ManishThota commited on
Commit
5245a0b
1 Parent(s): 9b43c44

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:724
24
+ - loss:CoSENTLoss
25
+ widget:
26
+ - source_sentence: Financials
27
+ sentences:
28
+ - What is the financial performance of ABC?
29
+ - What companies operate in the same space as ABC?
30
+ - What standards are used to evaluate the industry?
31
+ - source_sentence: Research
32
+ sentences:
33
+ - What recent studies have been conducted on ABC?
34
+ - What are the key factors considered in rating ABC?
35
+ - How is the rating framework applied to the sector?
36
+ - source_sentence: Criteria
37
+ sentences:
38
+ - What are the projected economic impacts of inflation on the technology industry?
39
+ - What is the process for assessing the creditworthiness of ABC?
40
+ - What are the primary ESG challenges faced by ABC?
41
+ - source_sentence: Financials
42
+ sentences:
43
+ - Can you list the strengths and weaknesses of ABC?
44
+ - What is understood by the term sovereign risk?
45
+ - Can you provide the financial history of ABC?
46
+ - source_sentence: Research
47
+ sentences:
48
+ - What macroeconomic trends are influencing the credit ratings of the automotive
49
+ industry?
50
+ - Who are the main rivals of ABC?
51
+ - Can you provide the latest research insights on ABC?
52
+ model-index:
53
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts dev
60
+ type: sts-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: .nan
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: .nan
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: .nan
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: .nan
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: .nan
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: .nan
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: .nan
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: .nan
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: .nan
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: .nan
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
103
+ - **Maximum Sequence Length:** 512 tokens
104
+ - **Output Dimensionality:** 384 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
121
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("ManishThota/QueryRouter")
141
+ # Run inference
142
+ sentences = [
143
+ 'Research',
144
+ 'Can you provide the latest research insights on ABC?',
145
+ 'Who are the main rivals of ABC?',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 384]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+ * Dataset: `sts-dev`
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:--------------------|:--------|
191
+ | pearson_cosine | nan |
192
+ | **spearman_cosine** | **nan** |
193
+ | pearson_manhattan | nan |
194
+ | spearman_manhattan | nan |
195
+ | pearson_euclidean | nan |
196
+ | spearman_euclidean | nan |
197
+ | pearson_dot | nan |
198
+ | spearman_dot | nan |
199
+ | pearson_max | nan |
200
+ | spearman_max | nan |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Dataset
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 724 training samples
222
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence1 | sentence2 | score |
225
+ |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
226
+ | type | string | string | float |
227
+ | details | <ul><li>min: 3 tokens</li><li>mean: 3.27 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 14.23 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
228
+ * Samples:
229
+ | sentence1 | sentence2 | score |
230
+ |:--------------------|:-------------------------------------------------|:-----------------|
