alanzty commited on
Commit
03396fd
1 Parent(s): b6f4059

transformer automated

Browse files
README.md CHANGED
The diff for this file is too large to render. See raw diff
 
config.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
- "_name_or_path": "dunzhang/stella_en_400M_v5",
3
  "architectures": [
4
  "NewModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.0,
7
  "auto_map": {
8
- "AutoConfig": "dunzhang/stella_en_400M_v5--configuration.NewConfig",
9
- "AutoModel": "dunzhang/stella_en_400M_v5--modeling.NewModel"
10
  },
11
  "classifier_dropout": null,
12
  "hidden_act": "gelu",
@@ -31,7 +31,7 @@
31
  },
32
  "rope_theta": 160000,
33
  "torch_dtype": "float32",
34
- "transformers_version": "4.42.3",
35
  "type_vocab_size": 2,
36
  "unpad_inputs": false,
37
  "use_memory_efficient_attention": false,
 
1
  {
2
+ "_name_or_path": "/MarqoModels/stella_en_400M_v5",
3
  "architectures": [
4
  "NewModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.0,
7
  "auto_map": {
8
+ "AutoConfig": "configuration.NewConfig",
9
+ "AutoModel": "modeling.NewModel"
10
  },
11
  "classifier_dropout": null,
12
  "hidden_act": "gelu",
 
31
  },
32
  "rope_theta": 160000,
33
  "torch_dtype": "float32",
34
+ "transformers_version": "4.45.1",
35
  "type_vocab_size": 2,
36
  "unpad_inputs": false,
37
  "use_memory_efficient_attention": false,
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "s2p_query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
9
+ "s2s_query": "Instruct: Retrieve semantically similar text.\nQuery: "
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
configuration.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ NEW model configuration"""
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class NewConfig(PretrainedConfig):
24
+ r"""
25
+ This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
26
+ instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
27
+ configuration with the defaults will yield a similar configuration to that of the NEW
28
+ [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 30522):
36
+ Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
38
+ hidden_size (`int`, *optional*, defaults to 768):
39
+ Dimensionality of the encoder layers and the pooler layer.
40
+ num_hidden_layers (`int`, *optional*, defaults to 12):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 12):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ intermediate_size (`int`, *optional*, defaults to 3072):
45
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
46
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
47
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
48
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
49
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout ratio for the attention probabilities.
53
+ max_position_embeddings (`int`, *optional*, defaults to 512):
54
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
55
+ just in case (e.g., 512 or 1024 or 2048).
56
+ type_vocab_size (`int`, *optional*, defaults to 2):
57
+ The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ position_embedding_type (`str`, *optional*, defaults to `"rope"`):
63
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`.
64
+ rope_theta (`float`, *optional*, defaults to 10000.0):
65
+ The base period of the RoPE embeddings.
66
+ rope_scaling (`Dict`, *optional*):
67
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
68
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
69
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
70
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
71
+ these scaling strategies behave:
72
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
73
+ experimental feature, subject to breaking API changes in future versions.
74
+ classifier_dropout (`float`, *optional*):
75
+ The dropout ratio for the classification head.
76
+
77
+ Examples:
78
+
79
+ ```python
80
+ >>> from transformers import NewConfig, NewModel
81
+
82
+ >>> # Initializing a NEW izhx/new-base-en style configuration
83
+ >>> configuration = NewConfig()
84
+
85
+ >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
86
+ >>> model = NewModel(configuration)
87
+
88
+ >>> # Accessing the model configuration
89
+ >>> configuration = model.config
90
+ ```"""
91
+
92
+ model_type = "new"
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=30528,
97
+ hidden_size=768,
98
+ num_hidden_layers=12,
99
+ num_attention_heads=12,
100
+ intermediate_size=3072,
101
+ hidden_act="gelu",
102
+ hidden_dropout_prob=0.1,
103
+ attention_probs_dropout_prob=0.0,
104
+ max_position_embeddings=2048,
105
+ type_vocab_size=1,
106
+ initializer_range=0.02,
107
+ layer_norm_type='layer_norm',
108
+ layer_norm_eps=1e-12,
109
+ # pad_token_id=0,
110
+ position_embedding_type="rope",
111
+ rope_theta=10000.0,
112
+ rope_scaling=None,
113
+ classifier_dropout=None,
114
+ pack_qkv=True,
115
+ unpad_inputs=False,
116
+ use_memory_efficient_attention=False,
117
+ logn_attention_scale=False,
118
+ logn_attention_clip1=False,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(**kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.hidden_act = hidden_act
128
+ self.intermediate_size = intermediate_size
129
+ self.hidden_dropout_prob = hidden_dropout_prob
130
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.type_vocab_size = type_vocab_size
133
+ self.initializer_range = initializer_range
134
+ self.layer_norm_type = layer_norm_type
135
+ self.layer_norm_eps = layer_norm_eps
136
+ self.position_embedding_type = position_embedding_type
137
+ self.rope_theta = rope_theta
138
+ self.rope_scaling = rope_scaling
139
+ self.classifier_dropout = classifier_dropout
140
+
141
+ self.pack_qkv = pack_qkv
142
+ self.unpad_inputs = unpad_inputs
143
+ self.use_memory_efficient_attention = use_memory_efficient_attention
144
+ self.logn_attention_scale = logn_attention_scale
145
+ self.logn_attention_clip1 = logn_attention_clip1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd1df730dc57126c0492fa2382728814317b8134eea8bcab778e5f2d69bda0c8
3
- size 1736585680
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03e156c82faacc5d899ac07a901a1c26feba652a3e9c01871868e160ea9b9c17
3
+ size 1740784248
modeling.py ADDED
@@ -0,0 +1,1390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch NEW model."""
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutput,
28
+ BaseModelOutputWithPooling,
29
+ MaskedLMOutput,
30
+ MultipleChoiceModelOutput,
31
+ QuestionAnsweringModelOutput,
32
+ SequenceClassifierOutput,
33
+ TokenClassifierOutput,
34
+ )
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import logging
37
+
38
+ try:
39
+ import xformers.ops as xops
40
+ except ImportError as e:
41
+ xops = None
42
+
43
+ from .configuration import NewConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+
49
+ # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
50
+ # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
51
+ class IndexFirstAxis(torch.autograd.Function):
52
+ @staticmethod
53
+ def forward(ctx, input, indices):
54
+ ctx.save_for_backward(indices)
55
+ assert input.ndim >= 2
56
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
57
+ second_dim = other_shape.numel()
58
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
59
+ # return input[indices]
60
+ # return torch.gather(
61
+ # rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
62
+ # ).reshape(-1, *other_shape)
63
+ return torch.gather(
64
+ input.view(ctx.first_axis_dim, second_dim),
65
+ 0,
66
+ indices.unsqueeze(-1).expand(indices.size(0), second_dim)
67
+ ).reshape(-1, *other_shape)
68
+
69
+ @staticmethod
70
+ def backward(ctx, grad_output):
71
+ (indices,) = ctx.saved_tensors
72
+ assert grad_output.ndim >= 2
73
+ other_shape = grad_output.shape[1:]
74
+ # grad_output = rearrange(grad_output, "b ... -> b (...)")
