--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9348474801061007 - name: Recall type: recall value: 0.9490070683271625 - name: F1 type: f1 value: 0.9418740604643394 - name: Accuracy type: accuracy value: 0.9854153175958086 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0672 - Precision: 0.9348 - Recall: 0.9490 - F1: 0.9419 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0886 | 1.0 | 1756 | 0.0692 | 0.9165 | 0.9379 | 0.9271 | 0.9829 | | 0.0414 | 2.0 | 3512 | 0.0598 | 0.9316 | 0.9487 | 0.9400 | 0.9855 | | 0.0212 | 3.0 | 5268 | 0.0672 | 0.9348 | 0.9490 | 0.9419 | 0.9854 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1