File size: 14,476 Bytes
ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 171abfe ebf1956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: MariaK/mit-b0-finetuned-sidewalks
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MariaK/mit-b0-finetuned-sidewalks
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8550
- Validation Loss: 0.8639
- Validation Mean Iou: 0.2220
- Validation Mean Accuracy: 0.2670
- Validation Overall Accuracy: 0.7725
- Validation Accuracy Unlabeled: 0.0
- Validation Accuracy Flat-road: 0.6015
- Validation Accuracy Flat-sidewalk: 0.9708
- Validation Accuracy Flat-crosswalk: 0.3807
- Validation Accuracy Flat-cyclinglane: 0.7538
- Validation Accuracy Flat-parkingdriveway: 0.1524
- Validation Accuracy Flat-railtrack: nan
- Validation Accuracy Flat-curb: 0.1957
- Validation Accuracy Human-person: 0.2585
- Validation Accuracy Human-rider: 0.0
- Validation Accuracy Vehicle-car: 0.8971
- Validation Accuracy Vehicle-truck: 0.0
- Validation Accuracy Vehicle-bus: 0.0
- Validation Accuracy Vehicle-tramtrain: nan
- Validation Accuracy Vehicle-motorcycle: 0.0
- Validation Accuracy Vehicle-bicycle: 0.0716
- Validation Accuracy Vehicle-caravan: 0.0
- Validation Accuracy Vehicle-cartrailer: 0.0
- Validation Accuracy Construction-building: 0.8784
- Validation Accuracy Construction-door: 0.0
- Validation Accuracy Construction-wall: 0.4315
- Validation Accuracy Construction-fenceguardrail: 0.1948
- Validation Accuracy Construction-bridge: 0.0
- Validation Accuracy Construction-tunnel: nan
- Validation Accuracy Construction-stairs: 0.0
- Validation Accuracy Object-pole: 0.1201
- Validation Accuracy Object-trafficsign: 0.0
- Validation Accuracy Object-trafficlight: 0.0
- Validation Accuracy Nature-vegetation: 0.8952
- Validation Accuracy Nature-terrain: 0.8231
- Validation Accuracy Sky: 0.8496
- Validation Accuracy Void-ground: 0.0
- Validation Accuracy Void-dynamic: 0.0
- Validation Accuracy Void-static: 0.0692
- Validation Accuracy Void-unclear: 0.0
- Validation Iou Unlabeled: 0.0
- Validation Iou Flat-road: 0.5568
- Validation Iou Flat-sidewalk: 0.7479
- Validation Iou Flat-crosswalk: 0.3509
- Validation Iou Flat-cyclinglane: 0.6355
- Validation Iou Flat-parkingdriveway: 0.1298
- Validation Iou Flat-railtrack: nan
- Validation Iou Flat-curb: 0.1326
- Validation Iou Human-person: 0.2455
- Validation Iou Human-rider: 0.0
- Validation Iou Vehicle-car: 0.6973
- Validation Iou Vehicle-truck: 0.0
- Validation Iou Vehicle-bus: 0.0
- Validation Iou Vehicle-tramtrain: nan
- Validation Iou Vehicle-motorcycle: 0.0
- Validation Iou Vehicle-bicycle: 0.0610
- Validation Iou Vehicle-caravan: 0.0
- Validation Iou Vehicle-cartrailer: 0.0
- Validation Iou Construction-building: 0.6479
- Validation Iou Construction-door: 0.0
- Validation Iou Construction-wall: 0.3003
- Validation Iou Construction-fenceguardrail: 0.1727
- Validation Iou Construction-bridge: 0.0
- Validation Iou Construction-tunnel: nan
- Validation Iou Construction-stairs: 0.0
- Validation Iou Object-pole: 0.0927
- Validation Iou Object-trafficsign: 0.0
- Validation Iou Object-trafficlight: 0.0
- Validation Iou Nature-vegetation: 0.7758
- Validation Iou Nature-terrain: 0.7000
- Validation Iou Sky: 0.8002
- Validation Iou Void-ground: 0.0
- Validation Iou Void-dynamic: 0.0
- Validation Iou Void-static: 0.0573
- Validation Iou Void-unclear: 0.0
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Unlabeled | Validation Accuracy Flat-road | Validation Accuracy Flat-sidewalk | Validation Accuracy Flat-crosswalk | Validation Accuracy Flat-cyclinglane | Validation Accuracy Flat-parkingdriveway | Validation Accuracy Flat-railtrack | Validation Accuracy Flat-curb | Validation Accuracy Human-person | Validation Accuracy Human-rider | Validation Accuracy Vehicle-car | Validation Accuracy Vehicle-truck | Validation Accuracy Vehicle-bus | Validation Accuracy Vehicle-tramtrain | Validation Accuracy Vehicle-motorcycle | Validation Accuracy Vehicle-bicycle | Validation Accuracy Vehicle-caravan | Validation Accuracy Vehicle-cartrailer | Validation Accuracy Construction-building | Validation Accuracy Construction-door | Validation Accuracy Construction-wall | Validation Accuracy Construction-fenceguardrail | Validation Accuracy Construction-bridge | Validation Accuracy Construction-tunnel | Validation Accuracy Construction-stairs | Validation Accuracy Object-pole | Validation Accuracy Object-trafficsign | Validation Accuracy Object-trafficlight | Validation Accuracy Nature-vegetation | Validation Accuracy Nature-terrain | Validation Accuracy Sky | Validation Accuracy Void-ground | Validation Accuracy Void-dynamic | Validation Accuracy Void-static | Validation Accuracy Void-unclear | Validation Iou Unlabeled | Validation Iou Flat-road | Validation Iou Flat-sidewalk | Validation Iou Flat-crosswalk | Validation Iou Flat-cyclinglane | Validation Iou Flat-parkingdriveway | Validation Iou Flat-railtrack | Validation Iou Flat-curb | Validation Iou Human-person | Validation Iou Human-rider | Validation Iou Vehicle-car | Validation Iou Vehicle-truck | Validation Iou Vehicle-bus | Validation Iou Vehicle-tramtrain | Validation Iou Vehicle-motorcycle | Validation Iou Vehicle-bicycle | Validation Iou Vehicle-caravan | Validation Iou Vehicle-cartrailer | Validation Iou Construction-building | Validation Iou Construction-door | Validation Iou Construction-wall | Validation Iou Construction-fenceguardrail | Validation Iou Construction-bridge | Validation Iou Construction-tunnel | Validation Iou Construction-stairs | Validation Iou Object-pole | Validation Iou Object-trafficsign | Validation Iou Object-trafficlight | Validation Iou Nature-vegetation | Validation Iou Nature-terrain | Validation Iou Sky | Validation Iou Void-ground | Validation Iou Void-dynamic | Validation Iou Void-static | Validation Iou Void-unclear | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:---------------------------------:|:----------------------------------:|:------------------------------------:|:----------------------------------------:|:----------------------------------:|:-----------------------------:|:--------------------------------:|:-------------------------------:|:-------------------------------:|:---------------------------------:|:-------------------------------:|:-------------------------------------:|:--------------------------------------:|:-----------------------------------:|:-----------------------------------:|:--------------------------------------:|:-----------------------------------------:|:-------------------------------------:|:-------------------------------------:|:-----------------------------------------------:|:---------------------------------------:|:---------------------------------------:|:---------------------------------------:|:-------------------------------:|:--------------------------------------:|:---------------------------------------:|:-------------------------------------:|:----------------------------------:|:-----------------------:|:-------------------------------:|:--------------------------------:|:-------------------------------:|:--------------------------------:|:------------------------:|:------------------------:|:----------------------------:|:-----------------------------:|:-------------------------------:|:-----------------------------------:|:-----------------------------:|:------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:--------------------------------:|:---------------------------------:|:------------------------------:|:------------------------------:|:---------------------------------:|:------------------------------------:|:--------------------------------:|:--------------------------------:|:------------------------------------------:|:----------------------------------:|:----------------------------------:|:----------------------------------:|:--------------------------:|:---------------------------------:|:----------------------------------:|:--------------------------------:|:-----------------------------:|:------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----:|
| 1.4362 | 0.9804 | 0.1752 | 0.2219 | 0.7360 | 0.0 | 0.7417 | 0.9512 | 0.0213 | 0.3662 | 0.1475 | nan | 0.1397 | 0.0055 | 0.0 | 0.8653 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7778 | 0.0 | 0.3370 | 0.0429 | 0.0 | nan | 0.0 | 0.0177 | 0.0 | 0.0 | 0.9324 | 0.7967 | 0.9157 | 0.0 | 0.0 | 0.0409 | 0.0 | 0.0 | 0.5263 | 0.7377 | 0.0213 | 0.3517 | 0.1232 | nan | 0.1053 | 0.0055 | 0.0 | 0.6423 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6012 | 0.0 | 0.2315 | 0.0424 | 0.0 | nan | 0.0 | 0.0163 | 0.0 | 0.0 | 0.7258 | 0.6752 | 0.7692 | 0.0 | 0.0 | 0.0321 | 0.0 | 0 |
| 0.8550 | 0.8639 | 0.2220 | 0.2670 | 0.7725 | 0.0 | 0.6015 | 0.9708 | 0.3807 | 0.7538 | 0.1524 | nan | 0.1957 | 0.2585 | 0.0 | 0.8971 | 0.0 | 0.0 | nan | 0.0 | 0.0716 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.4315 | 0.1948 | 0.0 | nan | 0.0 | 0.1201 | 0.0 | 0.0 | 0.8952 | 0.8231 | 0.8496 | 0.0 | 0.0 | 0.0692 | 0.0 | 0.0 | 0.5568 | 0.7479 | 0.3509 | 0.6355 | 0.1298 | nan | 0.1326 | 0.2455 | 0.0 | 0.6973 | 0.0 | 0.0 | nan | 0.0 | 0.0610 | 0.0 | 0.0 | 0.6479 | 0.0 | 0.3003 | 0.1727 | 0.0 | nan | 0.0 | 0.0927 | 0.0 | 0.0 | 0.7758 | 0.7000 | 0.8002 | 0.0 | 0.0 | 0.0573 | 0.0 | 1 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
|