231
+ | <code>Rating</code> | <code>What rating does XYZ have?</code> | <code>1.0</code> |
232
+ | <code>Rating</code> | <code>Can you provide the rating for XYZ?</code> | <code>1.0</code> |
233
+ | <code>Rating</code> | <code>How is XYZ rated?</code> | <code>1.0</code> |
234
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
235
+ ```json
236
+ {
237
+ "scale": 20.0,
238
+ "similarity_fct": "pairwise_cos_sim"
239
+ }
240
+ ```
241
+
242
+ ### Evaluation Dataset
243
+
244
+ #### Unnamed Dataset
245
+
246
+
247
+ * Size: 60 evaluation samples
248
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
249
+ * Approximate statistics based on the first 1000 samples:
250
+ | | sentence1 | sentence2 | score |
251
+ |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
252
+ | type | string | string | float |
253
+ | details | <ul><li>min: 3 tokens</li><li>mean: 3.25 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 12.48 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
254
+ * Samples:
255
+ | sentence1 | sentence2 | score |
256
+ |:--------------------|:-------------------------------------------------|:-----------------|
257
+ | <code>Rating</code> | <code>What is the current rating of ABC?</code> | <code>1.0</code> |
258
+ | <code>Rating</code> | <code>Can you tell me the rating for ABC?</code> | <code>1.0</code> |
259
+ | <code>Rating</code> | <code>What rating has ABC been assigned?</code> | <code>1.0</code> |
260
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
261
+ ```json
262
+ {
263
+ "scale": 20.0,
264
+ "similarity_fct": "pairwise_cos_sim"
265
+ }
266
+ ```
267
+
268
+ ### Training Hyperparameters
269
+ #### Non-Default Hyperparameters
270
+
271
+ - `eval_strategy`: steps
272
+ - `learning_rate`: 2e-05
273
+ - `num_train_epochs`: 10
274
+ - `warmup_ratio`: 0.1
275
+ - `save_only_model`: True
276
+ - `seed`: 33
277
+ - `fp16`: True
278
+ - `load_best_model_at_end`: True
279
+
280
+ #### All Hyperparameters
281
+ <details><summary>Click to expand</summary>
282
+
283
+ - `overwrite_output_dir`: False
284
+ - `do_predict`: False
285
+ - `eval_strategy`: steps
286
+ - `prediction_loss_only`: True
287
+ - `per_device_train_batch_size`: 8
288
+ - `per_device_eval_batch_size`: 8
289
+ - `per_gpu_train_batch_size`: None
290
+ - `per_gpu_eval_batch_size`: None
291
+ - `gradient_accumulation_steps`: 1
292
+ - `eval_accumulation_steps`: None
293
+ - `learning_rate`: 2e-05
294
+ - `weight_decay`: 0.0
295
+ - `adam_beta1`: 0.9
296
+ - `adam_beta2`: 0.999
297
+ - `adam_epsilon`: 1e-08
298
+ - `max_grad_norm`: 1.0
299
+ - `num_train_epochs`: 10
300
+ - `max_steps`: -1
301
+ - `lr_scheduler_type`: linear
302
+ - `lr_scheduler_kwargs`: {}
303
+ - `warmup_ratio`: 0.1
304
+ - `warmup_steps`: 0
305
+ - `log_level`: passive
306
+ - `log_level_replica`: warning
307
+ - `log_on_each_node`: True
308
+ - `logging_nan_inf_filter`: True
309
+ - `save_safetensors`: True
310
+ - `save_on_each_node`: False
311
+ - `save_only_model`: True
312
+ - `restore_callback_states_from_checkpoint`: False
313
+ - `no_cuda`: False
314
+ - `use_cpu`: False
315
+ - `use_mps_device`: False
316
+ - `seed`: 33
317
+ - `data_seed`: None
318
+ - `jit_mode_eval`: False
319
+ - `use_ipex`: False
320
+ - `bf16`: False
321
+ - `fp16`: True
322
+ - `fp16_opt_level`: O1
323
+ - `half_precision_backend`: auto
324
+ - `bf16_full_eval`: False
325
+ - `fp16_full_eval`: False
326
+ - `tf32`: None
327
+ - `local_rank`: 0
328
+ - `ddp_backend`: None
329
+ - `tpu_num_cores`: None
330
+ - `tpu_metrics_debug`: False
331
+ - `debug`: []