75
+ grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
76
+ grad_input = torch.zeros(
77
+ [ctx.first_axis_dim, grad_output.shape[1]],
78
+ device=grad_output.device,
79
+ dtype=grad_output.dtype,
80
+ )
81
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
82
+ # grad_input[indices] = grad_output
83
+ # grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
84
+ grad_input.scatter_(
85
+ 0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
86
+ )
87
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
88
+
89
+
90
+ index_first_axis = IndexFirstAxis.apply
91
+
92
+
93
+ def unpad_input(hidden_states, attention_mask=None, indices=None):
94
+ """
95
+ Arguments:
96
+ hidden_states: (batch, seqlen, ...)
97
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
98
+ indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
99
+ Return:
100
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
101
+ """
102
+ if indices is None:
103
+ assert attention_mask is not None
104
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
105
+
106
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
107
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
108
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
109
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
110
+ # so we write custom forward and backward to make it a bit faster.
111
+ hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
112
+ return index_first_axis(hidden_states, indices)
113
+
114
+
115
+ class IndexPutFirstAxis(torch.autograd.Function):
116
+ @staticmethod
117
+ def forward(
118
+ ctx,
119
+ values: torch.Tensor,
120
+ indices: torch.Tensor,
121
+ first_axis_dim
122
+ ) -> torch.Tensor:
123
+ ctx.save_for_backward(indices)
124
+ assert indices.ndim == 1
125
+ assert values.ndim >= 2
126
+ output = torch.zeros(
127
+ first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
128
+ )
129
+ output[indices] = values
130
+ return output
131
+
132
+ @staticmethod
133
+ def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
134
+ indices, = ctx.saved_tensors
135
+ grad_values = grad_output[indices]
136
+ return grad_values, None, None
137
+
138
+
139
+ index_put_first_axis = IndexPutFirstAxis.apply
140
+
141
+
142
+ def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
143
+ """Add padding to sequences.
144
+
145
+ Arguments:
146
+ inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
147
+ indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
148
+ batch: int batch_size
149
+ seqlen: int max sequence length
150
+
151
+ Returns:
152
+ inputs: (batch, seqlen, ...)
153
+ """
154
+ output = index_put_first_axis(inputs, indices, batch * seqlen)
155
+ return output.view(batch, seqlen, *inputs.shape[1:])
156
+
157
+
158
+ def rotate_half(x):
159
+ """Rotates half the hidden dims of the input."""
160
+ x1 = x[..., : x.shape[-1] // 2]
161
+ x2 = x[..., x.shape[-1] // 2 :]
162
+ return torch.cat((-x2, x1), dim=-1)
163
+
164
+
165
+ def apply_rotary_pos_emb(q, k, cos, sin):
166
+ """Applies Rotary Position Embedding to the query and key tensors.
167
+
168
+ Args:
169
+ q (`torch.Tensor`): The query tensor.
170
+ k (`torch.Tensor`): The key tensor.
171
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
172
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
173
+ Returns:
174
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
175
+ """
176
+ cos, sin = cos.to(q.dtype), sin.to(q.dtype)
177
+ q_embed = (q * cos) + (rotate_half(q) * sin)
178
+ k_embed = (k * cos) + (rotate_half(k) * sin)
179
+ return q_embed, k_embed
180
+
181
+
182
+ class RotaryEmbedding(torch.nn.Module):
183
+ def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
184
+ super().__init__()
185
+
186
+ self.dim = dim
187
+ self.max_position_embeddings = max_position_embeddings
188
+ self.base = base
189
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
190
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
191
+
192
+ # Build here to make `torch.jit.trace` work.
193
+ self._set_cos_sin_cache(
194
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
195
+ )
196
+
197
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
198
+ self.max_seq_len_cached = seq_len
199
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
200
+
201
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
202
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
205
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
206
+
207
+ def forward(self, x, seq_len=None):
208
+ # x: [bs, num_attention_heads, seq_len, head_size]
209
+ if seq_len > self.max_seq_len_cached:
210
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
211
+
212
+ return (
213
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
214
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
215
+ )
216
+
217
+
218
+ class NTKScalingRotaryEmbedding(RotaryEmbedding):
219
+ """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
220
+
221
+ def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
222
+ self.scaling_factor = scaling_factor
223
+ self.mixed_b = mixed_b
224
+ super().__init__(dim, max_position_embeddings, base, device)
225
+ max_position_embeddings = max_position_embeddings * self.scaling_factor
226
+ self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
227
+
228
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
229
+ self.max_seq_len_cached = seq_len
230
+
231
+ if seq_len > self.max_position_embeddings:
232
+ base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
233
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
234
+
235
+ if self.mixed_b is None:
236
+ inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
237
+ else:
238
+ a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
239
+ lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
240
+ inv_freq = inv_freq / lambda_1_m # (10)
241
+
242
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
243
+
244
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
245
+
246
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
247
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
248
+ emb = torch.cat((freqs, freqs), dim=-1)
249
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
250
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
251
+
252
+
253
+ class RMSNorm(nn.Module):
254
+ def __init__(self, hidden_size, eps=1e-6):
255
+ """
256
+ RMSNorm is equivalent to T5LayerNorm
257
+ """
258
+ super().__init__()
259
+ self.weight = nn.Parameter(torch.ones(hidden_size))
260
+ self.variance_epsilon = eps
261
+
262
+ def forward(self, hidden_states):
263
+ input_dtype = hidden_states.dtype
264
+ hidden_states = hidden_states.to(torch.float32)
265
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
266
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
267
+ return self.weight * hidden_states.to(input_dtype)
268
+
269
+
270
+ LAYER_NORM = {
271
+ 'layer_norm': nn.LayerNorm,
272
+ 'rms_norm': RMSNorm
273
+ }
274
+
275
+
276
+ class NewEmbeddings(nn.Module):
277
+ """
278
+ Embedding and Unpadding.
