--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9390322580645162 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0990 - Accuracy: 0.9390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0901 | 1.0 | 318 | 0.6293 | 0.7026 | | 0.4796 | 2.0 | 636 | 0.2666 | 0.8661 | | 0.2386 | 3.0 | 954 | 0.1553 | 0.9148 | | 0.1591 | 4.0 | 1272 | 0.1238 | 0.9271 | | 0.1309 | 5.0 | 1590 | 0.1121 | 0.9339 | | 0.118 | 6.0 | 1908 | 0.1065 | 0.9371 | | 0.11 | 7.0 | 2226 | 0.1033 | 0.9394 | | 0.1057 | 8.0 | 2544 | 0.1002 | 0.9377 | | 0.1032 | 9.0 | 2862 | 0.0995 | 0.9384 | | 0.1014 | 10.0 | 3180 | 0.0990 | 0.9390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3