File size: 1,305 Bytes
c7053d5 ce5a68b c7053d5 6408f76 c7053d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-sa-4.0
datasets:
- HumanF-MarkrAI/Korean-RAG-ver2
language:
- ko
tags:
- Retrieval Augmented Generation
- RAG
- Multi-domain
---
# MarkrAI/RAG-KO-Mixtral-7Bx2-v1.1
# Model Details
## Model Developers
MarkrAI - AI Researchers
## Base Model
[DopeorNope/Ko-Mixtral-v1.3-MoE-7Bx2](https://huggingface.co/DopeorNope/Ko-Mixtral-v1.3-MoE-7Bx2).
## Instruction tuning Method
Using QLoRA.
```
4-bit quantization
Lora_r: 64
Lora_alpha: 64
Lora_dropout: 0.05
Lora_target_modules: [embed_tokens, q_proj, k_proj, v_proj, o_proj, gate, w1, w2, w3, lm_head]
```
## Hyperparameters
```
Epoch: 5
Batch size: 64
Learning_rate: 1e-5
Learning scheduler: linear
Warmup_ratio: 0.06
```
## Datasets
Private datasets: [HumanF-MarkrAI/Korean-RAG-ver2](https://huggingface.co/datasets/HumanF-MarkrAI/Korean-RAG-ver2)
```
Aihub datasets ํ์ฉํ์ฌ์ ์ ์ํจ.
```
## Implmentation Code
```
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "MarkrAI/RAG-KO-Mixtral-7Bx2-v1.1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
# Model Benchmark
- Coming soon... |