279
+ """
280
+
281
+ def __init__(self, config: NewConfig):
282
+ super().__init__()
283
+ self.padding_idx = config.pad_token_id
284
+ self.word_embeddings = nn.Embedding(
285
+ config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
286
+ )
287
+
288
+ self.position_embedding_type = config.position_embedding_type
289
+ if self.position_embedding_type == 'absolute':
290
+ self.position_embeddings = nn.Embedding(
291
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
292
+ )
293
+ elif self.position_embedding_type == 'rope':
294
+ self._init_rope(config)
295
+ else:
296
+ raise ValueError
297
+
298
+ self.type_vocab_size = config.type_vocab_size
299
+ if self.type_vocab_size > 0:
300
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
301
+
302
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
303
+ # any TensorFlow checkpoint file
304
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
305
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
306
+ # position_ids is contiguous in memory and excluded when serialized
307
+ self.register_buffer(
308
+ "position_ids", torch.arange(config.max_position_embeddings), persistent=False
309
+ )
310
+
311
+ def _init_rope(self, config):
312
+ kwargs = dict(
313
+ dim=int(config.hidden_size / config.num_attention_heads),
314
+ max_position_embeddings=config.max_position_embeddings,
315
+ base=config.rope_theta
316
+ )
317
+ if config.rope_scaling is None:
318
+ self.rotary_emb = RotaryEmbedding(**kwargs)
319
+ else:
320
+ kwargs.update(scaling_factor=config.rope_scaling["factor"])
321
+ scaling_type = config.rope_scaling["type"]
322
+ if scaling_type == 'ntk':
323
+ kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
324
+ self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
325
+ # elif scaling_type == "linear":
326
+ # self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
327
+ # elif scaling_type == "dynamic":
328
+ # self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
329
+ else:
330
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
331
+
332
+ def forward(
333
+ self,
334
+ unpad_inputs: bool,
335
+ input_ids: Optional[torch.Tensor] = None,
336
+ attention_mask: Optional[torch.Tensor] = None,
337
+ length: Optional[List[int]] = None,
338
+ token_type_ids: Optional[torch.Tensor] = None,
339
+ position_ids: Optional[torch.Tensor] = None,
340
+ inputs_embeds: Optional[torch.Tensor] = None,
341
+ ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
342
+ """
343
+ """
344
+ if inputs_embeds is None:
345
+ device, input_shape = input_ids.device, input_ids.shape
346
+ else:
347
+ device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
348
+ batch_size, seq_length = input_shape
349
+
350
+ # Set attention_mask if it's None
351
+ if attention_mask is None:
352
+ attention_mask = torch.ones(input_shape, device=device)
353
+ if length is not None:
354
+ for i, l in enumerate(length):
355
+ attention_mask[i, l:] = 0
356
+
357
+ # Set attention_mask_bool for unpadding
358
+ if unpad_inputs:
359
+ attention_mask_bool = attention_mask.bool()
360
+ if length is None:
361
+ length = attention_mask.sum(-1).tolist()
362
+
363
+ # Get word embeddings
364
+ if inputs_embeds is None:
365
+ if unpad_inputs:
366
+ input_ids = input_ids[attention_mask_bool].unsqueeze(0)
367
+ inputs_embeds = self.word_embeddings(input_ids)
368
+ else:
369
+ if unpad_inputs:
370
+ inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
371
+ embeddings = inputs_embeds
372
+
373
+ # Set and unpad position_ids
374
+ if position_ids is None:
375
+ if seq_length > self.position_ids.size(0):
376
+ self.register_buffer(
377
+ "position_ids", torch.arange(seq_length), persistent=False
378
+ )
379
+ if unpad_inputs:
380
+ # [1, cumsum_seq_len]
381
+ position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
382
+ else:
383
+ # [bs, seq_len]
384
+ position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
385
+ elif unpad_inputs:
386
+ position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
387
+
388
+ # Compute rotary embedding
389
+ if self.position_embedding_type == 'rope':
390
+ rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
391
+ rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
392
+ rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
393
+ rope_embeds = rope_cos, rope_sin
394
+ else:
395
+ rope_embeds = None
396
+
397
+ if self.type_vocab_size > 0:
398
+ if token_type_ids is None:
399
+ token_type_ids = position_ids.mul(0)
400
+ elif unpad_inputs:
401
+ token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
402
+
403
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
404
+ embeddings += token_type_embeddings
405
+
406
+ # BERT position
407
+ if self.position_embedding_type == "absolute":
408
+ position_embeddings = self.position_embeddings(position_ids)
409
+ embeddings += position_embeddings
410
+
411
+ embeddings = self.LayerNorm(embeddings)
412
+ embeddings = self.dropout(embeddings)
413
+
414
+ return embeddings, attention_mask, rope_embeds, length
415
+
416
+
417
+ class NewAttention(nn.Module):
418
+ def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
419
+ super().__init__()
420
+ self.config = config
421
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
422
+ raise ValueError(
423
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
424
+ f"heads ({config.num_attention_heads})"
425
+ )
426
+
427
+ self.hidden_size = config.hidden_size
428
+ self.num_attention_heads = config.num_attention_heads
429
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
430
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
431
+
432
+ if pack_qkv is None:
433
+ pack_qkv = config.pack_qkv
434
+ self.pack_qkv = pack_qkv
435
+
436
+ if self.pack_qkv:
437
+ self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
438
+ else:
439
+ self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
440
+ self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
441
+ self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
442
+
443
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
444
+ self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
445
+
446
+ if use_memory_efficient_attention is None:
447
+ use_memory_efficient_attention = self.config.use_memory_efficient_attention
448
+ self.use_memory_efficient_attention = use_memory_efficient_attention
449
+ self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
450
+ if self.use_memory_efficient_attention:
451
+ assert self.memory_efficient_attention is not None, 'please install xformers'
452
+ if self.config.unpad_inputs:
453
+ assert self.config.use_memory_efficient_attention, 'unpad only with xformers'
454
+
455
+ def forward(
456
+ self,
457
+ hidden_states: torch.Tensor,
458
+ attention_bias: torch.FloatTensor,
459
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
460
+ attention_scale: Optional[torch.FloatTensor] = None,
461
+ head_mask: Optional[torch.FloatTensor] = None,
462
+ output_attentions: Optional[bool] = False,
463
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
464
+ padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
465
+ ) -> Tuple[torch.Tensor, ...]:
466
+ shape_hd = (self.num_attention_heads, self.attention_head_size)
467
+ # qkv
468
+ if self.pack_qkv and qkv_inputs is None:
469
+ qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
470
+ else:
471
+ if qkv_inputs is None:
472
+ qkv_inputs = (hidden_states, hidden_states, hidden_states)
