File size: 14,476 Bytes
ebf1956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171abfe
 
 
 
 
ebf1956
171abfe
 
 
 
 
ebf1956
171abfe
 
ebf1956
171abfe
ebf1956
 
 
 
171abfe
ebf1956
 
171abfe
ebf1956
171abfe
 
ebf1956
 
 
171abfe
ebf1956
 
171abfe
 
 
ebf1956
 
171abfe
ebf1956
 
171abfe
 
 
 
 
ebf1956
171abfe
 
ebf1956
171abfe
ebf1956
 
 
 
171abfe
ebf1956
 
171abfe
ebf1956
171abfe
 
ebf1956
 
 
171abfe
ebf1956
 
171abfe
 
 
ebf1956
 
171abfe
ebf1956
171abfe
ebf1956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171abfe
ebf1956
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: MariaK/mit-b0-finetuned-sidewalks
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# MariaK/mit-b0-finetuned-sidewalks

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8550
- Validation Loss: 0.8639
- Validation Mean Iou: 0.2220
- Validation Mean Accuracy: 0.2670
- Validation Overall Accuracy: 0.7725
- Validation Accuracy Unlabeled: 0.0
- Validation Accuracy Flat-road: 0.6015
- Validation Accuracy Flat-sidewalk: 0.9708
- Validation Accuracy Flat-crosswalk: 0.3807
- Validation Accuracy Flat-cyclinglane: 0.7538
- Validation Accuracy Flat-parkingdriveway: 0.1524
- Validation Accuracy Flat-railtrack: nan
- Validation Accuracy Flat-curb: 0.1957
- Validation Accuracy Human-person: 0.2585
- Validation Accuracy Human-rider: 0.0
- Validation Accuracy Vehicle-car: 0.8971
- Validation Accuracy Vehicle-truck: 0.0
- Validation Accuracy Vehicle-bus: 0.0
- Validation Accuracy Vehicle-tramtrain: nan
- Validation Accuracy Vehicle-motorcycle: 0.0
- Validation Accuracy Vehicle-bicycle: 0.0716
- Validation Accuracy Vehicle-caravan: 0.0
- Validation Accuracy Vehicle-cartrailer: 0.0
- Validation Accuracy Construction-building: 0.8784
- Validation Accuracy Construction-door: 0.0
- Validation Accuracy Construction-wall: 0.4315
- Validation Accuracy Construction-fenceguardrail: 0.1948
- Validation Accuracy Construction-bridge: 0.0
- Validation Accuracy Construction-tunnel: nan
- Validation Accuracy Construction-stairs: 0.0
- Validation Accuracy Object-pole: 0.1201
- Validation Accuracy Object-trafficsign: 0.0
- Validation Accuracy Object-trafficlight: 0.0
- Validation Accuracy Nature-vegetation: 0.8952
- Validation Accuracy Nature-terrain: 0.8231
- Validation Accuracy Sky: 0.8496
- Validation Accuracy Void-ground: 0.0
- Validation Accuracy Void-dynamic: 0.0
- Validation Accuracy Void-static: 0.0692
- Validation Accuracy Void-unclear: 0.0
- Validation Iou Unlabeled: 0.0
- Validation Iou Flat-road: 0.5568
- Validation Iou Flat-sidewalk: 0.7479
- Validation Iou Flat-crosswalk: 0.3509
- Validation Iou Flat-cyclinglane: 0.6355
- Validation Iou Flat-parkingdriveway: 0.1298
- Validation Iou Flat-railtrack: nan
- Validation Iou Flat-curb: 0.1326
- Validation Iou Human-person: 0.2455
- Validation Iou Human-rider: 0.0
- Validation Iou Vehicle-car: 0.6973
- Validation Iou Vehicle-truck: 0.0
- Validation Iou Vehicle-bus: 0.0
- Validation Iou Vehicle-tramtrain: nan
- Validation Iou Vehicle-motorcycle: 0.0
- Validation Iou Vehicle-bicycle: 0.0610
- Validation Iou Vehicle-caravan: 0.0
- Validation Iou Vehicle-cartrailer: 0.0
- Validation Iou Construction-building: 0.6479
- Validation Iou Construction-door: 0.0
- Validation Iou Construction-wall: 0.3003
- Validation Iou Construction-fenceguardrail: 0.1727
- Validation Iou Construction-bridge: 0.0
- Validation Iou Construction-tunnel: nan
- Validation Iou Construction-stairs: 0.0
- Validation Iou Object-pole: 0.0927
- Validation Iou Object-trafficsign: 0.0
- Validation Iou Object-trafficlight: 0.0
- Validation Iou Nature-vegetation: 0.7758
- Validation Iou Nature-terrain: 0.7000
- Validation Iou Sky: 0.8002
- Validation Iou Void-ground: 0.0
- Validation Iou Void-dynamic: 0.0
- Validation Iou Void-static: 0.0573
- Validation Iou Void-unclear: 0.0
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Flat-road | Validation Accuracy Flat-sidewalk | Validation Accuracy Flat-crosswalk | Validation Accuracy Flat-cyclinglane | Validation Accuracy Flat-parkingdriveway | Validation Accuracy Flat-railtrack | Validation Accuracy Flat-curb | Validation Accuracy Human-person | Validation Accuracy Human-rider | Validation Accuracy Vehicle-car | Validation Accuracy Vehicle-truck | Validation Accuracy Vehicle-bus | Validation Accuracy Vehicle-tramtrain | Validation Accuracy Vehicle-motorcycle | Validation Accuracy Vehicle-bicycle | Validation Accuracy Vehicle-caravan | Validation Accuracy Vehicle-cartrailer | Validation Accuracy Construction-building | Validation Accuracy Construction-door | Validation Accuracy