Marwolaeth
commited on
Commit
•
a88d3ab
1
Parent(s):
38dee11
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,85 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- nli
|
5 |
+
- bert
|
6 |
+
language:
|
7 |
+
- ru
|
8 |
+
metrics:
|
9 |
+
- name: accuracy
|
10 |
+
type: accuracy
|
11 |
+
value: 66.78
|
12 |
+
- name: f1
|
13 |
+
type: f1
|
14 |
+
value: 66.67
|
15 |
+
- name: precision
|
16 |
+
type: precision
|
17 |
+
value: 66.67
|
18 |
+
- name: recall
|
19 |
+
type: recall
|
20 |
+
value: 66.67
|
21 |
+
base_model:
|
22 |
+
- cointegrated/rubert-tiny2
|
23 |
+
pipeline_tag: text-classification
|
24 |
---
|
25 |
|
26 |
+
**⚠️ Disclaimer: This model is in the early stages of development and may produce low-quality predictions. For better results, consider using the recommended Russian natural language inference models available [here](https://huggingface.co/cointegrated).**
|
27 |
+
|
28 |
+
# RuBERT-tiny-nli v0
|
29 |
+
|
30 |
+
This model is an initial attempt to fine-tune the [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model for a two-way natural language inference task, utilizing the Russian [Textual Entailment Recognition](https://russiansuperglue.com/tasks/task_info/TERRa) dataset. While it aims to enhance understanding of Russian text, its performance is currently limited.
|
31 |
+
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
How to run the model for NLI:
|
35 |
+
|
36 |
+
```python
|
37 |
+
# !pip install transformers sentencepiece --quiet
|
38 |
+
import torch
|
39 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
40 |
+
|
41 |
+
model_id = 'Marwolaeth/rubert-tiny-nli-terra-v0'
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
model.cuda()
|
46 |
+
|
47 |
+
# An example from the base model card
|
48 |
+
premise1 = 'Сократ - человек, а все люди смертны.'
|
49 |
+
hypothesis1 = 'Сократ никогда не умрёт.'
|
50 |
+
with torch.inference_mode():
|
51 |
+
prediction = model(
|
52 |
+
**tokenizer(premise1, hypothesis1, return_tensors='pt').to(model.device)
|
53 |
+
)
|
54 |
+
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0]
|
55 |
+
print({v: p[k] for k, v in model.config.id2label.items()})
|
56 |
+
# {'not_entailment': 0.7698182, 'entailment': 0.23018183}
|
57 |
+
|
58 |
+
# An example concerning sentiments
|
59 |
+
premise2 = 'Я ненавижу желтые занавески'
|
60 |
+
hypothesis2 = 'Мне нравятся желтые занавески'
|
61 |
+
with torch.inference_mode():
|
62 |
+
prediction = model(
|
63 |
+
**tokenizer(premise2, hypothesis2, return_tensors='pt').to(model.device)
|
64 |
+
)
|
65 |
+
p = torch.softmax(prediction.logits, -1).cpu().numpy()[0]
|
66 |
+
print({v: p[k] for k, v in model.config.id2label.items()})
|
67 |
+
# {'not_entailment': 0.60584205, 'entailment': 0.3941579}
|
68 |
+
```
|
69 |
+
|
70 |
+
## Model Performance Metrics
|
71 |
+
|
72 |
+
The following metrics summarize the performance of the model on the test dataset:
|
73 |
+
|
74 |
+
| Metric | Value |
|
75 |
+
|----------------------------|---------------------------|
|
76 |
+
| **Test Loss** | 0.6261 |
|
77 |
+
| **Test Accuracy** | 66.78% |
|
78 |
+
| **Test F1 Score** | 66.67% |
|
79 |
+
| **Test Precision** | 66.67% |
|
80 |
+
| **Test Recall** | 66.67% |
|
81 |
+
| **Test Runtime*** | 0.7043 seconds |
|
82 |
+
| **Samples per Second*** | 435.88 |
|
83 |
+
| **Steps per Second*** | 14.20 |
|
84 |
+
|
85 |
+
*Using T4 GPU with Google Colab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|