{ "cells": [ { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [], "source": [ "#Import Libraries\n", "import openai\n", "import langchain\n", "#import pinecone\n", "from langchain.document_loaders import PyPDFDirectoryLoader\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "\n", "from langchain.llms import OpenAI\n" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dotenv import load_dotenv\n", "load_dotenv()" ] }, { "cell_type": "code", "execution_count": 104, "metadata": {}, "outputs": [], "source": [ "import os" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [], "source": [ "#Lets read the document\n", "def read_doc(directory):\n", " file_loader=PyPDFDirectoryLoader(directory)\n", " documents=file_loader.load()\n", " return documents" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "61" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "doc=read_doc('documents/')\n", "len(doc)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [], "source": [ "#Divide the docs into chuncks\n", "def chunk_data(docs,chunk_size=800,chunk_overlap=50):\n", " text_splitter=RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=chunk_overlap)\n", " docs=text_splitter.split_documents(docs)\n", " return docs\n", " " ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "187" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "documents=chunk_data(docs=doc)\n", "len(documents)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Embedding Technique of OPENAI\n", "embeddings=OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])\n", "embeddings" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1536" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vectors=embeddings.embed_query(\"How are you?\")\n", "len(vectors)" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [], "source": [ "from pinecone import Pinecone, ServerlessSpec\n", "os.environ['PINECONE_API_KEY'] = \"870db653-5972-4c49-a639-6f497a3660dc\"\n", "pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [], "source": [ "import time\n", "\n", "index_name = \"langchainvector\" # change if desired\n", "\n", "existing_indexes = [index_info[\"name\"] for index_info in pc.list_indexes()]\n", "\n", "if index_name not in existing_indexes:\n", " pc.create_index(\n", " name=index_name,\n", " dimension=1536,\n", " metric=\"cosine\",\n", " spec=ServerlessSpec(cloud=\"aws\", region=\"us-east-1\"),\n", " )\n", " while not pc.describe_index(index_name).status[\"ready\"]:\n", " time.sleep(1)\n", "\n", "index = pc.Index(index_name)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [], "source": [ "from langchain_pinecone import PineconeVectorStore\n", "\n", "docsearch = PineconeVectorStore.from_documents(documents, embeddings, index_name=index_name)" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "#Similarity Retrieve Result\n", "def retrieve_query(query,k=2):\n", " matching_results=docsearch.similarity_search(query,k=k)\n", " return matching_results\n", " " ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Matt Brown\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\langchain_core\\_api\\deprecation.py:139: LangChainDeprecationWarning: The class `OpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAI`.\n", " warn_deprecated(\n" ] } ], "source": [ "from langchain.chains.question_answering import load_qa_chain\n", "from langchain import OpenAI\n", "llm=OpenAI(model_name=\"gpt-3.5-turbo-instruct\",temperature=0.5)\n", "chain=load_qa_chain(llm,chain_type=\"stuff\")" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [], "source": [ "def retrieve_answers(query):\n", " doc_search=retrieve_query(query)\n", " print(doc_search)\n", " response=chain.run(input_documents=doc_search,question=query) \n", " return response " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "query = \"What are indirect emissions?\"\n", "answer=retrieve_answers(query)\n", "print(answer)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "query = \"What are scope 2 emissions?\"\n", "docs = docsearch.similarity_search(query,k=2)\n", "print(docs[0].page_content)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "retriever = docsearch.as_retriever(search_type=\"mmr\")\n", "matched_docs = retriever.invoke(query)\n", "for i, d in enumerate(matched_docs):\n", " print(f\"\\n## Document {i}\\n\")\n", " print(d.page_content)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)\n", "for i, doc in enumerate(found_docs):\n", " print(f\"{i + 1}.\", doc.page_content, \"\\n\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 2 }