473
+ qkv_pack = [
474
+ getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
475
+ ]
476
+ query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
477
+
478
+ if self.config.position_embedding_type == 'rope':
479
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
480
+
481
+ dtype = query_states.dtype
482
+
483
+ if self.config.logn_attention_scale and attention_scale is not None:
484
+ # https://kexue.fm/archives/8823
485
+ query_states = query_states * attention_scale.to(dtype)
486
+
487
+ if padding_inputs is not None:
488
+ query_states = pad_input(query_states.squeeze(), *padding_inputs)
489
+ key_states = pad_input(key_states.squeeze(), *padding_inputs)
490
+ value_states = pad_input(value_states.squeeze(), *padding_inputs)
491
+
492
+ if self.use_memory_efficient_attention:
493
+ assert self.memory_efficient_attention is not None, "xformers is not loaded"
494
+ assert output_attentions is False, "memory_efficient_attention do not output attentions"
495
+ assert head_mask is None, "Not support yet"
496
+ attention_probs = None
497
+ if torch.is_tensor(attention_bias):
498
+ attention_bias = attention_bias.to(dtype)
499
+ context_layer = self.memory_efficient_attention(
500
+ query_states,
501
+ key_states,
502
+ value_states,
503
+ attn_bias=attention_bias,
504
+ p=self.dropout.p
505
+ )
506
+ else:
507
+ context_layer = self._attention(query_states, key_states, value_states, attention_bias, head_mask)
508
+
509
+ if padding_inputs is not None:
510
+ context_layer = unpad_input(context_layer, indices=padding_inputs[0])
511
+
512
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
513
+ context_layer = context_layer.view(new_context_layer_shape)
514
+
515
+ # output proj
516
+ attn_output = self.o_proj(context_layer)
517
+
518
+ # add attentions if we output them
519
+ outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
520
+ return outputs
521
+
522
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
523
+ """
524
+ Args:
525
+ q/k/v: (B, L, n_head, head_dim),
526
+ Returns:
527
+ attn_output: (B L, n_head, head_dim)
528
+ """
529
+ query_states = query_states.transpose(1, 2)
530
+ key_states = key_states.transpose(1, 2)
531
+ value_states = value_states.transpose(1, 2)
532
+ # Take the dot product between "query" and "key" to get the raw attention scores.
533
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
534
+
535
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
536
+ if attention_bias is not None:
537
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
538
+ attention_scores = attention_scores + attention_bias
539
+
540
+ # Normalize the attention scores to probabilities.
541
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
542
+
543
+ # This is actually dropping out entire tokens to attend to, which might
544
+ # seem a bit unusual, but is taken from the original Transformer paper.
545
+ attention_probs = self.dropout(attention_probs)
546
+
547
+ # Mask heads if we want to
548
+ if head_mask is not None:
549
+ attention_probs = attention_probs * head_mask
550
+
551
+ context_layer = torch.matmul(attention_probs, value_states)
552
+
553
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
554
+ return context_layer
555
+
556
+
557
+ class NewSdpaAttention(NewAttention):
558
+ """
559
+ New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
560
+ `NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
561
+ SDPA API.
562
+ """
563
+ def __init__(self, config: NewConfig, **kwargs):
564
+ super().__init__(config, **kwargs)
565
+ torch.backends.cuda.enable_mem_efficient_sdp(False)
566
+ logger.warning(
567
+ "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
568
+ "`use_memory_efficient_attention=True` if it expected to use."
569
+ )
570
+
571
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
572
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
573
+ query_states.transpose(1, 2),
574
+ key_states.transpose(1, 2),
575
+ value_states.transpose(1, 2),
576
+ attn_mask=attention_bias,
577
+ dropout_p=self.dropout.p if self.training else 0.0,
578
+ )
579
+ attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
580
+ return attn_output
581
+
582
+
583
+ NEW_ATTENTION_CLASSES = {
584
+ "eager": NewAttention,
585
+ # "flash_attention_2": , # TODO: xformers will dispatch to flash_attn
586
+ "sdpa": NewSdpaAttention,
587
+ }
588
+
589
+
590
+ class NewGatedMLP(nn.Module):
591
+ """
592
+ GLU Variants Improve Transformer.
593
+ """
594
+
595
+ def __init__(self, config: NewConfig):
596
+ super().__init__()
597
+ self.intermediate_size = config.intermediate_size
598
+ self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
599
+ self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
600
+ self.act_fn = ACT2FN[config.hidden_act]
601
+ if config.hidden_dropout_prob > 0:
602
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
603
+ else:
604
+ self.hidden_dropout = None
605
+
606
+ def forward(self, hidden_states):
607
+ up_gate = self.up_gate_proj(hidden_states)
608
+ up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
609
+ gate = self.act_fn(gate)
610
+ gated_states = gate * up_states
611
+ if self.hidden_dropout is not None:
612
+ gated_states = self.hidden_dropout(gated_states)
613
+ down_states = self.down_proj(gated_states)
614
+ return down_states
615
+
616
+
617
+ class NewLayer(nn.Module):
618
+ def __init__(
619
+ self,
620
+ config: NewConfig,
621
+ pack_qkv=None,
622
+ use_memory_efficient_attention=None,
623
+ attn_implementation=None
624
+ ):
625
+ super().__init__()
626
+ if attn_implementation is None:
627
+ attn_implementation = config._attn_implementation
628
+ if attn_implementation != 'eager':
629
+ use_memory_efficient_attention = False
630
+ self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
631
+ config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
632
+ )
633
+ self.mlp = NewGatedMLP(config)
634
+
635
+ ln_class = LAYER_NORM[config.layer_norm_type]
636
+ self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
637
+ self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
638
+
639
+ if config.hidden_dropout_prob > 0:
640
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
641
+ else:
642
+ self.hidden_dropout = None
643
+
644
+ def forward(
645
+ self,
646
+ hidden_states: torch.Tensor,
647
+ attention_bias: torch.FloatTensor,
648
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
649
+ attention_scale: Optional[torch.FloatTensor] = None,
650
+ subset_indices: Optional[torch.LongTensor] = None,
651
+ head_mask: Optional[torch.FloatTensor] = None,
652
+ output_attentions: Optional[bool] = False,
653
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
654
+ padding_inputs: Optional[Tuple] = None,
655
+ ) -> Tuple[torch.Tensor, ...]:
656
+ # Multi head self attention
657
+ residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
658
+ attention_outputs = self.attention(
659
+ hidden_states,
660
+ attention_bias,
661
+ rope_embeds,
662
+ attention_scale,
663
+ head_mask,
664
+ output_attentions=output_attentions,
665
+ qkv_inputs=qkv_inputs,
666
+ padding_inputs=padding_inputs,
667
+ )
668
+ hidden_states = attention_outputs[0]
669
+ if self.hidden_dropout is not None:
670
+ hidden_states = self.hidden_dropout(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ # In pretraining, after the attention of last layer, we only need the masked tokens.