332
+ - `dataloader_drop_last`: False
333
+ - `dataloader_num_workers`: 0
334
+ - `dataloader_prefetch_factor`: None
335
+ - `past_index`: -1
336
+ - `disable_tqdm`: False
337
+ - `remove_unused_columns`: True
338
+ - `label_names`: None
339
+ - `load_best_model_at_end`: True
340
+ - `ignore_data_skip`: False
341
+ - `fsdp`: []
342
+ - `fsdp_min_num_params`: 0
343
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
344
+ - `fsdp_transformer_layer_cls_to_wrap`: None
345
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
346
+ - `deepspeed`: None
347
+ - `label_smoothing_factor`: 0.0
348
+ - `optim`: adamw_torch
349
+ - `optim_args`: None
350
+ - `adafactor`: False
351
+ - `group_by_length`: False
352
+ - `length_column_name`: length
353
+ - `ddp_find_unused_parameters`: None
354
+ - `ddp_bucket_cap_mb`: None
355
+ - `ddp_broadcast_buffers`: False
356
+ - `dataloader_pin_memory`: True
357
+ - `dataloader_persistent_workers`: False
358
+ - `skip_memory_metrics`: True
359
+ - `use_legacy_prediction_loop`: False
360
+ - `push_to_hub`: False
361
+ - `resume_from_checkpoint`: None
362
+ - `hub_model_id`: None
363
+ - `hub_strategy`: every_save
364
+ - `hub_private_repo`: False
365
+ - `hub_always_push`: False
366
+ - `gradient_checkpointing`: False
367
+ - `gradient_checkpointing_kwargs`: None
368
+ - `include_inputs_for_metrics`: False
369
+ - `eval_do_concat_batches`: True
370
+ - `fp16_backend`: auto
371
+ - `push_to_hub_model_id`: None
372
+ - `push_to_hub_organization`: None
373
+ - `mp_parameters`:
374
+ - `auto_find_batch_size`: False
375
+ - `full_determinism`: False
376
+ - `torchdynamo`: None
377
+ - `ray_scope`: last
378
+ - `ddp_timeout`: 1800
379
+ - `torch_compile`: False
380
+ - `torch_compile_backend`: None
381
+ - `torch_compile_mode`: None
382
+ - `dispatch_batches`: None
383
+ - `split_batches`: None
384
+ - `include_tokens_per_second`: False
385
+ - `include_num_input_tokens_seen`: False
386
+ - `neftune_noise_alpha`: None
387
+ - `optim_target_modules`: None
388
+ - `batch_eval_metrics`: False
389
+ - `batch_sampler`: batch_sampler
390
+ - `multi_dataset_batch_sampler`: proportional
391
+
392
+ </details>
393
+
394
+ ### Training Logs
395
+ <details><summary>Click to expand</summary>
396
+
397
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
398
+ |:----------:|:-------:|:-------------:|:-------:|:-----------------------:|
399
+ | 0.0220 | 2 | - | 0.0 | nan |
400
+ | 0.0440 | 4 | - | 0.0 | nan |
401
+ | 0.0659 | 6 | - | 0.0 | nan |
402
+ | 0.0879 | 8 | - | 0.0 | nan |
403
+ | 0.1099 | 10 | - | 0.0 | nan |
404
+ | 0.1319 | 12 | - | 0.0 | nan |
405
+ | 0.1538 | 14 | - | 0.0 | nan |
406
+ | 0.1758 | 16 | - | 0.0 | nan |
407
+ | 0.1978 | 18 | - | 0.0 | nan |
408
+ | 0.2198 | 20 | - | 0.0 | nan |
409
+ | 0.2418 | 22 | - | 0.0 | nan |
410
+ | 0.2637 | 24 | - | 0.0 | nan |
411
+ | 0.2857 | 26 | - | 0.0 | nan |
412
+ | 0.3077 | 28 | - | 0.0 | nan |
413
+ | 0.3297 | 30 | - | 0.0 | nan |
414
+ | 0.3516 | 32 | - | 0.0 | nan |
415
+ | 0.3736 | 34 | - | 0.0 | nan |
416
+ | 0.3956 | 36 | - | 0.0 | nan |
417
+ | 0.4176 | 38 | - | 0.0 | nan |
418
+ | 0.4396 | 40 | - | 0.0 | nan |
419
+ | 0.4615 | 42 | - | 0.0 | nan |
420
+ | 0.4835 | 44 | - | 0.0 | nan |
421
+ | 0.5055 | 46 | - | 0.0 | nan |
422
+ | 0.5275 | 48 | - | 0.0 | nan |
423
+ | 0.5495 | 50 | - | 0.0 | nan |
424
+ | 0.5714 | 52 | - | 0.0 | nan |
425
+ | 0.5934 | 54 | - | 0.0 | nan |
426
+ | 0.6154 | 56 | - | 0.0 | nan |
427
+ | 0.6374 | 58 | - | 0.0 | nan |
428
+ | 0.6593 | 60 | - | 0.0 | nan |
429
+ | 0.6813 | 62 | - | 0.0 | nan |
430
+ | 0.7033 | 64 | - | 0.0 | nan |