Construction-wall | Validation Accuracy Construction-fenceguardrail | Validation Accuracy Construction-bridge | Validation Accuracy Construction-tunnel | Validation Accuracy Construction-stairs | Validation Accuracy Object-pole | Validation Accuracy Object-trafficsign | Validation Accuracy Object-trafficlight | Validation Accuracy Nature-vegetation | Validation Accuracy Nature-terrain | Validation Accuracy Sky | Validation Accuracy Void-ground | Validation Accuracy Void-dynamic | Validation Accuracy Void-static | Validation Accuracy Void-unclear | Validation Iou Unlabeled | Validation Iou Flat-road | Validation Iou Flat-sidewalk | Validation Iou Flat-crosswalk | Validation Iou Flat-cyclinglane | Validation Iou Flat-parkingdriveway | Validation Iou Flat-railtrack | Validation Iou Flat-curb | Validation Iou Human-person | Validation Iou Human-rider | Validation Iou Vehicle-car | Validation Iou Vehicle-truck | Validation Iou Vehicle-bus | Validation Iou Vehicle-tramtrain | Validation Iou Vehicle-motorcycle | Validation Iou Vehicle-bicycle | Validation Iou Vehicle-caravan | Validation Iou Vehicle-cartrailer | Validation Iou Construction-building | Validation Iou Construction-door | Validation Iou Construction-wall | Validation Iou Construction-fenceguardrail | Validation Iou Construction-bridge | Validation Iou Construction-tunnel | Validation Iou Construction-stairs | Validation Iou Object-pole | Validation Iou Object-trafficsign | Validation Iou Object-trafficlight | Validation Iou Nature-vegetation | Validation Iou Nature-terrain | Validation Iou Sky | Validation Iou Void-ground | Validation Iou Void-dynamic | Validation Iou Void-static | Validation Iou Void-unclear | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:---------------------------------:|:----------------------------------:|:------------------------------------:|:----------------------------------------:|:----------------------------------:|:-----------------------------:|:--------------------------------:|:-------------------------------:|:-------------------------------:|:---------------------------------:|:-------------------------------:|:-------------------------------------:|:--------------------------------------:|:-----------------------------------:|:-----------------------------------:|:--------------------------------------:|:-----------------------------------------:|:-------------------------------------:|:-------------------------------------:|:-----------------------------------------------:|:---------------------------------------:|:---------------------------------------:|:---------------------------------------:|:-------------------------------:|:--------------------------------------:|:---------------------------------------:|:-------------------------------------:|:----------------------------------:|:-----------------------:|:-------------------------------:|:--------------------------------:|:-------------------------------:|:--------------------------------:|:------------------------:|:------------------------:|:----------------------------:|:-----------------------------:|:-------------------------------:|:-----------------------------------:|:-----------------------------:|:------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:--------------------------------:|:---------------------------------:|:------------------------------:|:------------------------------:|:---------------------------------:|:------------------------------------:|:--------------------------------:|:--------------------------------:|:------------------------------------------:|:----------------------------------:|:----------------------------------:|:----------------------------------:|:--------------------------:|:---------------------------------:|:----------------------------------:|:--------------------------------:|:-----------------------------:|:------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----:|
