File size: 1,235 Bytes
e51db1d
7ff8b89
1cc71b4
e51db1d
7ff8b89
c8d091c
e51db1d
 
d94966f
e51db1d
1cc71b4
e51db1d
d94966f
 
1cc71b4
e51db1d
d94966f
 
1cc71b4
e51db1d
d94966f
 
1cc71b4
e51db1d
1cc71b4
e51db1d
d94966f
 
e51db1d
d94966f
e51db1d
7ff8b89
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
1cc71b4
e51db1d
1cc71b4
 
 
 
 
 
e51db1d
 
 
1cc71b4
e51db1d
d94966f
e51db1d
d94966f
e51db1d
d94966f
e51db1d
c8d091c
e51db1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
## Whisper Small Ar- Martha:
  
  This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

Loss: 0.5854

Wer: 70.2071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

## Training hyperparameters

The following hyperparameters were used during training:


learning_rate: 1e-05

 train_batch_size: 16
 
eval_batch_size: 8

seed: 42

optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

lr_scheduler_type: linear

lr_scheduler_warmup_steps: 500

training_steps: 500

mixed_precision_training: Native AMP

# Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.9692        | 0.14  | 125  | 1.3372          | 173.0952|
| 0.5716        | 0.29  | 250  | 0.9058          | 148.6795|
| 0.3297        | 0.43  | 375  | 0.5825          | 63.6709 |
| 0.3083	    | 0.57  | 500  | 0.5854          | 70.2071 |



## Framework versions

Transformers 4.26.0.dev0

Pytorch 1.13.0+cu116

Datasets 2.7.1

Tokenizers 0.13.2