431
+ | 0.7253 | 66 | - | 0.0 | nan |
432
+ | 0.7473 | 68 | - | 0.0 | nan |
433
+ | 0.7692 | 70 | - | 0.0 | nan |
434
+ | 0.7912 | 72 | - | 0.0 | nan |
435
+ | 0.8132 | 74 | - | 0.0 | nan |
436
+ | 0.8352 | 76 | - | 0.0 | nan |
437
+ | 0.8571 | 78 | - | 0.0 | nan |
438
+ | 0.8791 | 80 | - | 0.0 | nan |
439
+ | 0.9011 | 82 | - | 0.0 | nan |
440
+ | 0.9231 | 84 | - | 0.0 | nan |
441
+ | 0.9451 | 86 | - | 0.0 | nan |
442
+ | 0.9670 | 88 | - | 0.0 | nan |
443
+ | 0.9890 | 90 | - | 0.0 | nan |
444
+ | 1.0110 | 92 | - | 0.0 | nan |
445
+ | 1.0330 | 94 | - | 0.0 | nan |
446
+ | 1.0549 | 96 | - | 0.0 | nan |
447
+ | 1.0769 | 98 | - | 0.0 | nan |
448
+ | 1.0989 | 100 | - | 0.0 | nan |
449
+ | 1.1209 | 102 | - | 0.0 | nan |
450
+ | 1.1429 | 104 | - | 0.0 | nan |
451
+ | 1.1648 | 106 | - | 0.0 | nan |
452
+ | 1.1868 | 108 | - | 0.0 | nan |
453
+ | 1.2088 | 110 | - | 0.0 | nan |
454
+ | 1.2308 | 112 | - | 0.0 | nan |
455
+ | 1.2527 | 114 | - | 0.0 | nan |
456
+ | 1.2747 | 116 | - | 0.0 | nan |
457
+ | 1.2967 | 118 | - | 0.0 | nan |
458
+ | 1.3187 | 120 | - | 0.0 | nan |
459
+ | 1.3407 | 122 | - | 0.0 | nan |
460
+ | 1.3626 | 124 | - | 0.0 | nan |
461
+ | 1.3846 | 126 | - | 0.0 | nan |
462
+ | 1.4066 | 128 | - | 0.0 | nan |
463
+ | 1.4286 | 130 | - | 0.0 | nan |
464
+ | 1.4505 | 132 | - | 0.0 | nan |
465
+ | 1.4725 | 134 | - | 0.0 | nan |
466
+ | 1.4945 | 136 | - | 0.0 | nan |
467
+ | 1.5165 | 138 | - | 0.0 | nan |
468
+ | 1.5385 | 140 | - | 0.0 | nan |
469
+ | 1.5604 | 142 | - | 0.0 | nan |
470
+ | 1.5824 | 144 | - | 0.0 | nan |
471
+ | 1.6044 | 146 | - | 0.0 | nan |
472
+ | 1.6264 | 148 | - | 0.0 | nan |
473
+ | 1.6484 | 150 | - | 0.0 | nan |
474
+ | 1.6703 | 152 | - | 0.0 | nan |
475
+ | 1.6923 | 154 | - | 0.0 | nan |
476
+ | 1.7143 | 156 | - | 0.0 | nan |
477
+ | 1.7363 | 158 | - | 0.0 | nan |
478
+ | 1.7582 | 160 | - | 0.0 | nan |
479
+ | 1.7802 | 162 | - | 0.0 | nan |
480
+ | 1.8022 | 164 | - | 0.0 | nan |
481
+ | 1.8242 | 166 | - | 0.0 | nan |
482
+ | 1.8462 | 168 | - | 0.0 | nan |
483
+ | 1.8681 | 170 | - | 0.0 | nan |
484
+ | 1.8901 | 172 | - | 0.0 | nan |
485
+ | 1.9121 | 174 | - | 0.0 | nan |
486
+ | 1.9341 | 176 | - | 0.0 | nan |
487
+ | 1.9560 | 178 | - | 0.0 | nan |
488
+ | 1.9780 | 180 | - | 0.0 | nan |
489
+ | 2.0 | 182 | - | 0.0 | nan |
490
+ | 2.0220 | 184 | - | 0.0 | nan |
491
+ | 2.0440 | 186 | - | 0.0 | nan |
492
+ | 2.0659 | 188 | - | 0.0 | nan |
493
+ | 2.0879 | 190 | - | 0.0 | nan |
494
+ | 2.1099 | 192 | - | 0.0 | nan |
495
+ | 2.1319 | 194 | - | 0.0 | nan |
496
+ | 2.1538 | 196 | - | 0.0 | nan |
497
+ | 2.1758 | 198 | - | 0.0 | nan |
498
+ | 2.1978 | 200 | - | 0.0 | nan |
499
+ | 2.2198 | 202 | - | 0.0 | nan |
500
+ | 2.2418 | 204 | - | 0.0 | nan |
501
+ | 2.2637 | 206 | - | 0.0 | nan |
502
+ | 2.2857 | 208 | - | 0.0 | nan |
503
+ | 2.3077 | 210 | - | 0.0 | nan |
504
+ | 2.3297 | 212 | - | 0.0 | nan |
505
+ | 2.3516 | 214 | - | 0.0 | nan |
506
+ | 2.3736 | 216 | - | 0.0 | nan |
507
+ | 2.3956 | 218 | - | 0.0 | nan |
508
+ | 2.4176 | 220 | - | 0.0 | nan |
509
+ | 2.4396 | 222 | - | 0.0 | nan |
510
+ | 2.4615 | 224 | - | 0.0 | nan |
511
+ | 2.4835 | 226 | - | 0.0 | nan |
512
+ | 2.5055 | 228 | - | 0.0 | nan |
513
+ | 2.5275 | 230 | - | 0.0 | nan |
514
+ | 2.5495 | 232 | - | 0.0 | nan |
515
+ | 2.5714 | 234 | - | 0.0 | nan |
516
+ | 2.5934 | 236 | - | 0.0 | nan |
517
+ | 2.6154 | 238 | - | 0.0 | nan |
518
+ | 2.6374 | 240 | - | 0.0 | nan |
519
+ | 2.6593 | 242 | - | 0.0 | nan |
520
+ | 2.6813 | 244 | - | 0.0 | nan |
521
+ | 2.7033 | 246 | - | 0.0 | nan |
522
+ | 2.7253 | 248 | - | 0.0 | nan |
523
+ | 2.7473 | 250 | - | 0.0 | nan |