| 1.4362     | 0.9804          | 0.1752              | 0.2219                   | 0.7360                      | 0.0                           | 0.7417                        | 0.9512                            | 0.0213                             | 0.3662                               | 0.1475                                   | nan                                | 0.1397                        | 0.0055                           | 0.0                             | 0.8653                          | 0.0                               | 0.0                             | nan                                   | 0.0                                    | 0.0002                              | 0.0                                 | 0.0                                    | 0.7778                                    | 0.0                                   | 0.3370                                | 0.0429                                          | 0.0                                     | nan                                     | 0.0                                     | 0.0177                          | 0.0                                    | 0.0                                     | 0.9324                                | 0.7967                             | 0.9157                  | 0.0                             | 0.0                              | 0.0409                          | 0.0                              | 0.0                      | 0.5263                   | 0.7377                       | 0.0213                        | 0.3517                          | 0.1232                              | nan                           | 0.1053                   | 0.0055                      | 0.0                        | 0.6423                     | 0.0                          | 0.0                        | nan                              | 0.0                               | 0.0002                         | 0.0                            | 0.0                               | 0.6012                               | 0.0                              | 0.2315                           | 0.0424                                     | 0.0                                | nan                                | 0.0                                | 0.0163                     | 0.0                               | 0.0                                | 0.7258                           | 0.6752                        | 0.7692             | 0.0                        | 0.0                         | 0.0321                     | 0.0                         | 0     |
| 0.8550     | 0.8639          | 0.2220              | 0.2670                   | 0.7725                      | 0.0                           | 0.6015                        | 0.9708                            | 0.3807                             | 0.7538                               | 0.1524                                   | nan                                | 0.1957                        | 0.2585                           | 0.0                             | 0.8971                          | 0.0                               | 0.0                             | nan                                   | 0.0                                    | 0.0716                              | 0.0                                 | 0.0                                    | 0.8784                                    | 0.0                                   | 0.4315                                | 0.1948                                          | 0.0                                     | nan                                     | 0.0                                     | 0.1201                          | 0.0                                    | 0.0                                     | 0.8952                                | 0.8231                             | 0.8496                  | 0.0                             | 0.0                              | 0.0692                          | 0.0                              | 0.0                      | 0.5568                   | 0.7479                       | 0.3509                        | 0.6355                          | 0.1298                              | nan                           | 0.1326                   | 0.2455                      | 0.0                        | 0.6973                     | 0.0                          | 0.0                        | nan                              | 0.0                               | 0.0610                         | 0.0                            | 0.0                               | 0.6479                               | 0.0                              | 0.3003                           | 0.1727                                     | 0.0                                | nan                                | 0.0                                | 0.0927                     | 0.0                               | 0.0                                | 0.7758                           | 0.7000                        | 0.8002             | 0.0                        | 0.0                         | 0.0573                     | 0.0                         | 1     |


### Framework versions

- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2