.6471204188481675, 'recall': 0.7639060568603214, 'f1': 0.7006802721088435, 'number': 809} | {'precision': 0.325, 'recall': 0.2184873949579832, 'f1': 0.26130653266331655, 'number': 119} | {'precision': 0.6792452830188679, 'recall': 0.8112676056338028, 'f1': 0.7394094993581515, 'number': 1065} | 0.6537 | 0.7566 | 0.7014 | 0.7820 |
63
+ | 0.5253 | 7.0 | 70 | 0.6778 | {'precision': 0.6542056074766355, 'recall': 0.7787391841779975, 'f1': 0.711060948081264, 'number': 809} | {'precision': 0.3047619047619048, 'recall': 0.2689075630252101, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.739247311827957, 'recall': 0.7746478873239436, 'f1': 0.7565337001375517, 'number': 1065} | 0.6809 | 0.7461 | 0.7120 | 0.7896 |
64
+ | 0.4705 | 8.0 | 80 | 0.6586 | {'precision': 0.6659751037344398, 'recall': 0.7935723114956736, 'f1': 0.7241962774957698, 'number': 809} | {'precision': 0.30392156862745096, 'recall': 0.2605042016806723, 'f1': 0.28054298642533937, 'number': 119} | {'precision': 0.7257093723129837, 'recall': 0.7924882629107981, 'f1': 0.7576301615798923, 'number': 1065} | 0.6806 | 0.7612 | 0.7186 | 0.7966 |
65
+ | 0.4214 | 9.0 | 90 | 0.6588 | {'precision': 0.6852846401718582, 'recall': 0.788627935723115, 'f1': 0.7333333333333334, 'number': 809} | {'precision': 0.2755905511811024, 'recall': 0.29411764705882354, 'f1': 0.2845528455284553, 'number': 119} | {'precision': 0.7396907216494846, 'recall': 0.8084507042253521, 'f1': 0.7725437415881561, 'number': 1065} | 0.6904 | 0.7697 | 0.7279 | 0.7992 |
66
+ | 0.3765 | 10.0 | 100 | 0.6598 | {'precision': 0.6825053995680346, 'recall': 0.7812113720642769, 'f1': 0.7285302593659942, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7658833768494343, 'recall': 0.8262910798122066, 'f1': 0.7949412827461607, 'number': 1065} | 0.7078 | 0.7767 | 0.7407 | 0.8013 |
67
+ | 0.3331 | 11.0 | 110 | 0.6659 | {'precision': 0.6778947368421052, 'recall': 0.796044499381953, 'f1': 0.7322342239909039, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.772566371681416, 'recall': 0.819718309859155, 'f1': 0.7954441913439636, 'number': 1065} | 0.7078 | 0.7792 | 0.7418 | 0.8033 |
68
+ | 0.3192 | 12.0 | 120 | 0.6782 | {'precision': 0.6885069817400644, 'recall': 0.792336217552534, 'f1': 0.7367816091954023, 'number': 809} | {'precision': 0.3170731707317073, 'recall': 0.3277310924369748, 'f1': 0.32231404958677684, 'number': 119} | {'precision': 0.7828418230563002, 'recall': 0.8225352112676056, 'f1': 0.8021978021978022, 'number': 1065} | 0.7161 | 0.7807 | 0.7470 | 0.8015 |
69
+ | 0.3012 | 13.0 | 130 | 0.6835 | {'precision': 0.6929637526652452, 'recall': 0.8034610630407911, 'f1': 0.7441327990841443, 'number': 809} | {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119} | {'precision': 0.7847652790079717, 'recall': 0.831924882629108, 'f1': 0.8076572470373746, 'number': 1065} | 0.7196 | 0.7908 | 0.7535 | 0.8025 |
70
+ | 0.2867 | 14.0 | 140 | 0.6851 | {'precision': 0.7003257328990228, 'recall': 0.7972805933250927, 'f1': 0.7456647398843931, 'number': 809} | {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119} | {'precision': 0.7884444444444444, 'recall': 0.8328638497652582, 'f1': 0.8100456621004566, 'number': 1065} | 0.7266 | 0.7893 | 0.7566 | 0.8029 |
71
+ | 0.2827 | 15.0 | 150 | 0.6865 | {'precision': 0.6990185387131952, 'recall': 0.792336217552534, 'f1': 0.7427578215527232, 'number': 809} | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} | {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065} | 0.7268 | 0.7888 | 0.7565 | 0.8047 |
72
 
73
 
74
  ### Framework versions
logs/events.out.tfevents.1681318675.7d6fd38e622b.2024.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46adbffbcc15df3cd8effb2b035bc9ba53b5f1c90589080d41087ee78df2c27f
3
- size 12667
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9330e31202bdd4762da5226db3f4cc517dd3441adad7f2babd7da613ffa8664d
3
+ size 14343
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea229c8a2467884adc7fb85f2afea8b071d9d4f41b887afda13c885bb4f16667
3
  size 450608389
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccb5423b01cc72c1a45af825f967e5533c392804cc2c64b8131b037ac53cdb1e
3
  size 450608389