524
+ | 2.7692 | 252 | - | 0.0 | nan |
525
+ | 2.7912 | 254 | - | 0.0 | nan |
526
+ | 2.8132 | 256 | - | 0.0 | nan |
527
+ | 2.8352 | 258 | - | 0.0 | nan |
528
+ | 2.8571 | 260 | - | 0.0 | nan |
529
+ | 2.8791 | 262 | - | 0.0 | nan |
530
+ | 2.9011 | 264 | - | 0.0 | nan |
531
+ | 2.9231 | 266 | - | 0.0 | nan |
532
+ | 2.9451 | 268 | - | 0.0 | nan |
533
+ | 2.9670 | 270 | - | 0.0 | nan |
534
+ | 2.9890 | 272 | - | 0.0 | nan |
535
+ | 3.0110 | 274 | - | 0.0 | nan |
536
+ | 3.0330 | 276 | - | 0.0 | nan |
537
+ | 3.0549 | 278 | - | 0.0 | nan |
538
+ | 3.0769 | 280 | - | 0.0 | nan |
539
+ | 3.0989 | 282 | - | 0.0 | nan |
540
+ | 3.1209 | 284 | - | 0.0 | nan |
541
+ | 3.1429 | 286 | - | 0.0 | nan |
542
+ | 3.1648 | 288 | - | 0.0 | nan |
543
+ | 3.1868 | 290 | - | 0.0 | nan |
544
+ | 3.2088 | 292 | - | 0.0 | nan |
545
+ | 3.2308 | 294 | - | 0.0 | nan |
546
+ | 3.2527 | 296 | - | 0.0 | nan |
547
+ | 3.2747 | 298 | - | 0.0 | nan |
548
+ | 3.2967 | 300 | - | 0.0 | nan |
549
+ | 3.3187 | 302 | - | 0.0 | nan |
550
+ | 3.3407 | 304 | - | 0.0 | nan |
551
+ | 3.3626 | 306 | - | 0.0 | nan |
552
+ | 3.3846 | 308 | - | 0.0 | nan |
553
+ | 3.4066 | 310 | - | 0.0 | nan |
554
+ | 3.4286 | 312 | - | 0.0 | nan |
555
+ | 3.4505 | 314 | - | 0.0 | nan |
556
+ | 3.4725 | 316 | - | 0.0 | nan |
557
+ | 3.4945 | 318 | - | 0.0 | nan |
558
+ | 3.5165 | 320 | - | 0.0 | nan |
559
+ | 3.5385 | 322 | - | 0.0 | nan |
560
+ | 3.5604 | 324 | - | 0.0 | nan |
561
+ | 3.5824 | 326 | - | 0.0 | nan |
562
+ | 3.6044 | 328 | - | 0.0 | nan |
563
+ | 3.6264 | 330 | - | 0.0 | nan |
564
+ | 3.6484 | 332 | - | 0.0 | nan |
565
+ | 3.6703 | 334 | - | 0.0 | nan |
566
+ | 3.6923 | 336 | - | 0.0 | nan |
567
+ | 3.7143 | 338 | - | 0.0 | nan |
568
+ | 3.7363 | 340 | - | 0.0 | nan |
569
+ | 3.7582 | 342 | - | 0.0 | nan |
570
+ | 3.7802 | 344 | - | 0.0 | nan |
571
+ | 3.8022 | 346 | - | 0.0 | nan |
572
+ | 3.8242 | 348 | - | 0.0 | nan |
573
+ | 3.8462 | 350 | - | 0.0 | nan |
574
+ | 3.8681 | 352 | - | 0.0 | nan |
575
+ | 3.8901 | 354 | - | 0.0 | nan |
576
+ | 3.9121 | 356 | - | 0.0 | nan |
577
+ | 3.9341 | 358 | - | 0.0 | nan |
578
+ | 3.9560 | 360 | - | 0.0 | nan |
579
+ | 3.9780 | 362 | - | 0.0 | nan |
580
+ | 4.0 | 364 | - | 0.0 | nan |
581
+ | 4.0220 | 366 | - | 0.0 | nan |
582
+ | 4.0440 | 368 | - | 0.0 | nan |
583
+ | 4.0659 | 370 | - | 0.0 | nan |
584
+ | 4.0879 | 372 | - | 0.0 | nan |
585
+ | 4.1099 | 374 | - | 0.0 | nan |
586
+ | 4.1319 | 376 | - | 0.0 | nan |
587
+ | 4.1538 | 378 | - | 0.0 | nan |
588
+ | 4.1758 | 380 | - | 0.0 | nan |
589
+ | 4.1978 | 382 | - | 0.0 | nan |
590
+ | 4.2198 | 384 | - | 0.0 | nan |
591
+ | 4.2418 | 386 | - | 0.0 | nan |
592
+ | 4.2637 | 388 | - | 0.0 | nan |
593
+ | 4.2857 | 390 | - | 0.0 | nan |
594
+ | 4.3077 | 392 | - | 0.0 | nan |
595
+ | 4.3297 | 394 | - | 0.0 | nan |
596
+ | 4.3516 | 396 | - | 0.0 | nan |
597
+ | 4.3736 | 398 | - | 0.0 | nan |
598
+ | 4.3956 | 400 | - | 0.0 | nan |
599
+ | 4.4176 | 402 | - | 0.0 | nan |
600
+ | 4.4396 | 404 | - | 0.0 | nan |
601
+ | 4.4615 | 406 | - | 0.0 | nan |
602
+ | 4.4835 | 408 | - | 0.0 | nan |
603
+ | 4.5055 | 410 | - | 0.0 | nan |
604
+ | 4.5275 | 412 | - | 0.0 | nan |
605
+ | 4.5495 | 414 | - | 0.0 | nan |
606
+ | 4.5714 | 416 | - | 0.0 | nan |
607
+ | 4.5934 | 418 | - | 0.0 | nan |
608
+ | 4.6154 | 420 | - | 0.0 | nan |
609
+ | 4.6374 | 422 | - | 0.0 | nan |
610
+ | 4.6593 | 424 | - | 0.0 | nan |
611
+ | 4.6813 | 426 | - | 0.0 | nan |
612
+ | 4.7033 | 428 | - | 0.0 | nan |
613
+ | 4.7253 | 430 | - | 0.0 | nan |
614
+ | 4.7473 | 432 | - | 0.0 | nan |
615
+ | 4.7692 | 434 | - | 0.0 | nan |
616