674
+ if subset_indices is not None:
675
+ hidden_states = hidden_states[subset_indices]
676
+
677
+ hidden_states = self.attn_ln(hidden_states)
678
+
679
+ # Fully Connected
680
+ residual = hidden_states
681
+ hidden_states = self.mlp(hidden_states)
682
+ if self.hidden_dropout is not None:
683
+ hidden_states = self.hidden_dropout(hidden_states)
684
+ hidden_states = residual + hidden_states
685
+ hidden_states = self.mlp_ln(hidden_states)
686
+
687
+ # add self attentions if we output attention weights
688
+ outputs = (hidden_states,) + attention_outputs[1:]
689
+ return outputs
690
+
691
+
692
+ class NewEncoder(nn.Module):
693
+ def __init__(self, config):
694
+ super().__init__()
695
+ self.config = config
696
+ self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
697
+ self.gradient_checkpointing = False
698
+
699
+ def forward(
700
+ self,
701
+ hidden_states: torch.Tensor,
702
+ attention_bias: Optional[torch.FloatTensor] = None,
703
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
704
+ attention_scale: Optional[torch.FloatTensor] = None,
705
+ subset_indices: Optional[torch.LongTensor] = None,
706
+ head_mask: Optional[torch.FloatTensor] = None,
707
+ output_attentions: Optional[bool] = False,
708
+ output_hidden_states: Optional[bool] = False,
709
+ return_dict: Optional[bool] = True,
710
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
711
+ all_hidden_states = () if output_hidden_states else None
712
+ all_self_attentions = () if output_attentions else None
713
+
714
+ for i, layer_module in enumerate(self.layer):
715
+ if output_hidden_states:
716
+ all_hidden_states = all_hidden_states + (hidden_states,)
717
+
718
+ if i >= len(self.layer) - 1:
719
+ layer_subset_indices = subset_indices
720
+ else:
721
+ layer_subset_indices = None
722
+
723
+ layer_head_mask = head_mask[i] if head_mask is not None else None
724
+
725
+ if self.gradient_checkpointing and self.training:
726
+ layer_outputs = self._gradient_checkpointing_func(
727
+ layer_module.__call__,
728
+ hidden_states,
729
+ attention_bias,
730
+ rope_embeds,
731
+ attention_scale,
732
+ layer_subset_indices,
733
+ layer_head_mask,
734
+ )
735
+ else:
736
+ layer_outputs = layer_module(
737
+ hidden_states,
738
+ attention_bias,
739
+ rope_embeds,
740
+ attention_scale,
741
+ layer_subset_indices,
742
+ layer_head_mask,
743
+ output_attentions,
744
+ )
745
+
746
+ hidden_states = layer_outputs[0]
747
+ if output_attentions:
748
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
749
+
750
+ if output_hidden_states:
751
+ all_hidden_states = all_hidden_states + (hidden_states,)
752
+
753
+ if not return_dict:
754
+ return tuple(
755
+ v
756
+ for v in [
757
+ hidden_states,
758
+ all_hidden_states,
759
+ all_self_attentions,
760
+ ]
761
+ if v is not None
762
+ )
763
+ return BaseModelOutput(
764
+ last_hidden_state=hidden_states,
765
+ hidden_states=all_hidden_states,
766
+ attentions=all_self_attentions,
767
+ )
768
+
769
+
770
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
771
+ class NewPooler(nn.Module):
772
+ def __init__(self, config):
773
+ super().__init__()
774
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
775
+ self.activation = nn.Tanh()
776
+
777
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
778
+ # We "pool" the model by simply taking the hidden state corresponding
779
+ # to the first token.
780
+ first_token_tensor = hidden_states[:, 0]
781
+ pooled_output = self.dense(first_token_tensor)
782
+ pooled_output = self.activation(pooled_output)
783
+ return pooled_output
784
+
785
+
786
+ class NewPreTrainedModel(PreTrainedModel):
787
+ """
788
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
789
+ models.
790
+ """
791
+
792
+ config_class = NewConfig
793
+ base_model_prefix = "new"
794
+ supports_gradient_checkpointing = True
795
+
796
+ def _init_weights(self, module):
797
+ """Initialize the weights"""
798
+ if isinstance(module, nn.Linear):
799
+ # Slightly different from the TF version which uses truncated_normal for initialization
800
+ # cf https://github.com/pytorch/pytorch/pull/5617
801
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
802
+ if module.bias is not None:
803
+ module.bias.data.zero_()
804
+ elif isinstance(module, nn.Embedding):
805
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
806
+ if module.padding_idx is not None:
807
+ module.weight.data[module.padding_idx].zero_()
808
+ elif isinstance(module, nn.LayerNorm):
809
+ module.bias.data.zero_()
810
+ module.weight.data.fill_(1.0)
811
+
812
+
813
+ class NewModel(NewPreTrainedModel):
814
+ """
815
+ The bare New Model transformer outputting raw hidden-states without any specific head on top.
816
+ """
817
+
818
+ def __init__(self, config: NewConfig, add_pooling_layer=False):
819
+ super().__init__(config)
820
+ self.config = config
821
+
822
+ self.embeddings = NewEmbeddings(config)
823
+ self.encoder = NewEncoder(config)
824
+
825
+ self.proj = torch.nn.Linear(in_features=1024, out_features=1024)
826
+
827
+ self.pooler = NewPooler(config) if add_pooling_layer else None
828
+
829
+ # Initialize weights and apply final processing
830
+ self.post_init()
831
+
832
+ def get_input_embeddings(self):
833
+ return self.embeddings.word_embeddings
834
+
835
+ def set_input_embeddings(self, value):
836
+ self.embeddings.word_embeddings = value
837
+
838
+ def forward(
839
+ self,
840
+ input_ids: Optional[torch.Tensor] = None,
841
+ attention_mask: Optional[torch.Tensor] = None,
842
+ length: Optional[List[int]] = None,
843
+ subset_indices: Optional[torch.LongTensor] = None,
844
+ token_type_ids: Optional[torch.Tensor] = None,
845
+ position_ids: Optional[torch.Tensor] = None,
846
+ head_mask: Optional[torch.Tensor] = None,
847
+ inputs_embeds: Optional[torch.Tensor] = None,
848
+ output_attentions: Optional[bool] = None,
849
+ output_hidden_states: Optional[bool] = None,
850
+ return_dict: Optional[bool] = None,
851
+ unpad_inputs: Optional[bool] = None,
852
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
853
+ r"""
854
+ length (`list` of length `batch_size`, *optional*):
855
+ If is `None`, return padded `last_hidden_state`.
