--- language: en tags: - emotion-classification - text-classification - distilbert datasets: - dair-ai/emotion metrics: - accuracy --- # Emotion Classification Model ## Model Description This model fine-tunes DistilBERT for a multi-class emotion classification task. The dataset that is used is dair-ai/emotion containing six emotion classes: sadness, joy, love, anger, fear and suprise ## Training and Evaluation - Training Dataset: dair-ai/emotion (16,000 examples) - Validation Dataset: dair-ai/emotion (2,000 examples) - Validation Accuracy: [Your Results] - Test Accuracy: [Your Results] - Training Time: [Your Time] ## Hyperparameters - Learning Rate: 5e-5 - Batch Size: 16 - Epochs: 4 - Weight Decay: 0.01 ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification", model="your-username/emotion-classification-model") text = "I’m so happy today!" result = classifier(text) print(result) ``` ## Limitations [Discuss any limitations you observed...]