+ | 4.7912 | 436 | - | 0.0 | nan |
617
+ | 4.8132 | 438 | - | 0.0 | nan |
618
+ | 4.8352 | 440 | - | 0.0 | nan |
619
+ | 4.8571 | 442 | - | 0.0 | nan |
620
+ | 4.8791 | 444 | - | 0.0 | nan |
621
+ | 4.9011 | 446 | - | 0.0 | nan |
622
+ | 4.9231 | 448 | - | 0.0 | nan |
623
+ | 4.9451 | 450 | - | 0.0 | nan |
624
+ | 4.9670 | 452 | - | 0.0 | nan |
625
+ | 4.9890 | 454 | - | 0.0 | nan |
626
+ | 5.0110 | 456 | - | 0.0 | nan |
627
+ | 5.0330 | 458 | - | 0.0 | nan |
628
+ | 5.0549 | 460 | - | 0.0 | nan |
629
+ | 5.0769 | 462 | - | 0.0 | nan |
630
+ | 5.0989 | 464 | - | 0.0 | nan |
631
+ | 5.1209 | 466 | - | 0.0 | nan |
632
+ | 5.1429 | 468 | - | 0.0 | nan |
633
+ | 5.1648 | 470 | - | 0.0 | nan |
634
+ | 5.1868 | 472 | - | 0.0 | nan |
635
+ | 5.2088 | 474 | - | 0.0 | nan |
636
+ | 5.2308 | 476 | - | 0.0 | nan |
637
+ | 5.2527 | 478 | - | 0.0 | nan |
638
+ | 5.2747 | 480 | - | 0.0 | nan |
639
+ | 5.2967 | 482 | - | 0.0 | nan |
640
+ | 5.3187 | 484 | - | 0.0 | nan |
641
+ | 5.3407 | 486 | - | 0.0 | nan |
642
+ | 5.3626 | 488 | - | 0.0 | nan |
643
+ | 5.3846 | 490 | - | 0.0 | nan |
644
+ | 5.4066 | 492 | - | 0.0 | nan |
645
+ | 5.4286 | 494 | - | 0.0 | nan |
646
+ | 5.4505 | 496 | - | 0.0 | nan |
647
+ | 5.4725 | 498 | - | 0.0 | nan |
648
+ | **5.4945** | **500** | **0.0** | **0.0** | **nan** |
649
+ | 5.5165 | 502 | - | 0.0 | nan |
650
+ | 5.5385 | 504 | - | 0.0 | nan |
651
+ | 5.5604 | 506 | - | 0.0 | nan |
652
+ | 5.5824 | 508 | - | 0.0 | nan |
653
+ | 5.6044 | 510 | - | 0.0 | nan |
654
+ | 5.6264 | 512 | - | 0.0 | nan |
655
+ | 5.6484 | 514 | - | 0.0 | nan |
656
+ | 5.6703 | 516 | - | 0.0 | nan |
657
+ | 5.6923 | 518 | - | 0.0 | nan |
658
+ | 5.7143 | 520 | - | 0.0 | nan |
659
+ | 5.7363 | 522 | - | 0.0 | nan |
660
+ | 5.7582 | 524 | - | 0.0 | nan |
661
+ | 5.7802 | 526 | - | 0.0 | nan |
662
+ | 5.8022 | 528 | - | 0.0 | nan |
663
+ | 5.8242 | 530 | - | 0.0 | nan |
664
+ | 5.8462 | 532 | - | 0.0 | nan |
665
+ | 5.8681 | 534 | - | 0.0 | nan |
666
+ | 5.8901 | 536 | - | 0.0 | nan |
667
+ | 5.9121 | 538 | - | 0.0 | nan |
668
+ | 5.9341 | 540 | - | 0.0 | nan |
669
+ | 5.9560 | 542 | - | 0.0 | nan |
670
+ | 5.9780 | 544 | - | 0.0 | nan |
671
+ | 6.0 | 546 | - | 0.0 | nan |
672
+ | 6.0220 | 548 | - | 0.0 | nan |
673
+ | 6.0440 | 550 | - | 0.0 | nan |
674
+ | 6.0659 | 552 | - | 0.0 | nan |
675
+ | 6.0879 | 554 | - | 0.0 | nan |
676
+ | 6.1099 | 556 | - | 0.0 | nan |
677
+ | 6.1319 | 558 | - | 0.0 | nan |
678
+ | 6.1538 | 560 | - | 0.0 | nan |
679
+ | 6.1758 | 562 | - | 0.0 | nan |
680
+ | 6.1978 | 564 | - | 0.0 | nan |
681
+ | 6.2198 | 566 | - | 0.0 | nan |
682
+ | 6.2418 | 568 | - | 0.0 | nan |
683
+ | 6.2637 | 570 | - | 0.0 | nan |
684
+ | 6.2857 | 572 | - | 0.0 | nan |
685
+ | 6.3077 | 574 | - | 0.0 | nan |
686
+ | 6.3297 | 576 | - | 0.0 | nan |
687
+ | 6.3516 | 578 | - | 0.0 | nan |
688
+ | 6.3736 | 580 | - | 0.0 | nan |
689
+ | 6.3956 | 582 | - | 0.0 | nan |
690
+ | 6.4176 | 584 | - | 0.0 | nan |
691
+ | 6.4396 | 586 | - | 0.0 | nan |
692
+ | 6.4615 | 588 | - | 0.0 | nan |
693
+ | 6.4835 | 590 | - | 0.0 | nan |
694
+ | 6.5055 | 592 | - | 0.0 | nan |
695
+ | 6.5275 | 594 | - | 0.0 | nan |
696
+ | 6.5495 | 596 | - | 0.0 | nan |
697
+ | 6.5714 | 598 | - | 0.0 | nan |
698
+ | 6.5934 | 600 | - | 0.0 | nan |
699
+ | 6.6154 | 602 | - | 0.0 | nan |
700
+ | 6.6374 | 604 | - | 0.0 | nan |
701
+ | 6.6593 | 606 | - | 0.0 | nan |
702
+ | 6.6813 | 608 | - | 0.0 | nan |
703
+ | 6.7033 | 610 | - | 0.0 | nan |
704
+ | 6.7253 | 612 | - | 0.0 | nan |
705
+ | 6.7473 | 614 | - | 0.0 | nan |
706
+ | 6.7692 | 616 | - | 0.0 | nan |
707
+ | 6.7912 | 618 | - | 0.0 | nan |
708