856
+ subset_indices ():
857
+ pass
858
+ unpad_inputs (`bool`, *optional*):
859
+ pass
860
+ """
861
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
862
+ output_hidden_states = (
863
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
864
+ )
865
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
866
+ unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
867
+ output_padded = length is None
868
+
869
+ if input_ids is not None and inputs_embeds is not None:
870
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
871
+ elif input_ids is not None:
872
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
873
+ input_shape = input_ids.size()
874
+ elif inputs_embeds is not None:
875
+ input_shape = inputs_embeds.size()[:-1]
876
+ else:
877
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
878
+
879
+ # TODO: not used
880
+ # # Prepare head mask if needed
881
+ # # 1.0 in head_mask indicate we keep the head
882
+ # # attention_probs has shape bsz x n_heads x N x N
883
+ # # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
884
+ # # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
885
+ # head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
886
+
887
+ # Get embeddings, may unpad them
888
+ (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
889
+ unpad_inputs,
890
+ input_ids=input_ids,
891
+ attention_mask=attention_mask,
892
+ length=length,
893
+ token_type_ids=token_type_ids,
894
+ position_ids=position_ids,
895
+ inputs_embeds=inputs_embeds
896
+ )
897
+
898
+ batch_size, seq_length = input_shape
899
+
900
+ if unpad_inputs:
901
+ assert self.config.use_memory_efficient_attention
902
+ attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length,device=self.device)
903
+ else:
904
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
905
+ # ourselves in which case we just need to make it broadcastable to all heads.
906
+ attention_bias = self.get_extended_attention_mask(attention_mask, input_shape,device=self.device)
907
+ if self.config.use_memory_efficient_attention:
908
+ # Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
909
+ attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
910
+
911
+ if self.config.logn_attention_scale:
912
+ # attention scale log_512(input_len)
913
+ attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
914
+ # inference-time logn scale need clip 1
915
+ if self.config.logn_attention_clip1:
916
+ attention_scale.clip_(1)
917
+ attention_scale = attention_scale[:, None, None, None]
918
+ else:
919
+ attention_scale = None
920
+
921
+ encoder_outputs = self.encoder(
922
+ embedding_output,
923
+ attention_bias=attention_bias,
924
+ rope_embeds=rope_embeds,
925
+ attention_scale=attention_scale,
926
+ subset_indices=subset_indices,
927
+ head_mask=head_mask,
928
+ output_attentions=output_attentions,
929
+ output_hidden_states=output_hidden_states,
930
+ return_dict=return_dict,
931
+ )
932
+ sequence_output = encoder_outputs[0]
933
+ if unpad_inputs and output_padded:
934
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
935
+ sequence_output = pad_input(
936
+ sequence_output.squeeze(), indices, batch_size, seq_length
937
+ )
938
+
939
+ sequence_output = self.proj(sequence_output)
940
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
941
+
942
+ if not return_dict:
943
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
944
+
945
+ return BaseModelOutputWithPooling(
946
+ last_hidden_state=sequence_output,
947
+ pooler_output=pooled_output,
948
+ hidden_states=encoder_outputs.hidden_states,
949
+ attentions=encoder_outputs.attentions,
950
+ )
951
+
952
+
953
+ class NewLMPredictionHead(nn.Module):
954
+ def __init__(self, config):
955
+ super().__init__()
956
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
957
+ self.transform_act_fn = ACT2FN[config.hidden_act]
958
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
959
+
960
+ # The output weights are the same as the input embeddings, but there is
961
+ # an output-only bias for each token.
962
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
963
+
964
+ def forward(self, hidden_states):
965
+ hidden_states = self.dense(hidden_states)
966
+ hidden_states = self.transform_act_fn(hidden_states)
967
+ hidden_states = self.norm(hidden_states)
968
+ hidden_states = self.decoder(hidden_states)
969
+ return hidden_states
970
+
971
+
972
+ class NewForMaskedLM(NewPreTrainedModel):
973
+ _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
974
+
975
+ def __init__(self, config: NewConfig):
976
+ super().__init__(config)
977
+ self.new = NewModel(config, add_pooling_layer=False)
978
+ self.lm_head = NewLMPredictionHead(config)
979
+ self.loss_fct = nn.CrossEntropyLoss()
980
+
981
+ # Initialize weights and apply final processing
982
+ self.post_init()
983
+
984
+ def get_output_embeddings(self):
985
+ return self.lm_head.decoder
986
+
987
+ def set_output_embeddings(self, new_embeddings):
988
+ self.lm_head.decoder = new_embeddings
989
+
990
+ def forward(
991
+ self,
992
+ input_ids: Optional[torch.Tensor] = None,
993
+ attention_mask: Optional[torch.Tensor] = None,
994
+ token_type_ids: Optional[torch.Tensor] = None,
995
+ position_ids: Optional[torch.Tensor] = None,
996
+ head_mask: Optional[torch.Tensor] = None,
997
+ inputs_embeds: Optional[torch.Tensor] = None,
998
+ labels: Optional[torch.Tensor] = None,
999
+ output_attentions: Optional[bool] = None,
1000
+ output_hidden_states: Optional[bool] = None,
1001
+ return_dict: Optional[bool] = None,
1002
+ unpad_inputs: Optional[bool] = None,
1003
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1004
+ r"""
1005
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1006
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1007
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1008
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1009
+ """
1010
+
1011
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1012
+
1013
+ if labels is None or not self.new.config.unpad_inputs:
1014
+ length = None
1015
+ subset_indices = None
1016
+ else:
1017
+ length = attention_mask.sum(-1).tolist()
1018
+ labels = labels[attention_mask.bool()].unsqueeze(0)
1019
+ subset_indices = labels > -100
1020
+
1021
+ outputs = self.new(
1022
+ input_ids,
1023
+ attention_mask=attention_mask,
1024
+ length=length,
1025
+ subset_indices=subset_indices,
1026
+ token_type_ids=token_type_ids,
1027
+ position_ids=position_ids,
1028
+ head_mask=head_mask,
1029
+ inputs_embeds=inputs_embeds,
1030
+ output_attentions=output_attentions,
1031
+ output_hidden_states=output_hidden_states,
1032
+ return_dict=return_dict,
