|
import torch |
|
import torch.nn as nn |
|
from transformers import BertModel, PreTrainedModel, BertConfig, AutoModel |
|
from typing import List |
|
from .configuration_marqo_arctic_bge_chimera_m import ChimeraConfig |
|
|
|
|
|
class Chimera(PreTrainedModel): |
|
config_class = ChimeraConfig |
|
|
|
def __init__(self, config: ChimeraConfig): |
|
super().__init__(config) |
|
bert_config = BertConfig( |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
) |
|
|
|
self.model = nn.ModuleDict( |
|
{ |
|
"model_0": BertModel(bert_config), |
|
"model_1": BertModel(bert_config), |
|
} |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
token_type_ids: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
embeddings = [] |
|
for _, model in self.model.items(): |
|
model_output = model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
) |
|
pooled_output = model_output[0][:, 0] |
|
embeddings.append(pooled_output) |
|
|
|
return torch.cat(embeddings, dim=-1) |
|
|
|
def load_weights_from_automodels( |
|
self, in_models: List[str], has_pooling_layer: List[bool] |
|
): |
|
model_list = [] |
|
for i, model_name in enumerate(in_models): |
|
model = AutoModel.from_pretrained( |
|
model_name, |
|
add_pooling_layer=has_pooling_layer[i], |
|
trust_remote_code=True, |
|
) |
|
model.eval() |
|
model_list.append(model) |
|
|
|
self.model = nn.ModuleDict( |
|
{f"model_{i}": model for i, model in enumerate(model_list)} |
|
) |
|
|