+ | 6.8132 | 620 | - | 0.0 | nan |
709
+ | 6.8352 | 622 | - | 0.0 | nan |
710
+ | 6.8571 | 624 | - | 0.0 | nan |
711
+ | 6.8791 | 626 | - | 0.0 | nan |
712
+ | 6.9011 | 628 | - | 0.0 | nan |
713
+ | 6.9231 | 630 | - | 0.0 | nan |
714
+ | 6.9451 | 632 | - | 0.0 | nan |
715
+ | 6.9670 | 634 | - | 0.0 | nan |
716
+ | 6.9890 | 636 | - | 0.0 | nan |
717
+ | 7.0110 | 638 | - | 0.0 | nan |
718
+ | 7.0330 | 640 | - | 0.0 | nan |
719
+ | 7.0549 | 642 | - | 0.0 | nan |
720
+ | 7.0769 | 644 | - | 0.0 | nan |
721
+ | 7.0989 | 646 | - | 0.0 | nan |
722
+ | 7.1209 | 648 | - | 0.0 | nan |
723
+ | 7.1429 | 650 | - | 0.0 | nan |
724
+ | 7.1648 | 652 | - | 0.0 | nan |
725
+ | 7.1868 | 654 | - | 0.0 | nan |
726
+ | 7.2088 | 656 | - | 0.0 | nan |
727
+ | 7.2308 | 658 | - | 0.0 | nan |
728
+ | 7.2527 | 660 | - | 0.0 | nan |
729
+ | 7.2747 | 662 | - | 0.0 | nan |
730
+ | 7.2967 | 664 | - | 0.0 | nan |
731
+ | 7.3187 | 666 | - | 0.0 | nan |
732
+ | 7.3407 | 668 | - | 0.0 | nan |
733
+ | 7.3626 | 670 | - | 0.0 | nan |
734
+ | 7.3846 | 672 | - | 0.0 | nan |
735
+ | 7.4066 | 674 | - | 0.0 | nan |
736
+ | 7.4286 | 676 | - | 0.0 | nan |
737
+ | 7.4505 | 678 | - | 0.0 | nan |
738
+ | 7.4725 | 680 | - | 0.0 | nan |
739
+ | 7.4945 | 682 | - | 0.0 | nan |
740
+ | 7.5165 | 684 | - | 0.0 | nan |
741
+ | 7.5385 | 686 | - | 0.0 | nan |
742
+ | 7.5604 | 688 | - | 0.0 | nan |
743
+ | 7.5824 | 690 | - | 0.0 | nan |
744
+ | 7.6044 | 692 | - | 0.0 | nan |
745
+ | 7.6264 | 694 | - | 0.0 | nan |
746
+ | 7.6484 | 696 | - | 0.0 | nan |
747
+ | 7.6703 | 698 | - | 0.0 | nan |
748
+ | 7.6923 | 700 | - | 0.0 | nan |
749
+ | 7.7143 | 702 | - | 0.0 | nan |
750
+ | 7.7363 | 704 | - | 0.0 | nan |
751
+ | 7.7582 | 706 | - | 0.0 | nan |
752
+ | 7.7802 | 708 | - | 0.0 | nan |
753
+ | 7.8022 | 710 | - | 0.0 | nan |
754
+ | 7.8242 | 712 | - | 0.0 | nan |
755
+ | 7.8462 | 714 | - | 0.0 | nan |
756
+ | 7.8681 | 716 | - | 0.0 | nan |
757
+ | 7.8901 | 718 | - | 0.0 | nan |
758
+ | 7.9121 | 720 | - | 0.0 | nan |
759
+ | 7.9341 | 722 | - | 0.0 | nan |
760
+ | 7.9560 | 724 | - | 0.0 | nan |
761
+ | 7.9780 | 726 | - | 0.0 | nan |
762
+ | 8.0 | 728 | - | 0.0 | nan |
763
+ | 8.0220 | 730 | - | 0.0 | nan |
764
+ | 8.0440 | 732 | - | 0.0 | nan |
765
+ | 8.0659 | 734 | - | 0.0 | nan |
766
+ | 8.0879 | 736 | - | 0.0 | nan |
767
+ | 8.1099 | 738 | - | 0.0 | nan |
768
+ | 8.1319 | 740 | - | 0.0 | nan |
769
+ | 8.1538 | 742 | - | 0.0 | nan |
770
+ | 8.1758 | 744 | - | 0.0 | nan |
771
+ | 8.1978 | 746 | - | 0.0 | nan |
772
+ | 8.2198 | 748 | - | 0.0 | nan |
773
+ | 8.2418 | 750 | - | 0.0 | nan |
774
+ | 8.2637 | 752 | - | 0.0 | nan |
775
+ | 8.2857 | 754 | - | 0.0 | nan |
776
+ | 8.3077 | 756 | - | 0.0 | nan |
777
+ | 8.3297 | 758 | - | 0.0 | nan |
778
+ | 8.3516 | 760 | - | 0.0 | nan |
779
+ | 8.3736 | 762 | - | 0.0 | nan |
780
+ | 8.3956 | 764 | - | 0.0 | nan |
781
+ | 8.4176 | 766 | - | 0.0 | nan |
782
+ | 8.4396 | 768 | - | 0.0 | nan |
783
+ | 8.4615 | 770 | - | 0.0 | nan |
784
+ | 8.4835 | 772 | - | 0.0 | nan |
785
+ | 8.5055 | 774 | - | 0.0 | nan |
786
+ | 8.5275 | 776 | - | 0.0 | nan |
787
+ | 8.5495 | 778 | - | 0.0 | nan |
788
+ | 8.5714 | 780 | - | 0.0 | nan |
789
+ | 8.5934 | 782 | - | 0.0 | nan |
790
+ | 8.6154 | 784 | - | 0.0 | nan |
791
+ | 8.6374 | 786 | - | 0.0 | nan |
792
+ | 8.6593 | 788 | - | 0.0 | nan |
793
+ | 8.6813 | 790 | - | 0.0 | nan |
794
+ | 8.7033 | 792 | - | 0.0 | nan |
795
+ | 8.7253 | 794 | - | 0.0 | nan |
796
+ | 8.7473 | 796 | - | 0.0 | nan |
797
+ | 8.7692 | 798 | - | 0.0 | nan |
798
+ | 8.7912 | 800 | - | 0.0 | nan |
799
+ | 8.8132 | 802 | - | 0.0 | nan |
800
+ | 8.8352 | 804 | - | 0.0 | nan |