1033
+ unpad_inputs=unpad_inputs,
1034
+ )
1035
+
1036
+ sequence_output = outputs[0]
1037
+ prediction_scores = self.lm_head(sequence_output)
1038
+
1039
+ masked_lm_loss = None
1040
+ if labels is not None:
1041
+ if subset_indices is None:
1042
+ mask = attention_mask.bool()
1043
+ prediction_scores = prediction_scores[mask]
1044
+ labels = labels[mask]
1045
+ else:
1046
+ labels = labels[subset_indices]
1047
+ masked_lm_loss = self.loss_fct(prediction_scores, labels)
1048
+
1049
+ if not return_dict:
1050
+ output = (prediction_scores,) + outputs[2:]
1051
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1052
+
1053
+ return MaskedLMOutput(
1054
+ loss=masked_lm_loss,
1055
+ logits=prediction_scores,
1056
+ hidden_states=outputs.hidden_states,
1057
+ attentions=outputs.attentions,
1058
+ )
1059
+
1060
+
1061
+ class NewForSequenceClassification(NewPreTrainedModel):
1062
+ def __init__(self, config):
1063
+ super().__init__(config)
1064
+ self.num_labels = config.num_labels
1065
+ self.config = config
1066
+
1067
+ self.new = NewModel(config, add_pooling_layer=True)
1068
+ classifier_dropout = (
1069
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1070
+ )
1071
+ self.dropout = nn.Dropout(classifier_dropout)
1072
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1073
+
1074
+ # Initialize weights and apply final processing
1075
+ self.post_init()
1076
+
1077
+ def forward(
1078
+ self,
1079
+ input_ids: Optional[torch.Tensor] = None,
1080
+ attention_mask: Optional[torch.Tensor] = None,
1081
+ token_type_ids: Optional[torch.Tensor] = None,
1082
+ position_ids: Optional[torch.Tensor] = None,
1083
+ head_mask: Optional[torch.Tensor] = None,
1084
+ inputs_embeds: Optional[torch.Tensor] = None,
1085
+ labels: Optional[torch.Tensor] = None,
1086
+ output_attentions: Optional[bool] = None,
1087
+ output_hidden_states: Optional[bool] = None,
1088
+ return_dict: Optional[bool] = None,
1089
+ unpad_inputs: Optional[bool] = None,
1090
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1091
+ r"""
1092
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1093
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1094
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1095
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1096
+ """
1097
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1098
+
1099
+ outputs = self.new(
1100
+ input_ids,
1101
+ attention_mask=attention_mask,
1102
+ token_type_ids=token_type_ids,
1103
+ position_ids=position_ids,
1104
+ head_mask=head_mask,
1105
+ inputs_embeds=inputs_embeds,
1106
+ output_attentions=output_attentions,
1107
+ output_hidden_states=output_hidden_states,
1108
+ return_dict=return_dict,
1109
+ unpad_inputs=unpad_inputs,
1110
+ )
1111
+
1112
+ pooled_output = outputs[1]
1113
+
1114
+ pooled_output = self.dropout(pooled_output)
1115
+ logits = self.classifier(pooled_output)
1116
+
1117
+ loss = None
1118
+ if labels is not None:
1119
+ if self.config.problem_type is None:
1120
+ if self.num_labels == 1:
1121
+ self.config.problem_type = "regression"
1122
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1123
+ self.config.problem_type = "single_label_classification"
1124
+ else:
1125
+ self.config.problem_type = "multi_label_classification"
1126
+
1127
+ if self.config.problem_type == "regression":
1128
+ loss_fct = nn.MSELoss()
1129
+ if self.num_labels == 1:
1130
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1131
+ else:
1132
+ loss = loss_fct(logits, labels)
1133
+ elif self.config.problem_type == "single_label_classification":
1134
+ loss_fct = nn.CrossEntropyLoss()
1135
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1136
+ elif self.config.problem_type == "multi_label_classification":
1137
+ loss_fct = nn.BCEWithLogitsLoss()
1138
+ loss = loss_fct(logits, labels)
1139
+
1140
+ if not return_dict:
1141
+ output = (logits,) + outputs[2:]
1142
+ return ((loss,) + output) if loss is not None else output
1143
+
1144
+ return SequenceClassifierOutput(
1145
+ loss=loss,
1146
+ logits=logits,
1147
+ hidden_states=outputs.hidden_states,
1148
+ attentions=outputs.attentions,
1149
+ )
1150
+
1151
+
1152
+ class NewForMultipleChoice(NewPreTrainedModel):
1153
+ def __init__(self, config):
1154
+ super().__init__(config)
1155
+
1156
+ self.new = NewModel(config, add_pooling_layer=True)
1157
+ classifier_dropout = (
1158
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1159
+ )
1160
+ self.dropout = nn.Dropout(classifier_dropout)
1161
+ self.classifier = nn.Linear(config.hidden_size, 1)
1162
+
1163
+ # Initialize weights and apply final processing
1164
+ self.post_init()
1165
+
1166
+ def forward(
1167
+ self,
1168
+ input_ids: Optional[torch.Tensor] = None,
1169
+ attention_mask: Optional[torch.Tensor] = None,
1170
+ token_type_ids: Optional[torch.Tensor] = None,
1171
+ position_ids: Optional[torch.Tensor] = None,
1172
+ head_mask: Optional[torch.Tensor] = None,
1173
+ inputs_embeds: Optional[torch.Tensor] = None,
1174
+ labels: Optional[torch.Tensor] = None,
1175
+ output_attentions: Optional[bool] = None,
1176
+ output_hidden_states: Optional[bool] = None,
1177
+ return_dict: Optional[bool] = None,
1178
+ unpad_inputs: Optional[bool] = None,
1179
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1180
+ r"""
1181
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1182
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1183
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1184
+ `input_ids` above)
1185
+ """
1186
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1187
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1188
+
1189
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1190
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1191
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1192
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1193
+ inputs_embeds = (
1194
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1195
+ if inputs_embeds is not None
1196
+ else None
1197
+ )
1198
+
1199
+ outputs = self.new(
1200
+ input_ids,
1201
+ attention_mask=attention_mask,
1202
+ token_type_ids=token_type_ids,
1203
+ position_ids=position_ids,
1204
+ head_mask=head_mask,
1205
+ inputs_embeds=inputs_embeds,
1206
+ output_attentions=output_attentions,
1207
+ output_hidden_states=output_hidden_states,
1208
+ return_dict=return_dict,
1209
+ unpad_inputs=unpad_inputs,
1210
+ )
1211
+
1212
+ pooled_output = outputs[1]
1213
+
1214
+ pooled_output = self.dropout(pooled_output)
1215
+ logits = self.classifier(pooled_output)
1216
+ reshaped_logits = logits.view(-1, num_choices)
1217
+
1218
+ loss = None
1219
