File size: 1,919 Bytes
7ff8b89 9ce6bdc 1cc71b4 e51db1d 7ff8b89 c8d091c e51db1d d94966f e51db1d 1cc71b4 e51db1d d94966f 1cc71b4 e51db1d d94966f 1cc71b4 e51db1d d94966f 1cc71b4 e51db1d 1cc71b4 e51db1d d94966f e51db1d d94966f e51db1d 7ff8b89 e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d 1cc71b4 e51db1d 1cc71b4 e51db1d 1cc71b4 e51db1d d94966f e51db1d d94966f e51db1d d94966f e51db1d c8d091c e51db1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- ar
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Ar-Martha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
args: 'config: ar'
metrics:
- name: Wer
type: wer
value: 70.20710621318639
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Whisper Small Ar- Martha:
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
Loss: 0.5854
Wer: 70.2071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
## Training hyperparameters
The following hyperparameters were used during training:
learning_rate: 1e-05
train_batch_size: 16
eval_batch_size: 8
seed: 42
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
lr_scheduler_type: linear
lr_scheduler_warmup_steps: 500
training_steps: 500
mixed_precision_training: Native AMP
# Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.9692 | 0.14 | 125 | 1.3372 | 173.0952|
| 0.5716 | 0.29 | 250 | 0.9058 | 148.6795|
| 0.3297 | 0.43 | 375 | 0.5825 | 63.6709 |
| 0.3083 | 0.57 | 500 | 0.5854 | 70.2071 |
## Framework versions
Transformers 4.26.0.dev0
Pytorch 1.13.0+cu116
Datasets 2.7.1
Tokenizers 0.13.2
|