801
+ | 8.8571 | 806 | - | 0.0 | nan |
802
+ | 8.8791 | 808 | - | 0.0 | nan |
803
+ | 8.9011 | 810 | - | 0.0 | nan |
804
+ | 8.9231 | 812 | - | 0.0 | nan |
805
+ | 8.9451 | 814 | - | 0.0 | nan |
806
+ | 8.9670 | 816 | - | 0.0 | nan |
807
+ | 8.9890 | 818 | - | 0.0 | nan |
808
+ | 9.0110 | 820 | - | 0.0 | nan |
809
+ | 9.0330 | 822 | - | 0.0 | nan |
810
+ | 9.0549 | 824 | - | 0.0 | nan |
811
+ | 9.0769 | 826 | - | 0.0 | nan |
812
+ | 9.0989 | 828 | - | 0.0 | nan |
813
+ | 9.1209 | 830 | - | 0.0 | nan |
814
+ | 9.1429 | 832 | - | 0.0 | nan |
815
+ | 9.1648 | 834 | - | 0.0 | nan |
816
+ | 9.1868 | 836 | - | 0.0 | nan |
817
+ | 9.2088 | 838 | - | 0.0 | nan |
818
+ | 9.2308 | 840 | - | 0.0 | nan |
819
+ | 9.2527 | 842 | - | 0.0 | nan |
820
+ | 9.2747 | 844 | - | 0.0 | nan |
821
+ | 9.2967 | 846 | - | 0.0 | nan |
822
+ | 9.3187 | 848 | - | 0.0 | nan |
823
+ | 9.3407 | 850 | - | 0.0 | nan |
824
+ | 9.3626 | 852 | - | 0.0 | nan |
825
+ | 9.3846 | 854 | - | 0.0 | nan |
826
+ | 9.4066 | 856 | - | 0.0 | nan |
827
+ | 9.4286 | 858 | - | 0.0 | nan |
828
+ | 9.4505 | 860 | - | 0.0 | nan |
829
+ | 9.4725 | 862 | - | 0.0 | nan |
830
+ | 9.4945 | 864 | - | 0.0 | nan |
831
+ | 9.5165 | 866 | - | 0.0 | nan |
832
+ | 9.5385 | 868 | - | 0.0 | nan |
833
+ | 9.5604 | 870 | - | 0.0 | nan |
834
+ | 9.5824 | 872 | - | 0.0 | nan |
835
+ | 9.6044 | 874 | - | 0.0 | nan |
836
+ | 9.6264 | 876 | - | 0.0 | nan |
837
+ | 9.6484 | 878 | - | 0.0 | nan |
838
+ | 9.6703 | 880 | - | 0.0 | nan |
839
+ | 9.6923 | 882 | - | 0.0 | nan |
840
+ | 9.7143 | 884 | - | 0.0 | nan |
841
+ | 9.7363 | 886 | - | 0.0 | nan |
842
+ | 9.7582 | 888 | - | 0.0 | nan |
843
+ | 9.7802 | 890 | - | 0.0 | nan |
844
+ | 9.8022 | 892 | - | 0.0 | nan |
845
+ | 9.8242 | 894 | - | 0.0 | nan |
846
+ | 9.8462 | 896 | - | 0.0 | nan |
847
+ | 9.8681 | 898 | - | 0.0 | nan |
848
+ | 9.8901 | 900 | - | 0.0 | nan |
849
+ | 9.9121 | 902 | - | 0.0 | nan |
850
+ | 9.9341 | 904 | - | 0.0 | nan |
851
+ | 9.9560 | 906 | - | 0.0 | nan |
852
+ | 9.9780 | 908 | - | 0.0 | nan |
853
+ | 10.0 | 910 | - | 0.0 | nan |
854
+
855
+ * The bold row denotes the saved checkpoint.
856
+ </details>
857
+
858
+ ### Framework Versions
859
+ - Python: 3.10.12
860
+ - Sentence Transformers: 3.0.1
861
+ - Transformers: 4.41.2
862
+ - PyTorch: 2.0.1+cu118
863
+ - Accelerate: 0.31.0
864
+ - Datasets: 2.20.0
865
+ - Tokenizers: 0.19.1
866
+
867
+ ## Citation
868
+
869
+ ### BibTeX
870
+
871
+ #### Sentence Transformers
872
+ ```bibtex
873
+ @inproceedings{reimers-2019-sentence-bert,
874
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
875
+ author = "Reimers, Nils and Gurevych, Iryna",
876
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
877
+ month = "11",
878
+ year = "2019",
879
+ publisher = "Association for Computational Linguistics",
880
+ url = "https://arxiv.org/abs/1908.10084",
881
+ }
882
+ ```
883
+
884
+ #### CoSENTLoss
885
+ ```bibtex
886
+ @online{kexuefm-8847,
887
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
888
+ author={Su Jianlin},
889
+ year={2022},
890
+ month={Jan},
891
+ url={https://kexue.fm/archives/8847},
892
+ }
893
+ ```
894
+
895
+ <!--
896
+ ## Glossary
897
+
898
+ *Clearly define terms in order to be accessible across audiences.*
899
+ -->
900
+
901
+ <!--
902
+ ## Model Card Authors
903
+
904
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
905
+ -->
906
+
907
+ <!--
908
+ ## Model Card Contact
909
+
910
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
911
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.0.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff