from sklearn.linear_model import ElasticNet import streamlit as st from types import NoneType def process(data): if type(data[0]) == NoneType or type(data[1]) == NoneType: # if either training or testing dataset is still missing st.info('Please Upload Data') return None if 'object' in list(data[0].dtypes) or 'object' in list(data[1].dtypes): st.info('Please Upload Numerica Data.') return None if len(data) == 0: st.info('Please Upload Data') return None x_train = data[0].iloc[:,:-1] y_train = data[0].iloc[:,-1] #st.write(x_train.shape) x_test = data[1].iloc[:,:x_train.shape[1]] #st.dataframe(data[1]) #st.write(x_test.shape) if len(x_train.columns) != len(x_test.columns): st.info('Training and testing datasets have different column number, cannot perform classification.') return None clf = ElasticNet().fit(x_train, y_train) pred = clf.predict(x_test) cols = x_train.columns #st.write(clf.coef_) st.latex(f" {x_train.columns[-1]} = ") coeffs = ['{:.4f}'.format(float(c)) for c in clf.coef_] #st.write(coeffs) eq = ' + '.join([str(col) +' × '+ (alpha) for col,alpha in zip(coeffs,cols)]) st.markdown(f" $$ {clf.intercept_} {eq} $$") st.latex(f" R² = {clf.score(x_train, y_train)} ") x_test[data[0].columns[-1]] = pred return x_test