MartaKozina
commited on
Commit
·
84400b8
1
Parent(s):
9942820
Upload wav2vec2.py
Browse files- wav2vec2.py +60 -0
wav2vec2.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
|
5 |
+
matplotlib.rcParams["figure.figsize"] = [16.0, 4.8]
|
6 |
+
|
7 |
+
torch.random.manual_seed(0)
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
# print(torch.__version__)
|
11 |
+
# print(torchaudio.__version__)
|
12 |
+
# print(device)
|
13 |
+
#
|
14 |
+
# SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" # noqa: E501
|
15 |
+
# SPEECH_FILE = "_assets/speech.wav"
|
16 |
+
#
|
17 |
+
# if not os.path.exists(SPEECH_FILE):
|
18 |
+
# os.makedirs("_assets", exist_ok=True)
|
19 |
+
# with open(SPEECH_FILE, "wb") as file:
|
20 |
+
# file.write(requests.get(SPEECH_URL).content)
|
21 |
+
|
22 |
+
|
23 |
+
class GreedyCTCDecoder(torch.nn.Module):
|
24 |
+
def __init__(self, labels, blank=0):
|
25 |
+
super().__init__()
|
26 |
+
self.labels = labels
|
27 |
+
self.blank = blank
|
28 |
+
|
29 |
+
def forward(self, emission: torch.Tensor) -> str:
|
30 |
+
"""Given a sequence emission over labels, get the best path string
|
31 |
+
Args:
|
32 |
+
emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: The resulting transcript
|
36 |
+
"""
|
37 |
+
indices = torch.argmax(emission, dim=-1) # [num_seq,]
|
38 |
+
indices = torch.unique_consecutive(indices, dim=-1)
|
39 |
+
indices = [i for i in indices if i != self.blank]
|
40 |
+
return "".join([self.labels[i] for i in indices])
|
41 |
+
|
42 |
+
def predict(file):
|
43 |
+
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
|
44 |
+
model = bundle.get_model().to(device)
|
45 |
+
|
46 |
+
waveform, sample_rate = torchaudio.load(file)
|
47 |
+
waveform = waveform.to(device)
|
48 |
+
|
49 |
+
if sample_rate != bundle.sample_rate:
|
50 |
+
waveform = torchaudio.functional.resample(waveform, sample_rate, bundle.sample_rate)
|
51 |
+
|
52 |
+
with torch.inference_mode():
|
53 |
+
features, _ = model.extract_features(waveform)
|
54 |
+
with torch.inference_mode():
|
55 |
+
emission, _ = model(waveform)
|
56 |
+
|
57 |
+
decoder = GreedyCTCDecoder(labels=bundle.get_labels())
|
58 |
+
transcript = decoder(emission[0])
|
59 |
+
return transcript
|
60 |
+
|