--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: fine_tuned_sample results: [] --- # fine_tuned_sample This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6485 | 1.0 | 5402 | 0.5418 | | 0.5557 | 2.0 | 10804 | 0.4748 | | 0.5101 | 3.0 | 16206 | 0.4412 | | 0.4486 | 4.0 | 21608 | 0.3602 | | 0.376 | 5.0 | 27010 | 0.2766 | | 0.2681 | 6.0 | 32412 | 0.2018 | | 0.2328 | 7.0 | 37814 | 0.1420 | | 0.1482 | 8.0 | 43216 | 0.1041 | ### Framework versions - PEFT 0.13.3.dev0 - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.1