+ if labels is not None:
1220
+ loss_fct = nn.CrossEntropyLoss()
1221
+ loss = loss_fct(reshaped_logits, labels)
1222
+
1223
+ if not return_dict:
1224
+ output = (reshaped_logits,) + outputs[2:]
1225
+ return ((loss,) + output) if loss is not None else output
1226
+
1227
+ return MultipleChoiceModelOutput(
1228
+ loss=loss,
1229
+ logits=reshaped_logits,
1230
+ hidden_states=outputs.hidden_states,
1231
+ attentions=outputs.attentions,
1232
+ )
1233
+
1234
+
1235
+ class NewForTokenClassification(NewPreTrainedModel):
1236
+ def __init__(self, config):
1237
+ super().__init__(config)
1238
+ self.num_labels = config.num_labels
1239
+
1240
+ self.new = NewModel(config, add_pooling_layer=False)
1241
+ classifier_dropout = (
1242
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1243
+ )
1244
+ self.dropout = nn.Dropout(classifier_dropout)
1245
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1246
+
1247
+ # Initialize weights and apply final processing
1248
+ self.post_init()
1249
+
1250
+ def forward(
1251
+ self,
1252
+ input_ids: Optional[torch.Tensor] = None,
1253
+ attention_mask: Optional[torch.Tensor] = None,
1254
+ token_type_ids: Optional[torch.Tensor] = None,
1255
+ position_ids: Optional[torch.Tensor] = None,
1256
+ head_mask: Optional[torch.Tensor] = None,
1257
+ inputs_embeds: Optional[torch.Tensor] = None,
1258
+ labels: Optional[torch.Tensor] = None,
1259
+ output_attentions: Optional[bool] = None,
1260
+ output_hidden_states: Optional[bool] = None,
1261
+ return_dict: Optional[bool] = None,
1262
+ unpad_inputs: Optional[bool] = None,
1263
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1264
+ r"""
1265
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1266
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1267
+ """
1268
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1269
+
1270
+ outputs = self.new(
1271
+ input_ids,
1272
+ attention_mask=attention_mask,
1273
+ token_type_ids=token_type_ids,
1274
+ position_ids=position_ids,
1275
+ head_mask=head_mask,
1276
+ inputs_embeds=inputs_embeds,
1277
+ output_attentions=output_attentions,
1278
+ output_hidden_states=output_hidden_states,
1279
+ return_dict=return_dict,
1280
+ unpad_inputs=unpad_inputs,
1281
+ )
1282
+
1283
+ sequence_output = outputs[0]
1284
+
1285
+ sequence_output = self.dropout(sequence_output)
1286
+ logits = self.classifier(sequence_output)
1287
+
1288
+ loss = None
1289
+ if labels is not None:
1290
+ loss_fct = nn.CrossEntropyLoss()
1291
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1292
+
1293
+ if not return_dict:
1294
+ output = (logits,) + outputs[2:]
1295
+ return ((loss,) + output) if loss is not None else output
1296
+
1297
+ return TokenClassifierOutput(
1298
+ loss=loss,
1299
+ logits=logits,
1300
+ hidden_states=outputs.hidden_states,
1301
+ attentions=outputs.attentions,
1302
+ )
1303
+
1304
+
1305
+ class NewForQuestionAnswering(NewPreTrainedModel):
1306
+ def __init__(self, config):
1307
+ super().__init__(config)
1308
+ self.num_labels = config.num_labels
1309
+
1310
+ self.new = NewModel(config, add_pooling_layer=False)
1311
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1312
+
1313
+ # Initialize weights and apply final processing
1314
+ self.post_init()
1315
+
1316
+ def forward(
1317
+ self,
1318
+ input_ids: Optional[torch.Tensor] = None,
1319
+ attention_mask: Optional[torch.Tensor] = None,
1320
+ token_type_ids: Optional[torch.Tensor] = None,
1321
+ position_ids: Optional[torch.Tensor] = None,
1322
+ head_mask: Optional[torch.Tensor] = None,
1323
+ inputs_embeds: Optional[torch.Tensor] = None,
1324
+ start_positions: Optional[torch.Tensor] = None,
1325
+ end_positions: Optional[torch.Tensor] = None,
1326
+ output_attentions: Optional[bool] = None,
1327
+ output_hidden_states: Optional[bool] = None,
1328
+ return_dict: Optional[bool] = None,
1329
+ unpad_inputs: Optional[bool] = None,
1330
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1331
+ r"""
1332
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1333
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1334
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1335
+ are not taken into account for computing the loss.
1336
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1337
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1338
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1339
+ are not taken into account for computing the loss.
1340
+ """
1341
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1342
+
1343
+ outputs = self.new(
1344
+ input_ids,
1345
+ attention_mask=attention_mask,
1346
+ token_type_ids=token_type_ids,
1347
+ position_ids=position_ids,
1348
+ head_mask=head_mask,
1349
+ inputs_embeds=inputs_embeds,
1350
+ output_attentions=output_attentions,
1351
+ output_hidden_states=output_hidden_states,
1352
+ return_dict=return_dict,
1353
+ unpad_inputs=unpad_inputs,
1354
+ )
1355
+
1356
+ sequence_output = outputs[0]
1357
+
1358
+ logits = self.qa_outputs(sequence_output)
1359
+ start_logits, end_logits = logits.split(1, dim=-1)
1360
+ start_logits = start_logits.squeeze(-1).contiguous()
1361
+ end_logits = end_logits.squeeze(-1).contiguous()
1362
+
1363
+ total_loss = None
1364
+ if start_positions is not None and end_positions is not None:
1365
+ # If we are on multi-GPU, split add a dimension
1366
+ if len(start_positions.size()) > 1:
1367
+ start_positions = start_positions.squeeze(-1)
1368
+ if len(end_positions.size()) > 1:
1369
+ end_positions = end_positions.squeeze(-1)
1370
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1371
+ ignored_index = start_logits.size(1)
1372
+ start_positions = start_positions.clamp(0, ignored_index)
1373
+ end_positions = end_positions.clamp(0, ignored_index)
1374
+
1375
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
1376
+ start_loss = loss_fct(start_logits, start_positions)
1377
+ end_loss = loss_fct(end_logits, end_positions)
1378
+ total_loss = (start_loss + end_loss) / 2
1379
+
1380
+ if not return_dict:
1381
+ output = (start_logits, end_logits) + outputs[2:]
1382
+ return ((total_loss,) + output) if total_loss is not None else output
1383
+
1384
+ return QuestionAnsweringModelOutput(
1385
+ loss=total_loss,
1386
+ start_logits=start_logits,
1387
+ end_logits=end_logits,
1388
+ hidden_states=outputs.hidden_states,
1389
+ attentions=outputs.attentions,
1390
+ )
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense_1024",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e248d357988ffdb56440d177797339b7d7373d6a6639df1b021206245d097124
3
+ size 1740860677
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }