MatthiasPi commited on
Commit
ffd9d26
1 Parent(s): d7e5e8c

commit WAR

Browse files
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv filter=lfs diff=lfs merge=lfs -text
36
+ datasets/traffic_flow_forecasting/traffic_dataset.mat filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Representativity-based active learning for regression using Wasserstein distance and GroupSort Neural Networks
2
+
3
+ You will find in this repository the codes used to test the performance of the WAR model on a fully labeled dataset
4
+
5
+ **WAR-notebook** : you can run the algorithm from there and change the desired parameters
6
+
7
+
8
+ ### WAR directory
9
+
10
+ **Experiment_functions.py** : functions used to vizualise information about WAR process (loss, metrics, points queried every rounds...).
11
+
12
+ **Models.py**: Definition of the two neural networks h and phi.
13
+
14
+ **dataset_handler.py**: Import and preprocess datasets.
15
+
16
+ **full_training_process.py**: main function.
17
+
18
+ **training_and_query.py**: function to run one round (one training and querying process).
19
+
20
+
21
+ ## Abstract
22
+ This paper proposes a new active learning strategy called Wasserstein active regression (WAR) based on the principle of distribution-matching to measure the representativeness of our labeled dataset compared to the global data distribution. We use GroupSort Neural Networks to compute the Wasserstein distance and provide theoretical foundations to justify the use of such networks with explicit bounds for their size and depth. We combine this solution with another diversity and uncertainty-based approach to sharpen our query strategy. Finally, we compare our method with other solutions and show empirically that we consistently achieve better estimations with less labeled data.
23
+
24
+
WAR-notebook.ipynb ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Notebook to test WAR performances on a fully labelled dataset"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {
14
+ "scrolled": false
15
+ },
16
+ "outputs": [],
17
+ "source": [
18
+ "import numpy as np\n",
19
+ "import itertools\n",
20
+ "import time\n",
21
+ "import matplotlib.pyplot as plt\n",
22
+ "\n",
23
+ "import torch\n",
24
+ "import torch.optim as optim\n",
25
+ "\n",
26
+ "from WAR.Models import NN_phi,NN_h_RELU\n",
27
+ "from WAR.training_and_query import WAR\n",
28
+ "from WAR.dataset_handler import myData,import_dataset,get_dataset\n",
29
+ "from WAR.Experiment_functions import *\n",
30
+ "from WAR.full_training_process import full_training,check_num_round\n",
31
+ "from sklearn.cluster import KMeans\n",
32
+ "\n",
33
+ "from sklearn.decomposition import PCA\n",
34
+ "\n",
35
+ "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
36
+ "print(f\"Using {device} device\")"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {
43
+ "scrolled": false
44
+ },
45
+ "outputs": [],
46
+ "source": [
47
+ "#choosing dataset and splitting it with the desired testset proportion\n",
48
+ "# for now dataset=\n",
49
+ "#\"boston\",\"airfoil\",\"energy1\",\"energy2\",\"yacht\"\n",
50
+ "#,\"concrete_slump\",\"concrete_flow\",\"concrete_compressive\",x_squared\",\"news_popularity\"\n",
51
+ "\n",
52
+ "X_train,X_test,y_train,y_test=get_dataset(proportion=0.2,dataset=\"boston\")"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "#2D PCA visualization of the data\n",
62
+ "#kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit_predict(X_train)\n",
63
+ "pca = PCA(n_components=2)\n",
64
+ "transformed = pca.fit_transform(X=X_train)\n",
65
+ "print(f\"{round(sum(pca.explained_variance_),4)*100}% variance explained\")\n",
66
+ "plt.figure(figsize=(8.5, 6))\n",
67
+ "plt.scatter(x=transformed[:, 0], y=transformed[:, 1]#,c=kmeans\n",
68
+ " )"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "markdown",
73
+ "metadata": {},
74
+ "source": [
75
+ "# WAR"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "metadata": {
82
+ "scrolled": true
83
+ },
84
+ "outputs": [],
85
+ "source": [
86
+ "total_epoch_h=100 # number of epochs to train h each round\n",
87
+ "total_epoch_phi=100 # number of epochs to train phi each round \n",
88
+ "num_elem_queried= int(0.02*X_train.shape[0]) # number of elem queried each round \n",
89
+ "nb_initial_labelled_datas = int(0.02*X_train.shape[0]) #nb of labelled datas at round 0\n",
90
+ "init_method=\"k_mean\" # how the initial data will be chosen. \"random\" or \"k-means\" \n",
91
+ "second_query_strategy=\"loss_approximation\" # query strategy assisting our distribution-matching criterion. \"loss_approximation\" or None for now\n",
92
+ "lr_h=0.001 # learning rate h \n",
93
+ "lr_phi=0.01 # learning rate phi \n",
94
+ "weight_decay=0.001 # L2 regularization on h\n",
95
+ "\n",
96
+ "batch_size_train=len(X_train) # size of the batch during the training process #len(X_train)\n",
97
+ "num_round=500 # number of rounds\n",
98
+ "num_round=check_num_round(num_round,len(y_train),nb_initial_labelled_datas,num_elem_queried)\n",
99
+ "\n",
100
+ "\n",
101
+ "reset_phi=False # reset the training of phi each round or not\n",
102
+ "reset_h=False # reset the training of h each round or not\n",
103
+ "\n",
104
+ "reduced=True # if true (recommended),\n",
105
+ "#the heterogeneity and representativity criteria will have the same standard deviation,\n",
106
+ "#to give them the same weight in the query process. This give us more control on our querying strategy\n",
107
+ "\n",
108
+ "eta=3 # weight of the representativity criterion. if relatively low (<3) can lead WAR to query too many outliers\n",
109
+ "# cnst_t3phi>3 recommended, can be put higher if there are a lot of outliers in the data distribution \n",
110
+ "\n",
111
+ "show_losses=False # show T1 and T2 losses each rounds in a graph\n",
112
+ "show_chosen_each_round=False # show which data have been chosen each round in a 2D PCA representation of the data\n",
113
+ "\n",
114
+ "dim_input=X_train.shape[1]\n",
115
+ "\n",
116
+ "start=time.time()\n",
117
+ "\n",
118
+ "n_pool = len(y_train)\n",
119
+ "n_test = len(y_test)\n",
120
+ "idxs_lb = np.zeros(n_pool, dtype=bool)\n",
121
+ "idxs_tmp = np.arange(n_pool)\n",
122
+ "\n",
123
+ "\n",
124
+ "if init_method==\"random\":\n",
125
+ " # Generate the initial labeled pool\n",
126
+ " np.random.shuffle(idxs_tmp)\n",
127
+ " idxs_lb[idxs_tmp[:nb_initial_labelled_datas]] = True\n",
128
+ " \n",
129
+ "elif init_method==\"k_mean\":\n",
130
+ " init_indices=[]\n",
131
+ " kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit(X_train)\n",
132
+ " for i in range(nb_initial_labelled_datas):\n",
133
+ " xsc = kmeans.cluster_centers_[i]\n",
134
+ " ind = np.argmin(((X_train - xsc) ** 2).sum(axis=1))\n",
135
+ " init_indices.append(ind)\n",
136
+ " idxs_lb[init_indices] = True\n",
137
+ "\n",
138
+ "h=NN_h_RELU(dim_input)\n",
139
+ "opti_h = optim.Adam(h.parameters(), lr=lr_h,weight_decay=weight_decay)\n",
140
+ "\n",
141
+ "phi=NN_phi(dim_input)\n",
142
+ "opti_phi = optim.Adam(phi.parameters(), lr=lr_phi,maximize=True)\n",
143
+ "\n",
144
+ "strategy = WAR(X_train,y_train,X_test,y_test,idxs_lb,total_epoch_h,total_epoch_phi,batch_size_train,num_elem_queried,phi\n",
145
+ " ,h,opti_phi,opti_h,second_query_strategy)\n",
146
+ " \n",
147
+ "error_each_round,error_each_round_per,error_each_round_rmse,t1_descend_list,t2_ascend_list=full_training(\n",
148
+ " strategy,num_round,show_losses,show_chosen_each_round\n",
149
+ " ,reset_phi,reset_h,weight_decay,lr_h,lr_phi,reduced,eta)\n",
150
+ "\n",
151
+ "\n",
152
+ "stop=time.time()\n",
153
+ "\n",
154
+ "time_execution(start,stop)"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": null,
160
+ "metadata": {
161
+ "scrolled": true
162
+ },
163
+ "outputs": [],
164
+ "source": [
165
+ "#plot the loss of h\n",
166
+ "\n",
167
+ "plt.plot(list(itertools.chain(*t1_descend_list)),c=\"green\")\n",
168
+ "plt.grid(True)\n",
169
+ "plt.yscale(\"log\")\n",
170
+ "plt.title(\"T1 loss evolution each batch\",fontsize=20)"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {
177
+ "scrolled": true
178
+ },
179
+ "outputs": [],
180
+ "source": [
181
+ "#plot the loss of phi\n",
182
+ "\n",
183
+ "plt.plot(np.array(list(itertools.chain(*t2_ascend_list))),c=\"brown\")\n",
184
+ "plt.grid(True)\n",
185
+ "plt.title(\"T2 loss evolution each batch\",fontsize=20)"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "metadata": {
192
+ "scrolled": false
193
+ },
194
+ "outputs": [],
195
+ "source": [
196
+ "#plot RMSE\n",
197
+ "\n",
198
+ "plt.plot(error_each_round_rmse)\n",
199
+ "plt.grid(True)\n",
200
+ "plt.title(\"RMSE of h each rounds\",fontsize=20)"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "metadata": {
207
+ "scrolled": true
208
+ },
209
+ "outputs": [],
210
+ "source": [
211
+ "#plot MAE\n",
212
+ "\n",
213
+ "plt.plot(error_each_round)\n",
214
+ "plt.grid(True)\n",
215
+ "plt.title(\"mean absolute error of h each rounds\",fontsize=20)"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": null,
221
+ "metadata": {
222
+ "scrolled": true
223
+ },
224
+ "outputs": [],
225
+ "source": [
226
+ "#plot MAPE\n",
227
+ "\n",
228
+ "plt.plot(error_each_round_per)\n",
229
+ "plt.grid(True)\n",
230
+ "plt.title(\"mean absolute percentage error of h each rounds\",fontsize=20)"
231
+ ]
232
+ }
233
+ ],
234
+ "metadata": {
235
+ "kernelspec": {
236
+ "display_name": "Python 3 (ipykernel)",
237
+ "language": "python",
238
+ "name": "python3"
239
+ },
240
+ "language_info": {
241
+ "codemirror_mode": {
242
+ "name": "ipython",
243
+ "version": 3
244
+ },
245
+ "file_extension": ".py",
246
+ "mimetype": "text/x-python",
247
+ "name": "python",
248
+ "nbconvert_exporter": "python",
249
+ "pygments_lexer": "ipython3",
250
+ "version": "3.9.16"
251
+ }
252
+ },
253
+ "nbformat": 4,
254
+ "nbformat_minor": 4
255
+ }
WAR/Experiment_functions.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import seaborn as sns
3
+ import time
4
+ import numpy as np
5
+ import pandas as pd
6
+ from sklearn.decomposition import PCA
7
+ import torch
8
+
9
+
10
+ #Execution duration
11
+
12
+ def time_execution(start,end):
13
+ timespan=end-start
14
+ minutes=timespan//60
15
+ secondes=timespan%60
16
+ heures=minutes//60
17
+ minutes=minutes%60
18
+ print(f"{int(heures)}h {int(minutes)} min {secondes} s")
19
+ return(f"{int(heures)}h {int(minutes)} min {secondes} s")
20
+
21
+
22
+ #Graphs
23
+
24
+ def display_prediction(X_test,h,y_test,rd):
25
+ plt.figure(figsize=[9,6])
26
+
27
+ plt.scatter(X_test,h(X_test).cpu(),label="predicted values")
28
+ plt.scatter(X_test,y_test,label="true_values")
29
+ plt.legend()
30
+ if rd=="final":
31
+ plt.title("true et predicted values at the end")
32
+ else:plt.title(f"true et predicted values after {rd} rounds")
33
+
34
+
35
+ def display_chosen_labelled_datas_PCA(X_train,idx_lb,y_train,b_idxs,rd):
36
+
37
+ pca = PCA(n_components=2)
38
+ transformed = pca.fit_transform(X=X_train)
39
+ x_component = transformed[:, 0]
40
+
41
+ plt.figure(figsize=[9,6])
42
+ plt.scatter(transformed[:, 0][~idx_lb],transformed[:, 1][~idx_lb],label="unlabelled points",c="brown")
43
+ plt.scatter(transformed[:, 0][idx_lb],transformed[:, 1][idx_lb],label="labelled points")
44
+ plt.scatter(transformed[:, 0][b_idxs],transformed[:, 1][b_idxs],label="new points added",c="yellow")
45
+ plt.legend()
46
+ plt.title(f"points selected after {rd} rounds")
47
+
48
+ def display_chosen_labelled_datas(X_train,idx_lb,y_train,b_idxs,rd):
49
+ plt.figure(figsize=[9,6])
50
+
51
+ plt.scatter(X_train[~idx_lb],y_train[~idx_lb],label="unlabelled points",c="brown")
52
+ plt.scatter(X_train[idx_lb],y_train[idx_lb],label="labelled points")
53
+ plt.scatter(X_train[b_idxs],y_train[b_idxs],label="new points added",c="yellow")
54
+ plt.legend()
55
+ plt.title(f"points selected after {rd} rounds")
56
+
57
+ def display_loss_t1(t1_descend,rd):
58
+ plt.figure(figsize=[9,6])
59
+ plt.plot(t1_descend)
60
+ plt.xlabel("batch")
61
+ plt.title(f"t1 loss evolution each batch after {rd} rounds")
62
+
63
+
64
+ def display_loss_t2(t2_ascend,rd):
65
+ plt.figure(figsize=[9,6])
66
+ plt.plot(t2_ascend)
67
+ plt.xlabel("batch")
68
+ plt.title(f"t2 loss evolution each batch after {rd} rounds")
69
+
70
+ def display_phi(X_train,phi,rd=None):
71
+ plt.figure(figsize=[9,6])
72
+ plt.scatter(X_train,phi(X_train))
73
+ plt.xlabel("X_train")
74
+ plt.title(f"phi function on the full trainset after {rd} rounds")
75
+
76
+
77
+ #Metrics
78
+
79
+ def MAPE(X_test,y_test,h):
80
+ acc_per_i=sum(abs(h(X_test)-y_test)/abs(y_test))
81
+ acc_per_i = acc_per_i[0]/len(y_test)
82
+ return acc_per_i
83
+
84
+
85
+ def MAE(X_test,y_test,h):
86
+ acc_i = sum(abs((h(X_test)-y_test)))
87
+ acc_i = acc_i[0]/len(y_test)
88
+ return acc_i
89
+
90
+ def RMSE(X_test,y_test,h):
91
+ acc_i = ((h(X_test)-y_test)**2).mean()
92
+ return torch.sqrt(acc_i)
93
+
94
+
WAR/Models.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torchvision
4
+ from monotonenorm import GroupSort, direct_norm
5
+
6
+
7
+ # GroupSort Neural Networks created using monotonenorm package.
8
+ #See https://github.com/niklasnolte/MonotoneNorm for more information
9
+
10
+ class NN_phi(nn.Module):
11
+
12
+ def __init__(self,dim_input):
13
+
14
+
15
+ super(NN_phi, self).__init__()
16
+ self.linear1=direct_norm(torch.nn.Linear(dim_input,16),kind="two-inf")
17
+ self.group1=GroupSort(16//2)#GroupSort with a grouping size of 2
18
+ self.linear2=direct_norm(torch.nn.Linear(16,32),kind="inf")
19
+ self.group2=GroupSort(32//2)
20
+ self.linear3=direct_norm(torch.nn.Linear(32,1),kind="inf")
21
+
22
+
23
+ def forward(self, x):
24
+ x=self.linear1(x)
25
+ x=self.group1(x)
26
+ x=self.linear2(x)
27
+ x=self.group2(x)
28
+ x=self.linear3(x)
29
+
30
+ return x
31
+
32
+
33
+
34
+ class NN_h_RELU(nn.Module):
35
+ def __init__(self,dim_input):
36
+
37
+
38
+ super(NN_h_RELU, self).__init__()
39
+
40
+
41
+ self.linear1=torch.nn.Linear(dim_input,16)
42
+ self.RELU=torch.nn.ReLU()
43
+ self.linear2=torch.nn.Linear(16,32)
44
+ self.linear3=torch.nn.Linear(32,1)
45
+
46
+
47
+
48
+
49
+ def forward(self, x):
50
+ x=self.linear1(x)
51
+ x=self.RELU(x)
52
+ x=self.linear2(x)
53
+ x=self.RELU(x)
54
+ x=self.linear3(x)
55
+
56
+ return x
57
+
WAR/__pycache__/EarlyStop.cpython-39.pyc ADDED
Binary file (844 Bytes). View file
 
WAR/__pycache__/Experiment_functions.cpython-39.pyc ADDED
Binary file (3.38 kB). View file
 
WAR/__pycache__/Models.cpython-39.pyc ADDED
Binary file (1.62 kB). View file
 
WAR/__pycache__/dataset_handler.cpython-39.pyc ADDED
Binary file (4.15 kB). View file
 
WAR/__pycache__/full_training_process.cpython-39.pyc ADDED
Binary file (3.44 kB). View file
 
WAR/__pycache__/training.cpython-39.pyc ADDED
Binary file (5.26 kB). View file
 
WAR/__pycache__/training_and_query.cpython-39.pyc ADDED
Binary file (6.05 kB). View file
 
WAR/dataset_handler.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import Dataset
3
+ import random
4
+ import numpy as np
5
+ import pandas as pd
6
+
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.decomposition import PCA
9
+ from sklearn.preprocessing import MinMaxScaler
10
+ from sklearn import datasets
11
+
12
+
13
+ def import_dataset(name):# import dataset among a list a available ones
14
+
15
+ if name=="boston":
16
+ data_url = "http://lib.stat.cmu.edu/datasets/boston"
17
+ raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
18
+ data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
19
+ target = raw_df.values[1::2, 2]
20
+ y_boston=target
21
+ X_boston=data
22
+ y_boston=torch.Tensor(y_boston).view(len(y_boston),1).float()
23
+ X_boston=torch.Tensor(X_boston).float()
24
+ return X_boston,y_boston
25
+
26
+ if name=="airfoil":
27
+ columns_names=["Frequency","Angle of attack","Chord length","Free-stream velocity","Suction side displacement thickness","sound pressure level"]
28
+ airfoil=pd.read_csv('datasets/airfoil_self_noise.dat',sep='\t',names=columns_names)
29
+ y_airfoil=airfoil["sound pressure level"]
30
+ X_airfoil=airfoil.drop("sound pressure level",axis=1)
31
+ y_airfoil=torch.Tensor(y_airfoil).view(len(y_airfoil),1).float()
32
+ X_airfoil=torch.Tensor(X_airfoil.values).float()
33
+ return X_airfoil,y_airfoil
34
+
35
+ if name=="energy1":
36
+ energy=pd.read_csv('datasets/energy efficiency.csv')
37
+ y_energy=energy["Y1"]
38
+ X_energy=energy.drop(["Y2","Y1"],axis=1)
39
+ y_energy=torch.Tensor(y_energy).view(len(y_energy),1).float()
40
+ X_energy=torch.Tensor(X_energy.values).float()
41
+ return X_energy,y_energy
42
+
43
+ if name=="energy2":# other target function
44
+ energy=pd.read_csv('datasets/energy efficiency.csv')
45
+ y_energy=energy["Y2"]
46
+ X_energy=energy.drop(["Y2","Y1"],axis=1)
47
+ y_energy=torch.Tensor(y_energy).view(len(y_energy),1).float()
48
+ X_energy=torch.Tensor(X_energy.values).float()
49
+ return X_energy,y_energy
50
+
51
+ if name=="yacht":
52
+ yacht=pd.read_csv('datasets/yacht_hydrodynamics.data',sep=' ',header=None)
53
+ y_yacht=yacht[6]
54
+ X_yacht=yacht.drop([6],axis=1)
55
+ y_yacht=torch.Tensor(y_yacht).view(len(y_yacht),1).float()
56
+ X_yacht=torch.Tensor(X_yacht.values).float()
57
+ return X_yacht,y_yacht
58
+
59
+ if name=="concrete_slump":
60
+ concrete=pd.read_csv('datasets/slump_test.data',sep=',')
61
+ y_concrete=concrete["SLUMP(cm)"]
62
+ X_concrete=concrete.drop(["No","SLUMP(cm)","FLOW(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
63
+ y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
64
+ X_concrete=torch.Tensor(X_concrete.values).float()
65
+ return X_concrete,y_concrete
66
+
67
+ if name=="concrete_flow":#other target function
68
+ concrete=pd.read_csv('datasets/slump_test.data',sep=',')
69
+ y_concrete=concrete["FLOW(cm)"]
70
+ X_concrete=concrete.drop(["No","FLOW(cm)","SLUMP(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
71
+ y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
72
+ X_concrete=torch.Tensor(X_concrete.values).float()
73
+ return X_concrete,y_concrete
74
+
75
+ if name=="concrete_compressive":#other target function
76
+ concrete=pd.read_csv('datasets/slump_test.data',sep=',')
77
+ y_concrete=concrete["Compressive Strength (28-day)(Mpa)"]
78
+ X_concrete=concrete.drop(["No","FLOW(cm)","SLUMP(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
79
+ y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
80
+ X_concrete=torch.Tensor(X_concrete.values).float()
81
+ return X_concrete,y_concrete
82
+ if name=="x_squared":
83
+
84
+ data_generated=100
85
+ x_b=torch.tensor([random.random() for i in range(data_generated)])
86
+ x_carré_b=x_b.view(x_b.size()[0],1)
87
+ y_carré_b=(x_b**2 + torch.tensor([np.random.normal(loc=0,scale=0.05) for i in range(data_generated)])).view(x_b.size()[0],1)
88
+ return x_carré_b,y_carré_b
89
+
90
+ if name=="news_popularity":
91
+ news=pd.read_csv('datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv')
92
+ y_news=news[" shares"]
93
+ X_news=news.drop([" shares","url"," timedelta"],axis=1)
94
+ y_news=torch.Tensor(y_news).view(len(y_news),1).float()
95
+ X_news=torch.Tensor(X_news.values).float()
96
+ return X_news,y_news
97
+
98
+ def get_dataset(proportion=0.2,dataset="boston"):# scale and process the data
99
+
100
+ scaler = MinMaxScaler()
101
+ X,y=import_dataset(dataset)
102
+ X=torch.Tensor(scaler.fit_transform(X))
103
+ X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=proportion)
104
+ print(f"Shape of the training set: {X_train.shape}")
105
+ return X_train,X_test,y_train,y_test
106
+
107
+
108
+
109
+ class myData(Dataset):
110
+
111
+ def __init__(self,x,y):
112
+ self.x=x
113
+ self.y=y
114
+ self.shape=x.size(0)
115
+
116
+ def __getitem__(self,index):
117
+ return self.x[index],self.y[index]
118
+
119
+ def __len__(self):
120
+ return self.shape
121
+
122
+
123
+
124
+
WAR/full_training_process.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import warnings
3
+ import torch.optim as optim
4
+ import torch
5
+ from WAR.Models import NN_phi,NN_h_RELU
6
+ from WAR.Experiment_functions import *
7
+
8
+
9
+
10
+ def full_training(strategy,num_round,show_losses,show_chosen_each_round,
11
+ reset_phi,reset_h,weight_decay,lr_h=None,lr_phi=None,reduced=False,eta=1
12
+ ):
13
+
14
+ """
15
+ strategy: an object of class WAR
16
+ num_round: total number of query rounds
17
+ show_losses: display graphs showing the loss of h and phi each rounds
18
+ show_chosen_each_round:display a graph showing the data queried each round
19
+ reset_phi: if True, the phi neural network is reset after each round. can avoir overfitting but increase the number of epochs required to train the model
20
+ reset_h:if True, the h neural network is reset after each round. can avoir overfitting but increase the number of epochs required to train the model
21
+ lr_h: learning rate of h
22
+ lr_phi: learning rate of phi
23
+ reduced: will divide each query criterion by their standard deviation. In the case where they don't have the same amplitude, This will give them the same weight in the querying process. Irrelevant parameter if there is only one query criterion
24
+ eta:factor used to rebalance the criteria. If >1, distribution matching criterion gets more weight than the other(s). Irrelevant parameter if there is only one query criterion.
25
+
26
+ """
27
+ t1_descend_list=[]
28
+ t2_ascend_list=[]
29
+ acc = []# MAE
30
+ acc_percentage=[] #MAPE
31
+ acc_rmse=[] #RMSE
32
+
33
+ only_train=False
34
+
35
+ for rd in range(1,num_round+1):
36
+
37
+ print('\n================Round {:d}==============='.format(rd))
38
+
39
+ # if not enough unlabelled data to query a full batch, we will query the remaining data
40
+ if len(np.arange(strategy.n_pool)[~strategy.idx_lb])<=strategy.num_elem_queried:
41
+ only_train=True
42
+
43
+ #reset neural networks
44
+ if reset_phi==True:
45
+ strategy.phi=NN_phi(dim_input=strategy.X_train.shape[1])
46
+ strategy.opti_phi = optim.Adam(strategy.phi.parameters(), lr=lr_phi,maximize=True)
47
+
48
+
49
+ if reset_h==True:
50
+ strategy.h=NN_h_RELU(dim_input=strategy.X_train.shape[1])
51
+ strategy.opti_h = optim.Adam(strategy.h.parameters(), lr=lr_h,weight_decay=weight_decay)
52
+
53
+
54
+ t1,t2,b_idxs=strategy.train(only_train,reduced,eta)
55
+
56
+
57
+ t1_descend_list.append(t1)
58
+ t2_ascend_list.append(t2)
59
+ if only_train==True:
60
+ strategy.idx_lb[:]= True
61
+ else:
62
+
63
+ strategy.idx_lb[b_idxs] = True #"simulation" of the oracle who label the queried samples
64
+
65
+ with torch.no_grad():
66
+ if show_losses:
67
+ display_loss_t1(t1,rd)
68
+ display_loss_t2(t2,rd)
69
+
70
+ if show_chosen_each_round:
71
+ if strategy.X_train.shape[1]==1:
72
+ #display_phi(strategy.X_train,strategy.phi,rd)
73
+ display_chosen_labelled_datas(strategy.X_train.cpu(),strategy.idx_lb,strategy.y_train.cpu(),b_idxs,rd)
74
+ #display_prediction(strategy.X_test,strategy.h,strategy.y_test,rd)
75
+
76
+ else:
77
+ display_chosen_labelled_datas_PCA(strategy.X_train.cpu(),strategy.idx_lb,strategy.y_train.cpu(),b_idxs,rd)
78
+
79
+
80
+ acc_rmse.append(RMSE(strategy.X_test,strategy.y_test,strategy.h).cpu())
81
+ acc.append(MAE(strategy.X_test,strategy.y_test,strategy.h).cpu())
82
+ acc_percentage.append(MAPE(strategy.X_test,strategy.y_test,strategy.h).cpu())
83
+
84
+
85
+ print('\n================Final training===============')
86
+
87
+
88
+
89
+ t1,t2,_=strategy.train(only_train,reduced,eta)
90
+
91
+ t1_descend_list.append(t1)
92
+ t2_ascend_list.append(t2)
93
+
94
+ with torch.no_grad():
95
+ #display_loss_t1(t1,rd)
96
+ #display_prediction(strategy.X_test,strategy.h,strategy.y_test,"final")
97
+
98
+ acc.append(MAE(strategy.X_test,strategy.y_test,strategy.h).cpu())
99
+ acc_percentage.append(MAPE(strategy.X_test,strategy.y_test,strategy.h).cpu())
100
+ acc_rmse.append(RMSE(strategy.X_test,strategy.y_test,strategy.h).cpu())
101
+
102
+
103
+ return acc,acc_percentage, acc_rmse,t1_descend_list,t2_ascend_list
104
+
105
+
106
+
107
+
108
+
109
+
110
+ def check_num_round(num_round,len_dataset,nb_initial_labelled_datas,num_elem_queried):
111
+ max_round=int(np.ceil((len_dataset-nb_initial_labelled_datas)/num_elem_queried))
112
+ if num_round>max_round:
113
+ warnings.warn(f"when querying {num_elem_queried} data per round, num_rounds={num_round} is exceeding"+
114
+ f" the maximum number of rounds (total data queried superior to number of initial unlabelled data).\nnum_round set to {max_round}")
115
+ num_round=max_round
116
+ return num_round
WAR/training_and_query.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader
5
+ import itertools
6
+
7
+ from WAR.Experiment_functions import display_phi
8
+ from WAR.dataset_handler import myData
9
+
10
+
11
+ class WAR:
12
+
13
+ def __init__(self,X_train,y_train,X_test,y_test,idx_lb,total_epoch_h,total_epoch_phi,batch_size_train,num_elem_queried
14
+ ,phi,h,opti_phi,opti_h,second_query_strategy=None):
15
+
16
+ """
17
+ device: device on which to train the model.
18
+ X_train: trainset.
19
+ Y_train: labels of the trainset
20
+ idx_lb: indices of the trainset that would be considered as labelled.
21
+ n_pool: length of the trainset.
22
+ total_epoch_h: number of epochs to train h.
23
+ total_epoch_phi: number of epochs to train phi.
24
+ batch_size_train: size of the batch in the training process.
25
+ num_elem_queried: number of elem queried each round.
26
+ phi: phi neural network.
27
+ h: h neural network.
28
+ opti_phi: phi optimizer.
29
+ opti_h: h optimizer.
30
+ cost: define the cost function for both neural network. "MSE" or MAE".
31
+ second_query_strategy: second strategy to assist our distribution-matching criterion.
32
+ """
33
+
34
+ self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
35
+ self.X_train = X_train.to(self.device)
36
+ self.y_train = y_train.to(self.device)
37
+ self.X_test=X_test.to(self.device)
38
+ self.y_test=y_test.to(self.device)
39
+ self.idx_lb = idx_lb
40
+ self.n_pool = len(y_train)
41
+ self.total_epoch_h=total_epoch_h
42
+ self.total_epoch_phi=total_epoch_phi
43
+ self.batch_size_train=batch_size_train
44
+ self.num_elem_queried=num_elem_queried
45
+ self.phi=phi.to(self.device)
46
+ self.h=h.to(self.device)
47
+ self.opti_phi=opti_phi
48
+ self.opti_h=opti_h
49
+ self.cost="MSE"
50
+ self.second_query_strategy=second_query_strategy
51
+
52
+
53
+
54
+
55
+ #cost function used to train both phi and h
56
+ def cost_func(self,predicted,true):
57
+ if self.cost=="MSE":
58
+ return (predicted-true)**2
59
+ elif self.cost=="MAE":
60
+ return abs(predicted-true)
61
+ else:
62
+ raise Exception("invalid cost function")
63
+
64
+
65
+
66
+
67
+ def train(self,only_train=False,reduced=True,eta=3):# train function for one round
68
+
69
+ """
70
+ only_train: activite when there is no more unlabelled data in the trainset. Will only train h and not train phi or query data.
71
+ reduced: will divide each query criterion by their standard deviation. In the case where they don't have the same amplitude, This will give them the same weight in the querying process. Irrelevant parameter if there is only one query criterion (self.second_query_strategy=None).
72
+ eta:factor used to rebalance the criteria. If >1, distribution matching criterion gets more weight than the other(s). Irrelevant parameter if there is only one query criterion.
73
+
74
+ """
75
+ #recover loss
76
+ t1_descend=[]
77
+ t2_ascend=[]
78
+
79
+ # separating labelled and unlabelled data respectively
80
+ idx_lb_train = np.arange(self.n_pool)[self.idx_lb]
81
+ idx_ulb_train = np.arange(self.n_pool)[~self.idx_lb]
82
+
83
+
84
+ trainset_labelled=myData(self.X_train[idx_lb_train],self.y_train[idx_lb_train])
85
+ trainloader_labelled= DataLoader(trainset_labelled,shuffle=True,batch_size=self.batch_size_train)
86
+
87
+ for epoch in range(self.total_epoch_h):
88
+
89
+ for i,data in enumerate(trainloader_labelled,0):
90
+ label_x, label_y=data
91
+ self.opti_h.zero_grad()
92
+ # T1 (train h)
93
+ lb_out = self.h(label_x)
94
+ h_descent=torch.mean(self.cost_func(lb_out,label_y))
95
+ t1_descend.append(h_descent.detach().cpu())
96
+ h_descent.backward()
97
+ self.opti_h.step()
98
+
99
+
100
+ b_idxs=[]# batch of queried points
101
+ if not only_train:
102
+ #T2 (train phi)
103
+
104
+ # temporary set of labelled data indices. Used only to retrain phi during the time oracle has not been called.
105
+ #h is no retrained during this time.
106
+ idxs_temp=self.idx_lb.copy()
107
+
108
+ for elem_queried in range(self.num_elem_queried):
109
+
110
+ trainset_total=myData(self.X_train,self.y_train)
111
+ trainloader_total= DataLoader(trainset_total,shuffle=True,batch_size=len(trainset_total))
112
+ trainset_labelled=myData(self.X_train[idx_lb_train],self.y_train[idx_lb_train])
113
+ trainloader_labelled= DataLoader(trainset_labelled,shuffle=True,batch_size=self.batch_size_train)
114
+ for epoch in range(self.total_epoch_phi):
115
+ iterator_total_phi=itertools.cycle(trainloader_total)
116
+ iterator_labelled_phi=itertools.cycle(trainloader_labelled)
117
+ for i in range(len(trainloader_labelled)):
118
+ label_x,label_y = next(iterator_labelled_phi)
119
+ total_x,total_y = next(iterator_total_phi)
120
+ #display_phi(self.X_train,self.phi)
121
+ self.opti_phi.zero_grad()
122
+ phi_ascent = (torch.mean(self.phi(total_x))-torch.mean(self.phi(label_x)))
123
+ t2_ascend.append(phi_ascent.detach().cpu())
124
+ phi_ascent.backward()
125
+ self.opti_phi.step()
126
+
127
+ # Query process
128
+ b_queried=self.query(reduced,eta,idx_ulb_train)# query one element
129
+ idxs_temp[b_queried]=True #add it to the temporary set of labeled point indices indices
130
+ idx_ulb_train = np.arange(self.n_pool)[~idxs_temp] #update the set of unlabeled point indices
131
+ idx_lb_train = np.arange(self.n_pool)[idxs_temp] #update the set of labeled point indices
132
+ b_idxs.append(b_queried)#add the chosen point in the batch
133
+ self.idx_lb=idxs_temp#end of the query process: update the true set of labeled point indices indices
134
+ return t1_descend,t2_ascend,b_idxs
135
+
136
+
137
+
138
+ def query(self,reduced,eta,idx_ulb_train):# computing T3: query one point according to the chosen query criteria
139
+
140
+
141
+ """
142
+ reduced:same as for function "train"
143
+ eta: sme as for function "train"
144
+ idx_ulb_train:indices of unlabeled points
145
+
146
+ """
147
+
148
+ if self.second_query_strategy=="loss_approximation":
149
+ second_query_criterion = self.predict_loss(self.X_train[idx_ulb_train])
150
+
151
+ with torch.no_grad():
152
+ phi_scores = self.phi(self.X_train[idx_ulb_train]).view(-1)
153
+
154
+ if reduced and self.second_query_strategy!=None:
155
+ phi_scores_reduced=phi_scores/torch.std(phi_scores)
156
+ second_query_criterion_reduced=second_query_criterion/torch.std(second_query_criterion)
157
+ total_scores =-(eta*phi_scores_reduced+second_query_criterion_reduced )
158
+
159
+ elif self.second_query_strategy!=None:
160
+ total_scores =-(eta*phi_scores+second_query_criterion)
161
+
162
+ else:
163
+ total_scores =-eta*phi_scores
164
+
165
+ b=torch.argmin(total_scores)
166
+
167
+ return idx_ulb_train[b]
168
+
169
+
170
+ def predict_loss(self,X):# Second query criterion which act as loss estimator (uncertainty and diversity-based sampling)
171
+
172
+ """
173
+ X: set of unlabeled elements of the trainset
174
+
175
+ """
176
+
177
+ idxs_lb=np.arange(self.n_pool)[self.idx_lb]#get labeled data indices
178
+ losses=[]
179
+ with torch.no_grad():
180
+ for i in X:
181
+ idx_nearest_Xk,dist=self.Idx_NearestP(i,idxs_lb)
182
+ losses.append(self.Max_cost_B(idx_nearest_Xk,dist,i))
183
+
184
+ return torch.Tensor(losses).to(self.device)
185
+
186
+ def Idx_NearestP(self,Xu,idxs_lb):# Return the closest labeled point to the unlabeled point
187
+
188
+
189
+ """
190
+ Xu:unlabeled point
191
+ idxs_lb: indices of labeled points
192
+
193
+ """
194
+
195
+ distances=[]
196
+ for i in idxs_lb:
197
+ distances.append(torch.norm(Xu-self.X_train[i]))
198
+
199
+ return idxs_lb[distances.index(min(distances))],float(min(distances))
200
+
201
+
202
+
203
+ def Max_cost_B(self,idx_Xk,distance,i):#return the "maximum loss" of the unlabeled point
204
+
205
+ """
206
+ idx_Xk: labeled point indice nearest to the unlabeled point
207
+ distance: distance between them
208
+ i:unlabeled point
209
+
210
+ """
211
+
212
+ est_h_unl_X=self.h(i)
213
+ true_value_labelled_X=self.y_train[idx_Xk]
214
+ bound_min= true_value_labelled_X-distance
215
+ bound_max= true_value_labelled_X+distance
216
+ return max(self.cost_func(est_h_unl_X,bound_min),self.cost_func(est_h_unl_X,bound_max))[0]
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:011c4f45de56844f346f232dc455ce6fc88a7c610ac57ad16f31c6b19c2ca435
3
+ size 16874641
datasets/OnlineNewsPopularity/OnlineNewsPopularity.names ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1. Title: Online News Popularity
2
+
3
+ 2. Source Information
4
+ -- Creators: Kelwin Fernandes (kafc ‘@’ inesctec.pt, kelwinfc ’@’ gmail.com),
5
+ Pedro Vinagre (pedro.vinagre.sousa ’@’ gmail.com) and
6
+ Pedro Sernadela
7
+ -- Donor: Kelwin Fernandes (kafc ’@’ inesctec.pt, kelwinfc '@' gmail.com)
8
+ -- Date: May, 2015
9
+
10
+ 3. Past Usage:
11
+ 1. K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision
12
+ Support System for Predicting the Popularity of Online News. Proceedings
13
+ of the 17th EPIA 2015 - Portuguese Conference on Artificial Intelligence,
14
+ September, Coimbra, Portugal.
15
+
16
+ -- Results:
17
+ -- Binary classification as popular vs unpopular using a decision
18
+ threshold of 1400 social interactions.
19
+ -- Experiments with different models: Random Forest (best model),
20
+ Adaboost, SVM, KNN and Naïve Bayes.
21
+ -- Recorded 67% of accuracy and 0.73 of AUC.
22
+ - Predicted attribute: online news popularity (boolean)
23
+
24
+ 4. Relevant Information:
25
+ -- The articles were published by Mashable (www.mashable.com) and their
26
+ content as the rights to reproduce it belongs to them. Hence, this
27
+ dataset does not share the original content but some statistics
28
+ associated with it. The original content be publicly accessed and
29
+ retrieved using the provided urls.
30
+ -- Acquisition date: January 8, 2015
31
+ -- The estimated relative performance values were estimated by the authors
32
+ using a Random Forest classifier and a rolling windows as assessment
33
+ method. See their article for more details on how the relative
34
+ performance values were set.
35
+
36
+ 5. Number of Instances: 39797
37
+
38
+ 6. Number of Attributes: 61 (58 predictive attributes, 2 non-predictive,
39
+ 1 goal field)
40
+
41
+ 7. Attribute Information:
42
+ 0. url: URL of the article
43
+ 1. timedelta: Days between the article publication and
44
+ the dataset acquisition
45
+ 2. n_tokens_title: Number of words in the title
46
+ 3. n_tokens_content: Number of words in the content
47
+ 4. n_unique_tokens: Rate of unique words in the content
48
+ 5. n_non_stop_words: Rate of non-stop words in the content
49
+ 6. n_non_stop_unique_tokens: Rate of unique non-stop words in the
50
+ content
51
+ 7. num_hrefs: Number of links
52
+ 8. num_self_hrefs: Number of links to other articles
53
+ published by Mashable
54
+ 9. num_imgs: Number of images
55
+ 10. num_videos: Number of videos
56
+ 11. average_token_length: Average length of the words in the
57
+ content
58
+ 12. num_keywords: Number of keywords in the metadata
59
+ 13. data_channel_is_lifestyle: Is data channel 'Lifestyle'?
60
+ 14. data_channel_is_entertainment: Is data channel 'Entertainment'?
61
+ 15. data_channel_is_bus: Is data channel 'Business'?
62
+ 16. data_channel_is_socmed: Is data channel 'Social Media'?
63
+ 17. data_channel_is_tech: Is data channel 'Tech'?
64
+ 18. data_channel_is_world: Is data channel 'World'?
65
+ 19. kw_min_min: Worst keyword (min. shares)
66
+ 20. kw_max_min: Worst keyword (max. shares)
67
+ 21. kw_avg_min: Worst keyword (avg. shares)
68
+ 22. kw_min_max: Best keyword (min. shares)
69
+ 23. kw_max_max: Best keyword (max. shares)
70
+ 24. kw_avg_max: Best keyword (avg. shares)
71
+ 25. kw_min_avg: Avg. keyword (min. shares)
72
+ 26. kw_max_avg: Avg. keyword (max. shares)
73
+ 27. kw_avg_avg: Avg. keyword (avg. shares)
74
+ 28. self_reference_min_shares: Min. shares of referenced articles in
75
+ Mashable
76
+ 29. self_reference_max_shares: Max. shares of referenced articles in
77
+ Mashable
78
+ 30. self_reference_avg_sharess: Avg. shares of referenced articles in
79
+ Mashable
80
+ 31. weekday_is_monday: Was the article published on a Monday?
81
+ 32. weekday_is_tuesday: Was the article published on a Tuesday?
82
+ 33. weekday_is_wednesday: Was the article published on a Wednesday?
83
+ 34. weekday_is_thursday: Was the article published on a Thursday?
84
+ 35. weekday_is_friday: Was the article published on a Friday?
85
+ 36. weekday_is_saturday: Was the article published on a Saturday?
86
+ 37. weekday_is_sunday: Was the article published on a Sunday?
87
+ 38. is_weekend: Was the article published on the weekend?
88
+ 39. LDA_00: Closeness to LDA topic 0
89
+ 40. LDA_01: Closeness to LDA topic 1
90
+ 41. LDA_02: Closeness to LDA topic 2
91
+ 42. LDA_03: Closeness to LDA topic 3
92
+ 43. LDA_04: Closeness to LDA topic 4
93
+ 44. global_subjectivity: Text subjectivity
94
+ 45. global_sentiment_polarity: Text sentiment polarity
95
+ 46. global_rate_positive_words: Rate of positive words in the content
96
+ 47. global_rate_negative_words: Rate of negative words in the content
97
+ 48. rate_positive_words: Rate of positive words among non-neutral
98
+ tokens
99
+ 49. rate_negative_words: Rate of negative words among non-neutral
100
+ tokens
101
+ 50. avg_positive_polarity: Avg. polarity of positive words
102
+ 51. min_positive_polarity: Min. polarity of positive words
103
+ 52. max_positive_polarity: Max. polarity of positive words
104
+ 53. avg_negative_polarity: Avg. polarity of negative words
105
+ 54. min_negative_polarity: Min. polarity of negative words
106
+ 55. max_negative_polarity: Max. polarity of negative words
107
+ 56. title_subjectivity: Title subjectivity
108
+ 57. title_sentiment_polarity: Title polarity
109
+ 58. abs_title_subjectivity: Absolute subjectivity level
110
+ 59. abs_title_sentiment_polarity: Absolute polarity level
111
+ 60. shares: Number of shares (target)
112
+
113
+ 8. Missing Attribute Values: None
114
+
115
+ 9. Class Distribution: the class value (shares) is continuously valued. We
116
+ transformed the task into a binary task using a decision
117
+ threshold of 1400.
118
+
119
+ Shares Value Range: Number of Instances in Range:
120
+ < 1400 18490
121
+ >= 1400 21154
122
+
123
+
124
+ Summary Statistics:
125
+ Feature Min Max Mean SD
126
+ timedelta 8.0000 731.0000 354.5305 214.1611
127
+ n_tokens_title 2.0000 23.0000 10.3987 2.1140
128
+ n_tokens_content 0.0000 8474.0000 546.5147 471.1016
129
+ n_unique_tokens 0.0000 701.0000 0.5482 3.5207
130
+ n_non_stop_words 0.0000 1042.0000 0.9965 5.2312
131
+ n_non_stop_unique_tokens 0.0000 650.0000 0.6892 3.2648
132
+ num_hrefs 0.0000 304.0000 10.8837 11.3319
133
+ num_self_hrefs 0.0000 116.0000 3.2936 3.8551
134
+ num_imgs 0.0000 128.0000 4.5441 8.3093
135
+ num_videos 0.0000 91.0000 1.2499 4.1078
136
+ average_token_length 0.0000 8.0415 4.5482 0.8444
137
+ num_keywords 1.0000 10.0000 7.2238 1.9091
138
+ data_channel_is_lifestyle 0.0000 1.0000 0.0529 0.2239
139
+ data_channel_is_entertainment 0.0000 1.0000 0.1780 0.3825
140
+ data_channel_is_bus 0.0000 1.0000 0.1579 0.3646
141
+ data_channel_is_socmed 0.0000 1.0000 0.0586 0.2349
142
+ data_channel_is_tech 0.0000 1.0000 0.1853 0.3885
143
+ data_channel_is_world 0.0000 1.0000 0.2126 0.4091
144
+ kw_min_min -1.0000 377.0000 26.1068 69.6323
145
+ kw_max_min 0.0000 298400.0000 1153.9517 3857.9422
146
+ kw_avg_min -1.0000 42827.8571 312.3670 620.7761
147
+ kw_min_max 0.0000 843300.0000 13612.3541 57985.2980
148
+ kw_max_max 0.0000 843300.0000 752324.0667 214499.4242
149
+ kw_avg_max 0.0000 843300.0000 259281.9381 135100.5433
150
+ kw_min_avg -1.0000 3613.0398 1117.1466 1137.4426
151
+ kw_max_avg 0.0000 298400.0000 5657.2112 6098.7950
152
+ kw_avg_avg 0.0000 43567.6599 3135.8586 1318.1338
153
+ self_reference_min_shares 0.0000 843300.0000 3998.7554 19738.4216
154
+ self_reference_max_shares 0.0000 843300.0000 10329.2127 41027.0592
155
+ self_reference_avg_sharess 0.0000 843300.0000 6401.6976 24211.0269
156
+ weekday_is_monday 0.0000 1.0000 0.1680 0.3739
157
+ weekday_is_tuesday 0.0000 1.0000 0.1864 0.3894
158
+ weekday_is_wednesday 0.0000 1.0000 0.1875 0.3903
159
+ weekday_is_thursday 0.0000 1.0000 0.1833 0.3869
160
+ weekday_is_friday 0.0000 1.0000 0.1438 0.3509
161
+ weekday_is_saturday 0.0000 1.0000 0.0619 0.2409
162
+ weekday_is_sunday 0.0000 1.0000 0.0690 0.2535
163
+ is_weekend 0.0000 1.0000 0.1309 0.3373
164
+ LDA_00 0.0000 0.9270 0.1846 0.2630
165
+ LDA_01 0.0000 0.9259 0.1413 0.2197
166
+ LDA_02 0.0000 0.9200 0.2163 0.2821
167
+ LDA_03 0.0000 0.9265 0.2238 0.2952
168
+ LDA_04 0.0000 0.9272 0.2340 0.2892
169
+ global_subjectivity 0.0000 1.0000 0.4434 0.1167
170
+ global_sentiment_polarity -0.3937 0.7278 0.1193 0.0969
171
+ global_rate_positive_words 0.0000 0.1555 0.0396 0.0174
172
+ global_rate_negative_words 0.0000 0.1849 0.0166 0.0108
173
+ rate_positive_words 0.0000 1.0000 0.6822 0.1902
174
+ rate_negative_words 0.0000 1.0000 0.2879 0.1562
175
+ avg_positive_polarity 0.0000 1.0000 0.3538 0.1045
176
+ min_positive_polarity 0.0000 1.0000 0.0954 0.0713
177
+ max_positive_polarity 0.0000 1.0000 0.7567 0.2478
178
+ avg_negative_polarity -1.0000 0.0000 -0.2595 0.1277
179
+ min_negative_polarity -1.0000 0.0000 -0.5219 0.2903
180
+ max_negative_polarity -1.0000 0.0000 -0.1075 0.0954
181
+ title_subjectivity 0.0000 1.0000 0.2824 0.3242
182
+ title_sentiment_polarity -1.0000 1.0000 0.0714 0.2654
183
+ abs_title_subjectivity 0.0000 0.5000 0.3418 0.1888
184
+ abs_title_sentiment_polarity 0.0000 1.0000 0.1561 0.2263
185
+
186
+
187
+ Citation Request:
188
+
189
+ Please include this citation if you plan to use this database:
190
+
191
+ K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision
192
+ Support System for Predicting the Popularity of Online News. Proceedings
193
+ of the 17th EPIA 2015 - Portuguese Conference on Artificial Intelligence,
194
+ September, Coimbra, Portugal.
datasets/airfoil_self_noise.dat ADDED
@@ -0,0 +1,1503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 800 0 0.3048 71.3 0.00266337 126.201
2
+ 1000 0 0.3048 71.3 0.00266337 125.201
3
+ 1250 0 0.3048 71.3 0.00266337 125.951
4
+ 1600 0 0.3048 71.3 0.00266337 127.591
5
+ 2000 0 0.3048 71.3 0.00266337 127.461
6
+ 2500 0 0.3048 71.3 0.00266337 125.571
7
+ 3150 0 0.3048 71.3 0.00266337 125.201
8
+ 4000 0 0.3048 71.3 0.00266337 123.061
9
+ 5000 0 0.3048 71.3 0.00266337 121.301
10
+ 6300 0 0.3048 71.3 0.00266337 119.541
11
+ 8000 0 0.3048 71.3 0.00266337 117.151
12
+ 10000 0 0.3048 71.3 0.00266337 115.391
13
+ 12500 0 0.3048 71.3 0.00266337 112.241
14
+ 16000 0 0.3048 71.3 0.00266337 108.721
15
+ 500 0 0.3048 55.5 0.00283081 126.416
16
+ 630 0 0.3048 55.5 0.00283081 127.696
17
+ 800 0 0.3048 55.5 0.00283081 128.086
18
+ 1000 0 0.3048 55.5 0.00283081 126.966
19
+ 1250 0 0.3048 55.5 0.00283081 126.086
20
+ 1600 0 0.3048 55.5 0.00283081 126.986
21
+ 2000 0 0.3048 55.5 0.00283081 126.616
22
+ 2500 0 0.3048 55.5 0.00283081 124.106
23
+ 3150 0 0.3048 55.5 0.00283081 123.236
24
+ 4000 0 0.3048 55.5 0.00283081 121.106
25
+ 5000 0 0.3048 55.5 0.00283081 119.606
26
+ 6300 0 0.3048 55.5 0.00283081 117.976
27
+ 8000 0 0.3048 55.5 0.00283081 116.476
28
+ 10000 0 0.3048 55.5 0.00283081 113.076
29
+ 12500 0 0.3048 55.5 0.00283081 111.076
30
+ 200 0 0.3048 39.6 0.00310138 118.129
31
+ 250 0 0.3048 39.6 0.00310138 119.319
32
+ 315 0 0.3048 39.6 0.00310138 122.779
33
+ 400 0 0.3048 39.6 0.00310138 124.809
34
+ 500 0 0.3048 39.6 0.00310138 126.959
35
+ 630 0 0.3048 39.6 0.00310138 128.629
36
+ 800 0 0.3048 39.6 0.00310138 129.099
37
+ 1000 0 0.3048 39.6 0.00310138 127.899
38
+ 1250 0 0.3048 39.6 0.00310138 125.499
39
+ 1600 0 0.3048 39.6 0.00310138 124.049
40
+ 2000 0 0.3048 39.6 0.00310138 123.689
41
+ 2500 0 0.3048 39.6 0.00310138 121.399
42
+ 3150 0 0.3048 39.6 0.00310138 120.319
43
+ 4000 0 0.3048 39.6 0.00310138 119.229
44
+ 5000 0 0.3048 39.6 0.00310138 117.789
45
+ 6300 0 0.3048 39.6 0.00310138 116.229
46
+ 8000 0 0.3048 39.6 0.00310138 114.779
47
+ 10000 0 0.3048 39.6 0.00310138 112.139
48
+ 12500 0 0.3048 39.6 0.00310138 109.619
49
+ 200 0 0.3048 31.7 0.00331266 117.195
50
+ 250 0 0.3048 31.7 0.00331266 118.595
51
+ 315 0 0.3048 31.7 0.00331266 122.765
52
+ 400 0 0.3048 31.7 0.00331266 125.045
53
+ 500 0 0.3048 31.7 0.00331266 127.315
54
+ 630 0 0.3048 31.7 0.00331266 129.095
55
+ 800 0 0.3048 31.7 0.00331266 129.235
56
+ 1000 0 0.3048 31.7 0.00331266 127.365
57
+ 1250 0 0.3048 31.7 0.00331266 124.355
58
+ 1600 0 0.3048 31.7 0.00331266 122.365
59
+ 2000 0 0.3048 31.7 0.00331266 122.375
60
+ 2500 0 0.3048 31.7 0.00331266 120.755
61
+ 3150 0 0.3048 31.7 0.00331266 119.135
62
+ 4000 0 0.3048 31.7 0.00331266 118.145
63
+ 5000 0 0.3048 31.7 0.00331266 115.645
64
+ 6300 0 0.3048 31.7 0.00331266 113.775
65
+ 8000 0 0.3048 31.7 0.00331266 110.515
66
+ 10000 0 0.3048 31.7 0.00331266 108.265
67
+ 800 1.5 0.3048 71.3 0.00336729 127.122
68
+ 1000 1.5 0.3048 71.3 0.00336729 125.992
69
+ 1250 1.5 0.3048 71.3 0.00336729 125.872
70
+ 1600 1.5 0.3048 71.3 0.00336729 126.632
71
+ 2000 1.5 0.3048 71.3 0.00336729 126.642
72
+ 2500 1.5 0.3048 71.3 0.00336729 124.512
73
+ 3150 1.5 0.3048 71.3 0.00336729 123.392
74
+ 4000 1.5 0.3048 71.3 0.00336729 121.762
75
+ 5000 1.5 0.3048 71.3 0.00336729 119.632
76
+ 6300 1.5 0.3048 71.3 0.00336729 118.122
77
+ 8000 1.5 0.3048 71.3 0.00336729 115.372
78
+ 10000 1.5 0.3048 71.3 0.00336729 113.492
79
+ 12500 1.5 0.3048 71.3 0.00336729 109.222
80
+ 16000 1.5 0.3048 71.3 0.00336729 106.582
81
+ 315 1.5 0.3048 39.6 0.00392107 121.851
82
+ 400 1.5 0.3048 39.6 0.00392107 124.001
83
+ 500 1.5 0.3048 39.6 0.00392107 126.661
84
+ 630 1.5 0.3048 39.6 0.00392107 128.311
85
+ 800 1.5 0.3048 39.6 0.00392107 128.831
86
+ 1000 1.5 0.3048 39.6 0.00392107 127.581
87
+ 1250 1.5 0.3048 39.6 0.00392107 125.211
88
+ 1600 1.5 0.3048 39.6 0.00392107 122.211
89
+ 2000 1.5 0.3048 39.6 0.00392107 122.101
90
+ 2500 1.5 0.3048 39.6 0.00392107 120.981
91
+ 3150 1.5 0.3048 39.6 0.00392107 119.111
92
+ 4000 1.5 0.3048 39.6 0.00392107 117.741
93
+ 5000 1.5 0.3048 39.6 0.00392107 116.241
94
+ 6300 1.5 0.3048 39.6 0.00392107 114.751
95
+ 8000 1.5 0.3048 39.6 0.00392107 112.251
96
+ 10000 1.5 0.3048 39.6 0.00392107 108.991
97
+ 12500 1.5 0.3048 39.6 0.00392107 106.111
98
+ 400 3 0.3048 71.3 0.00425727 127.564
99
+ 500 3 0.3048 71.3 0.00425727 128.454
100
+ 630 3 0.3048 71.3 0.00425727 129.354
101
+ 800 3 0.3048 71.3 0.00425727 129.494
102
+ 1000 3 0.3048 71.3 0.00425727 129.004
103
+ 1250 3 0.3048 71.3 0.00425727 127.634
104
+ 1600 3 0.3048 71.3 0.00425727 126.514
105
+ 2000 3 0.3048 71.3 0.00425727 125.524
106
+ 2500 3 0.3048 71.3 0.00425727 124.024
107
+ 3150 3 0.3048 71.3 0.00425727 121.514
108
+ 4000 3 0.3048 71.3 0.00425727 120.264
109
+ 5000 3 0.3048 71.3 0.00425727 118.134
110
+ 6300 3 0.3048 71.3 0.00425727 116.134
111
+ 8000 3 0.3048 71.3 0.00425727 114.634
112
+ 10000 3 0.3048 71.3 0.00425727 110.224
113
+ 400 3 0.3048 55.5 0.00452492 126.159
114
+ 500 3 0.3048 55.5 0.00452492 128.179
115
+ 630 3 0.3048 55.5 0.00452492 129.569
116
+ 800 3 0.3048 55.5 0.00452492 129.949
117
+ 1000 3 0.3048 55.5 0.00452492 129.329
118
+ 1250 3 0.3048 55.5 0.00452492 127.329
119
+ 1600 3 0.3048 55.5 0.00452492 124.439
120
+ 2000 3 0.3048 55.5 0.00452492 123.069
121
+ 2500 3 0.3048 55.5 0.00452492 122.439
122
+ 3150 3 0.3048 55.5 0.00452492 120.189
123
+ 4000 3 0.3048 55.5 0.00452492 118.689
124
+ 5000 3 0.3048 55.5 0.00452492 117.309
125
+ 6300 3 0.3048 55.5 0.00452492 115.679
126
+ 8000 3 0.3048 55.5 0.00452492 113.799
127
+ 10000 3 0.3048 55.5 0.00452492 112.169
128
+ 315 3 0.3048 39.6 0.00495741 123.312
129
+ 400 3 0.3048 39.6 0.00495741 125.472
130
+ 500 3 0.3048 39.6 0.00495741 127.632
131
+ 630 3 0.3048 39.6 0.00495741 129.292
132
+ 800 3 0.3048 39.6 0.00495741 129.552
133
+ 1000 3 0.3048 39.6 0.00495741 128.312
134
+ 1250 3 0.3048 39.6 0.00495741 125.802
135
+ 1600 3 0.3048 39.6 0.00495741 122.782
136
+ 2000 3 0.3048 39.6 0.00495741 120.532
137
+ 2500 3 0.3048 39.6 0.00495741 120.162
138
+ 3150 3 0.3048 39.6 0.00495741 118.922
139
+ 4000 3 0.3048 39.6 0.00495741 116.792
140
+ 5000 3 0.3048 39.6 0.00495741 115.792
141
+ 6300 3 0.3048 39.6 0.00495741 114.042
142
+ 8000 3 0.3048 39.6 0.00495741 110.652
143
+ 315 3 0.3048 31.7 0.00529514 123.118
144
+ 400 3 0.3048 31.7 0.00529514 125.398
145
+ 500 3 0.3048 31.7 0.00529514 127.548
146
+ 630 3 0.3048 31.7 0.00529514 128.698
147
+ 800 3 0.3048 31.7 0.00529514 128.708
148
+ 1000 3 0.3048 31.7 0.00529514 126.838
149
+ 1250 3 0.3048 31.7 0.00529514 124.838
150
+ 1600 3 0.3048 31.7 0.00529514 122.088
151
+ 2000 3 0.3048 31.7 0.00529514 120.088
152
+ 2500 3 0.3048 31.7 0.00529514 119.598
153
+ 3150 3 0.3048 31.7 0.00529514 118.108
154
+ 4000 3 0.3048 31.7 0.00529514 115.608
155
+ 5000 3 0.3048 31.7 0.00529514 113.858
156
+ 6300 3 0.3048 31.7 0.00529514 109.718
157
+ 250 4 0.3048 71.3 0.00497773 126.395
158
+ 315 4 0.3048 71.3 0.00497773 128.175
159
+ 400 4 0.3048 71.3 0.00497773 129.575
160
+ 500 4 0.3048 71.3 0.00497773 130.715
161
+ 630 4 0.3048 71.3 0.00497773 131.615
162
+ 800 4 0.3048 71.3 0.00497773 131.755
163
+ 1000 4 0.3048 71.3 0.00497773 131.015
164
+ 1250 4 0.3048 71.3 0.00497773 129.395
165
+ 1600 4 0.3048 71.3 0.00497773 126.645
166
+ 2000 4 0.3048 71.3 0.00497773 124.395
167
+ 2500 4 0.3048 71.3 0.00497773 123.775
168
+ 3150 4 0.3048 71.3 0.00497773 121.775
169
+ 4000 4 0.3048 71.3 0.00497773 119.535
170
+ 5000 4 0.3048 71.3 0.00497773 117.785
171
+ 6300 4 0.3048 71.3 0.00497773 116.165
172
+ 8000 4 0.3048 71.3 0.00497773 113.665
173
+ 10000 4 0.3048 71.3 0.00497773 110.905
174
+ 12500 4 0.3048 71.3 0.00497773 107.405
175
+ 250 4 0.3048 39.6 0.00579636 123.543
176
+ 315 4 0.3048 39.6 0.00579636 126.843
177
+ 400 4 0.3048 39.6 0.00579636 128.633
178
+ 500 4 0.3048 39.6 0.00579636 130.173
179
+ 630 4 0.3048 39.6 0.00579636 131.073
180
+ 800 4 0.3048 39.6 0.00579636 130.723
181
+ 1000 4 0.3048 39.6 0.00579636 128.723
182
+ 1250 4 0.3048 39.6 0.00579636 126.343
183
+ 1600 4 0.3048 39.6 0.00579636 123.213
184
+ 2000 4 0.3048 39.6 0.00579636 120.963
185
+ 2500 4 0.3048 39.6 0.00579636 120.233
186
+ 3150 4 0.3048 39.6 0.00579636 118.743
187
+ 4000 4 0.3048 39.6 0.00579636 115.863
188
+ 5000 4 0.3048 39.6 0.00579636 113.733
189
+ 1250 0 0.2286 71.3 0.00214345 128.144
190
+ 1600 0 0.2286 71.3 0.00214345 129.134
191
+ 2000 0 0.2286 71.3 0.00214345 128.244
192
+ 2500 0 0.2286 71.3 0.00214345 128.354
193
+ 3150 0 0.2286 71.3 0.00214345 127.834
194
+ 4000 0 0.2286 71.3 0.00214345 125.824
195
+ 5000 0 0.2286 71.3 0.00214345 124.304
196
+ 6300 0 0.2286 71.3 0.00214345 122.044
197
+ 8000 0 0.2286 71.3 0.00214345 118.024
198
+ 10000 0 0.2286 71.3 0.00214345 118.134
199
+ 12500 0 0.2286 71.3 0.00214345 117.624
200
+ 16000 0 0.2286 71.3 0.00214345 114.984
201
+ 20000 0 0.2286 71.3 0.00214345 114.474
202
+ 315 0 0.2286 55.5 0.00229336 119.540
203
+ 400 0 0.2286 55.5 0.00229336 121.660
204
+ 500 0 0.2286 55.5 0.00229336 123.780
205
+ 630 0 0.2286 55.5 0.00229336 126.160
206
+ 800 0 0.2286 55.5 0.00229336 127.530
207
+ 1000 0 0.2286 55.5 0.00229336 128.290
208
+ 1250 0 0.2286 55.5 0.00229336 127.910
209
+ 1600 0 0.2286 55.5 0.00229336 126.790
210
+ 2000 0 0.2286 55.5 0.00229336 126.540
211
+ 2500 0 0.2286 55.5 0.00229336 126.540
212
+ 3150 0 0.2286 55.5 0.00229336 125.160
213
+ 4000 0 0.2286 55.5 0.00229336 123.410
214
+ 5000 0 0.2286 55.5 0.00229336 122.410
215
+ 6300 0 0.2286 55.5 0.00229336 118.410
216
+ 315 0 0.2286 39.6 0.00253511 121.055
217
+ 400 0 0.2286 39.6 0.00253511 123.565
218
+ 500 0 0.2286 39.6 0.00253511 126.195
219
+ 630 0 0.2286 39.6 0.00253511 128.705
220
+ 800 0 0.2286 39.6 0.00253511 130.205
221
+ 1000 0 0.2286 39.6 0.00253511 130.435
222
+ 1250 0 0.2286 39.6 0.00253511 129.395
223
+ 1600 0 0.2286 39.6 0.00253511 127.095
224
+ 2000 0 0.2286 39.6 0.00253511 125.305
225
+ 2500 0 0.2286 39.6 0.00253511 125.025
226
+ 3150 0 0.2286 39.6 0.00253511 124.625
227
+ 4000 0 0.2286 39.6 0.00253511 123.465
228
+ 5000 0 0.2286 39.6 0.00253511 122.175
229
+ 6300 0 0.2286 39.6 0.00253511 117.465
230
+ 315 0 0.2286 31.7 0.0027238 120.595
231
+ 400 0 0.2286 31.7 0.0027238 123.635
232
+ 500 0 0.2286 31.7 0.0027238 126.675
233
+ 630 0 0.2286 31.7 0.0027238 129.465
234
+ 800 0 0.2286 31.7 0.0027238 130.725
235
+ 1000 0 0.2286 31.7 0.0027238 130.595
236
+ 1250 0 0.2286 31.7 0.0027238 128.805
237
+ 1600 0 0.2286 31.7 0.0027238 125.625
238
+ 2000 0 0.2286 31.7 0.0027238 123.455
239
+ 2500 0 0.2286 31.7 0.0027238 123.445
240
+ 3150 0 0.2286 31.7 0.0027238 123.445
241
+ 4000 0 0.2286 31.7 0.0027238 122.035
242
+ 5000 0 0.2286 31.7 0.0027238 120.505
243
+ 6300 0 0.2286 31.7 0.0027238 116.815
244
+ 400 2 0.2286 71.3 0.00293031 125.116
245
+ 500 2 0.2286 71.3 0.00293031 126.486
246
+ 630 2 0.2286 71.3 0.00293031 127.356
247
+ 800 2 0.2286 71.3 0.00293031 128.216
248
+ 1000 2 0.2286 71.3 0.00293031 128.956
249
+ 1250 2 0.2286 71.3 0.00293031 128.816
250
+ 1600 2 0.2286 71.3 0.00293031 127.796
251
+ 2000 2 0.2286 71.3 0.00293031 126.896
252
+ 2500 2 0.2286 71.3 0.00293031 127.006
253
+ 3150 2 0.2286 71.3 0.00293031 126.116
254
+ 4000 2 0.2286 71.3 0.00293031 124.086
255
+ 5000 2 0.2286 71.3 0.00293031 122.816
256
+ 6300 2 0.2286 71.3 0.00293031 120.786
257
+ 8000 2 0.2286 71.3 0.00293031 115.996
258
+ 10000 2 0.2286 71.3 0.00293031 113.086
259
+ 400 2 0.2286 55.5 0.00313525 122.292
260
+ 500 2 0.2286 55.5 0.00313525 124.692
261
+ 630 2 0.2286 55.5 0.00313525 126.842
262
+ 800 2 0.2286 55.5 0.00313525 128.492
263
+ 1000 2 0.2286 55.5 0.00313525 129.002
264
+ 1250 2 0.2286 55.5 0.00313525 128.762
265
+ 1600 2 0.2286 55.5 0.00313525 126.752
266
+ 2000 2 0.2286 55.5 0.00313525 124.612
267
+ 2500 2 0.2286 55.5 0.00313525 123.862
268
+ 3150 2 0.2286 55.5 0.00313525 123.742
269
+ 4000 2 0.2286 55.5 0.00313525 122.232
270
+ 5000 2 0.2286 55.5 0.00313525 120.472
271
+ 6300 2 0.2286 55.5 0.00313525 118.712
272
+ 315 2 0.2286 39.6 0.00346574 120.137
273
+ 400 2 0.2286 39.6 0.00346574 122.147
274
+ 500 2 0.2286 39.6 0.00346574 125.157
275
+ 630 2 0.2286 39.6 0.00346574 127.417
276
+ 800 2 0.2286 39.6 0.00346574 129.037
277
+ 1000 2 0.2286 39.6 0.00346574 129.147
278
+ 1250 2 0.2286 39.6 0.00346574 128.257
279
+ 1600 2 0.2286 39.6 0.00346574 125.837
280
+ 2000 2 0.2286 39.6 0.00346574 122.797
281
+ 2500 2 0.2286 39.6 0.00346574 121.397
282
+ 3150 2 0.2286 39.6 0.00346574 121.627
283
+ 4000 2 0.2286 39.6 0.00346574 120.227
284
+ 5000 2 0.2286 39.6 0.00346574 118.827
285
+ 6300 2 0.2286 39.6 0.00346574 116.417
286
+ 315 2 0.2286 31.7 0.00372371 120.147
287
+ 400 2 0.2286 31.7 0.00372371 123.417
288
+ 500 2 0.2286 31.7 0.00372371 126.677
289
+ 630 2 0.2286 31.7 0.00372371 129.057
290
+ 800 2 0.2286 31.7 0.00372371 130.307
291
+ 1000 2 0.2286 31.7 0.00372371 130.307
292
+ 1250 2 0.2286 31.7 0.00372371 128.677
293
+ 1600 2 0.2286 31.7 0.00372371 125.797
294
+ 2000 2 0.2286 31.7 0.00372371 123.037
295
+ 2500 2 0.2286 31.7 0.00372371 121.407
296
+ 3150 2 0.2286 31.7 0.00372371 121.527
297
+ 4000 2 0.2286 31.7 0.00372371 120.527
298
+ 5000 2 0.2286 31.7 0.00372371 118.267
299
+ 6300 2 0.2286 31.7 0.00372371 115.137
300
+ 500 4 0.2286 71.3 0.00400603 126.758
301
+ 630 4 0.2286 71.3 0.00400603 129.038
302
+ 800 4 0.2286 71.3 0.00400603 130.688
303
+ 1000 4 0.2286 71.3 0.00400603 131.708
304
+ 1250 4 0.2286 71.3 0.00400603 131.718
305
+ 1600 4 0.2286 71.3 0.00400603 129.468
306
+ 2000 4 0.2286 71.3 0.00400603 126.218
307
+ 2500 4 0.2286 71.3 0.00400603 124.338
308
+ 3150 4 0.2286 71.3 0.00400603 124.108
309
+ 4000 4 0.2286 71.3 0.00400603 121.728
310
+ 5000 4 0.2286 71.3 0.00400603 121.118
311
+ 6300 4 0.2286 71.3 0.00400603 118.618
312
+ 8000 4 0.2286 71.3 0.00400603 112.848
313
+ 10000 4 0.2286 71.3 0.00400603 113.108
314
+ 12500 4 0.2286 71.3 0.00400603 114.258
315
+ 16000 4 0.2286 71.3 0.00400603 112.768
316
+ 20000 4 0.2286 71.3 0.00400603 109.638
317
+ 400 4 0.2286 55.5 0.0042862 123.274
318
+ 500 4 0.2286 55.5 0.0042862 127.314
319
+ 630 4 0.2286 55.5 0.0042862 129.964
320
+ 800 4 0.2286 55.5 0.0042862 131.864
321
+ 1000 4 0.2286 55.5 0.0042862 132.134
322
+ 1250 4 0.2286 55.5 0.0042862 131.264
323
+ 1600 4 0.2286 55.5 0.0042862 128.264
324
+ 2000 4 0.2286 55.5 0.0042862 124.254
325
+ 2500 4 0.2286 55.5 0.0042862 122.384
326
+ 3150 4 0.2286 55.5 0.0042862 122.394
327
+ 4000 4 0.2286 55.5 0.0042862 120.654
328
+ 5000 4 0.2286 55.5 0.0042862 120.034
329
+ 6300 4 0.2286 55.5 0.0042862 117.154
330
+ 8000 4 0.2286 55.5 0.0042862 112.524
331
+ 315 4 0.2286 39.6 0.00473801 122.229
332
+ 400 4 0.2286 39.6 0.00473801 123.879
333
+ 500 4 0.2286 39.6 0.00473801 127.039
334
+ 630 4 0.2286 39.6 0.00473801 129.579
335
+ 800 4 0.2286 39.6 0.00473801 130.469
336
+ 1000 4 0.2286 39.6 0.00473801 129.969
337
+ 1250 4 0.2286 39.6 0.00473801 128.339
338
+ 1600 4 0.2286 39.6 0.00473801 125.319
339
+ 2000 4 0.2286 39.6 0.00473801 121.659
340
+ 2500 4 0.2286 39.6 0.00473801 119.649
341
+ 3150 4 0.2286 39.6 0.00473801 120.419
342
+ 4000 4 0.2286 39.6 0.00473801 119.159
343
+ 5000 4 0.2286 39.6 0.00473801 117.649
344
+ 6300 4 0.2286 39.6 0.00473801 114.249
345
+ 8000 4 0.2286 39.6 0.00473801 113.129
346
+ 250 4 0.2286 31.7 0.00509068 120.189
347
+ 315 4 0.2286 31.7 0.00509068 123.609
348
+ 400 4 0.2286 31.7 0.00509068 126.149
349
+ 500 4 0.2286 31.7 0.00509068 128.939
350
+ 630 4 0.2286 31.7 0.00509068 130.349
351
+ 800 4 0.2286 31.7 0.00509068 130.869
352
+ 1000 4 0.2286 31.7 0.00509068 129.869
353
+ 1250 4 0.2286 31.7 0.00509068 128.119
354
+ 1600 4 0.2286 31.7 0.00509068 125.229
355
+ 2000 4 0.2286 31.7 0.00509068 122.089
356
+ 2500 4 0.2286 31.7 0.00509068 120.209
357
+ 3150 4 0.2286 31.7 0.00509068 120.229
358
+ 4000 4 0.2286 31.7 0.00509068 118.859
359
+ 5000 4 0.2286 31.7 0.00509068 115.969
360
+ 6300 4 0.2286 31.7 0.00509068 112.699
361
+ 400 5.3 0.2286 71.3 0.0051942 127.700
362
+ 500 5.3 0.2286 71.3 0.0051942 129.880
363
+ 630 5.3 0.2286 71.3 0.0051942 131.800
364
+ 800 5.3 0.2286 71.3 0.0051942 133.480
365
+ 1000 5.3 0.2286 71.3 0.0051942 134.000
366
+ 1250 5.3 0.2286 71.3 0.0051942 133.380
367
+ 1600 5.3 0.2286 71.3 0.0051942 130.460
368
+ 2000 5.3 0.2286 71.3 0.0051942 125.890
369
+ 2500 5.3 0.2286 71.3 0.0051942 123.740
370
+ 3150 5.3 0.2286 71.3 0.0051942 123.120
371
+ 4000 5.3 0.2286 71.3 0.0051942 120.330
372
+ 5000 5.3 0.2286 71.3 0.0051942 118.050
373
+ 6300 5.3 0.2286 71.3 0.0051942 116.920
374
+ 8000 5.3 0.2286 71.3 0.0051942 114.900
375
+ 10000 5.3 0.2286 71.3 0.0051942 111.350
376
+ 250 5.3 0.2286 39.6 0.00614329 127.011
377
+ 315 5.3 0.2286 39.6 0.00614329 129.691
378
+ 400 5.3 0.2286 39.6 0.00614329 131.221
379
+ 500 5.3 0.2286 39.6 0.00614329 132.251
380
+ 630 5.3 0.2286 39.6 0.00614329 132.011
381
+ 800 5.3 0.2286 39.6 0.00614329 129.491
382
+ 1000 5.3 0.2286 39.6 0.00614329 125.581
383
+ 1250 5.3 0.2286 39.6 0.00614329 125.721
384
+ 1600 5.3 0.2286 39.6 0.00614329 123.081
385
+ 2000 5.3 0.2286 39.6 0.00614329 117.911
386
+ 2500 5.3 0.2286 39.6 0.00614329 116.151
387
+ 3150 5.3 0.2286 39.6 0.00614329 118.441
388
+ 4000 5.3 0.2286 39.6 0.00614329 115.801
389
+ 5000 5.3 0.2286 39.6 0.00614329 115.311
390
+ 6300 5.3 0.2286 39.6 0.00614329 112.541
391
+ 200 7.3 0.2286 71.3 0.0104404 138.758
392
+ 250 7.3 0.2286 71.3 0.0104404 139.918
393
+ 315 7.3 0.2286 71.3 0.0104404 139.808
394
+ 400 7.3 0.2286 71.3 0.0104404 139.438
395
+ 500 7.3 0.2286 71.3 0.0104404 136.798
396
+ 630 7.3 0.2286 71.3 0.0104404 133.768
397
+ 800 7.3 0.2286 71.3 0.0104404 130.748
398
+ 1000 7.3 0.2286 71.3 0.0104404 126.838
399
+ 1250 7.3 0.2286 71.3 0.0104404 127.358
400
+ 1600 7.3 0.2286 71.3 0.0104404 125.728
401
+ 2000 7.3 0.2286 71.3 0.0104404 122.708
402
+ 2500 7.3 0.2286 71.3 0.0104404 122.088
403
+ 3150 7.3 0.2286 71.3 0.0104404 120.458
404
+ 4000 7.3 0.2286 71.3 0.0104404 119.208
405
+ 5000 7.3 0.2286 71.3 0.0104404 115.298
406
+ 6300 7.3 0.2286 71.3 0.0104404 115.818
407
+ 200 7.3 0.2286 55.5 0.0111706 135.234
408
+ 250 7.3 0.2286 55.5 0.0111706 136.384
409
+ 315 7.3 0.2286 55.5 0.0111706 136.284
410
+ 400 7.3 0.2286 55.5 0.0111706 135.924
411
+ 500 7.3 0.2286 55.5 0.0111706 133.174
412
+ 630 7.3 0.2286 55.5 0.0111706 130.934
413
+ 800 7.3 0.2286 55.5 0.0111706 128.444
414
+ 1000 7.3 0.2286 55.5 0.0111706 125.194
415
+ 1250 7.3 0.2286 55.5 0.0111706 125.724
416
+ 1600 7.3 0.2286 55.5 0.0111706 123.354
417
+ 2000 7.3 0.2286 55.5 0.0111706 120.354
418
+ 2500 7.3 0.2286 55.5 0.0111706 118.994
419
+ 3150 7.3 0.2286 55.5 0.0111706 117.134
420
+ 4000 7.3 0.2286 55.5 0.0111706 117.284
421
+ 5000 7.3 0.2286 55.5 0.0111706 113.144
422
+ 6300 7.3 0.2286 55.5 0.0111706 111.534
423
+ 200 7.3 0.2286 39.6 0.0123481 130.989
424
+ 250 7.3 0.2286 39.6 0.0123481 131.889
425
+ 315 7.3 0.2286 39.6 0.0123481 132.149
426
+ 400 7.3 0.2286 39.6 0.0123481 132.039
427
+ 500 7.3 0.2286 39.6 0.0123481 130.299
428
+ 630 7.3 0.2286 39.6 0.0123481 128.929
429
+ 800 7.3 0.2286 39.6 0.0123481 126.299
430
+ 1000 7.3 0.2286 39.6 0.0123481 122.539
431
+ 1250 7.3 0.2286 39.6 0.0123481 123.189
432
+ 1600 7.3 0.2286 39.6 0.0123481 121.059
433
+ 2000 7.3 0.2286 39.6 0.0123481 117.809
434
+ 2500 7.3 0.2286 39.6 0.0123481 116.559
435
+ 3150 7.3 0.2286 39.6 0.0123481 114.309
436
+ 4000 7.3 0.2286 39.6 0.0123481 114.079
437
+ 5000 7.3 0.2286 39.6 0.0123481 111.959
438
+ 6300 7.3 0.2286 39.6 0.0123481 110.839
439
+ 200 7.3 0.2286 31.7 0.0132672 128.679
440
+ 250 7.3 0.2286 31.7 0.0132672 130.089
441
+ 315 7.3 0.2286 31.7 0.0132672 130.239
442
+ 400 7.3 0.2286 31.7 0.0132672 130.269
443
+ 500 7.3 0.2286 31.7 0.0132672 128.169
444
+ 630 7.3 0.2286 31.7 0.0132672 126.189
445
+ 800 7.3 0.2286 31.7 0.0132672 123.209
446
+ 1000 7.3 0.2286 31.7 0.0132672 119.099
447
+ 1250 7.3 0.2286 31.7 0.0132672 120.509
448
+ 1600 7.3 0.2286 31.7 0.0132672 119.039
449
+ 2000 7.3 0.2286 31.7 0.0132672 115.309
450
+ 2500 7.3 0.2286 31.7 0.0132672 114.709
451
+ 3150 7.3 0.2286 31.7 0.0132672 113.229
452
+ 4000 7.3 0.2286 31.7 0.0132672 112.639
453
+ 5000 7.3 0.2286 31.7 0.0132672 111.029
454
+ 6300 7.3 0.2286 31.7 0.0132672 110.689
455
+ 800 0 0.1524 71.3 0.0015988 125.817
456
+ 1000 0 0.1524 71.3 0.0015988 127.307
457
+ 1250 0 0.1524 71.3 0.0015988 128.927
458
+ 1600 0 0.1524 71.3 0.0015988 129.667
459
+ 2000 0 0.1524 71.3 0.0015988 128.647
460
+ 2500 0 0.1524 71.3 0.0015988 128.127
461
+ 3150 0 0.1524 71.3 0.0015988 129.377
462
+ 4000 0 0.1524 71.3 0.0015988 128.857
463
+ 5000 0 0.1524 71.3 0.0015988 126.457
464
+ 6300 0 0.1524 71.3 0.0015988 125.427
465
+ 8000 0 0.1524 71.3 0.0015988 122.527
466
+ 10000 0 0.1524 71.3 0.0015988 120.247
467
+ 12500 0 0.1524 71.3 0.0015988 117.087
468
+ 16000 0 0.1524 71.3 0.0015988 113.297
469
+ 500 0 0.1524 55.5 0.00172668 120.573
470
+ 630 0 0.1524 55.5 0.00172668 123.583
471
+ 800 0 0.1524 55.5 0.00172668 126.713
472
+ 1000 0 0.1524 55.5 0.00172668 128.583
473
+ 1250 0 0.1524 55.5 0.00172668 129.953
474
+ 1600 0 0.1524 55.5 0.00172668 130.183
475
+ 2000 0 0.1524 55.5 0.00172668 129.673
476
+ 2500 0 0.1524 55.5 0.00172668 127.763
477
+ 3150 0 0.1524 55.5 0.00172668 127.753
478
+ 4000 0 0.1524 55.5 0.00172668 127.233
479
+ 5000 0 0.1524 55.5 0.00172668 125.203
480
+ 6300 0 0.1524 55.5 0.00172668 123.303
481
+ 8000 0 0.1524 55.5 0.00172668 121.903
482
+ 10000 0 0.1524 55.5 0.00172668 119.253
483
+ 12500 0 0.1524 55.5 0.00172668 117.093
484
+ 16000 0 0.1524 55.5 0.00172668 112.803
485
+ 500 0 0.1524 39.6 0.00193287 119.513
486
+ 630 0 0.1524 39.6 0.00193287 124.403
487
+ 800 0 0.1524 39.6 0.00193287 127.903
488
+ 1000 0 0.1524 39.6 0.00193287 130.033
489
+ 1250 0 0.1524 39.6 0.00193287 131.023
490
+ 1600 0 0.1524 39.6 0.00193287 131.013
491
+ 2000 0 0.1524 39.6 0.00193287 129.633
492
+ 2500 0 0.1524 39.6 0.00193287 126.863
493
+ 3150 0 0.1524 39.6 0.00193287 125.603
494
+ 4000 0 0.1524 39.6 0.00193287 125.343
495
+ 5000 0 0.1524 39.6 0.00193287 123.453
496
+ 6300 0 0.1524 39.6 0.00193287 121.313
497
+ 8000 0 0.1524 39.6 0.00193287 120.553
498
+ 10000 0 0.1524 39.6 0.00193287 115.413
499
+ 500 0 0.1524 31.7 0.00209405 121.617
500
+ 630 0 0.1524 31.7 0.00209405 125.997
501
+ 800 0 0.1524 31.7 0.00209405 129.117
502
+ 1000 0 0.1524 31.7 0.00209405 130.987
503
+ 1250 0 0.1524 31.7 0.00209405 131.467
504
+ 1600 0 0.1524 31.7 0.00209405 130.817
505
+ 2000 0 0.1524 31.7 0.00209405 128.907
506
+ 2500 0 0.1524 31.7 0.00209405 125.867
507
+ 3150 0 0.1524 31.7 0.00209405 124.207
508
+ 4000 0 0.1524 31.7 0.00209405 123.807
509
+ 5000 0 0.1524 31.7 0.00209405 122.397
510
+ 6300 0 0.1524 31.7 0.00209405 119.737
511
+ 8000 0 0.1524 31.7 0.00209405 117.957
512
+ 630 2.7 0.1524 71.3 0.00243851 127.404
513
+ 800 2.7 0.1524 71.3 0.00243851 127.394
514
+ 1000 2.7 0.1524 71.3 0.00243851 128.774
515
+ 1250 2.7 0.1524 71.3 0.00243851 130.144
516
+ 1600 2.7 0.1524 71.3 0.00243851 130.644
517
+ 2000 2.7 0.1524 71.3 0.00243851 130.114
518
+ 2500 2.7 0.1524 71.3 0.00243851 128.334
519
+ 3150 2.7 0.1524 71.3 0.00243851 127.054
520
+ 4000 2.7 0.1524 71.3 0.00243851 126.534
521
+ 5000 2.7 0.1524 71.3 0.00243851 124.364
522
+ 6300 2.7 0.1524 71.3 0.00243851 121.944
523
+ 8000 2.7 0.1524 71.3 0.00243851 120.534
524
+ 10000 2.7 0.1524 71.3 0.00243851 116.724
525
+ 12500 2.7 0.1524 71.3 0.00243851 113.034
526
+ 16000 2.7 0.1524 71.3 0.00243851 110.364
527
+ 500 2.7 0.1524 39.6 0.00294804 121.009
528
+ 630 2.7 0.1524 39.6 0.00294804 125.809
529
+ 800 2.7 0.1524 39.6 0.00294804 128.829
530
+ 1000 2.7 0.1524 39.6 0.00294804 130.589
531
+ 1250 2.7 0.1524 39.6 0.00294804 130.829
532
+ 1600 2.7 0.1524 39.6 0.00294804 130.049
533
+ 2000 2.7 0.1524 39.6 0.00294804 128.139
534
+ 2500 2.7 0.1524 39.6 0.00294804 125.589
535
+ 3150 2.7 0.1524 39.6 0.00294804 122.919
536
+ 4000 2.7 0.1524 39.6 0.00294804 121.889
537
+ 5000 2.7 0.1524 39.6 0.00294804 121.499
538
+ 6300 2.7 0.1524 39.6 0.00294804 119.209
539
+ 8000 2.7 0.1524 39.6 0.00294804 116.659
540
+ 10000 2.7 0.1524 39.6 0.00294804 112.589
541
+ 12500 2.7 0.1524 39.6 0.00294804 108.649
542
+ 400 5.4 0.1524 71.3 0.00401199 124.121
543
+ 500 5.4 0.1524 71.3 0.00401199 126.291
544
+ 630 5.4 0.1524 71.3 0.00401199 128.971
545
+ 800 5.4 0.1524 71.3 0.00401199 131.281
546
+ 1000 5.4 0.1524 71.3 0.00401199 133.201
547
+ 1250 5.4 0.1524 71.3 0.00401199 134.111
548
+ 1600 5.4 0.1524 71.3 0.00401199 133.241
549
+ 2000 5.4 0.1524 71.3 0.00401199 131.111
550
+ 2500 5.4 0.1524 71.3 0.00401199 127.591
551
+ 3150 5.4 0.1524 71.3 0.00401199 123.311
552
+ 4000 5.4 0.1524 71.3 0.00401199 121.431
553
+ 5000 5.4 0.1524 71.3 0.00401199 120.061
554
+ 6300 5.4 0.1524 71.3 0.00401199 116.411
555
+ 400 5.4 0.1524 55.5 0.00433288 126.807
556
+ 500 5.4 0.1524 55.5 0.00433288 129.367
557
+ 630 5.4 0.1524 55.5 0.00433288 131.807
558
+ 800 5.4 0.1524 55.5 0.00433288 133.097
559
+ 1000 5.4 0.1524 55.5 0.00433288 132.127
560
+ 1250 5.4 0.1524 55.5 0.00433288 130.777
561
+ 1600 5.4 0.1524 55.5 0.00433288 130.567
562
+ 2000 5.4 0.1524 55.5 0.00433288 128.707
563
+ 2500 5.4 0.1524 55.5 0.00433288 124.077
564
+ 3150 5.4 0.1524 55.5 0.00433288 121.587
565
+ 4000 5.4 0.1524 55.5 0.00433288 119.737
566
+ 5000 5.4 0.1524 55.5 0.00433288 118.757
567
+ 6300 5.4 0.1524 55.5 0.00433288 117.287
568
+ 8000 5.4 0.1524 55.5 0.00433288 114.927
569
+ 315 5.4 0.1524 39.6 0.00485029 125.347
570
+ 400 5.4 0.1524 39.6 0.00485029 127.637
571
+ 500 5.4 0.1524 39.6 0.00485029 129.937
572
+ 630 5.4 0.1524 39.6 0.00485029 132.357
573
+ 800 5.4 0.1524 39.6 0.00485029 132.757
574
+ 1000 5.4 0.1524 39.6 0.00485029 130.507
575
+ 1250 5.4 0.1524 39.6 0.00485029 127.117
576
+ 1600 5.4 0.1524 39.6 0.00485029 126.267
577
+ 2000 5.4 0.1524 39.6 0.00485029 124.647
578
+ 2500 5.4 0.1524 39.6 0.00485029 120.497
579
+ 3150 5.4 0.1524 39.6 0.00485029 119.137
580
+ 4000 5.4 0.1524 39.6 0.00485029 117.137
581
+ 5000 5.4 0.1524 39.6 0.00485029 117.037
582
+ 6300 5.4 0.1524 39.6 0.00485029 116.677
583
+ 315 5.4 0.1524 31.7 0.00525474 125.741
584
+ 400 5.4 0.1524 31.7 0.00525474 127.781
585
+ 500 5.4 0.1524 31.7 0.00525474 129.681
586
+ 630 5.4 0.1524 31.7 0.00525474 131.471
587
+ 800 5.4 0.1524 31.7 0.00525474 131.491
588
+ 1000 5.4 0.1524 31.7 0.00525474 128.241
589
+ 1250 5.4 0.1524 31.7 0.00525474 123.991
590
+ 1600 5.4 0.1524 31.7 0.00525474 123.761
591
+ 2000 5.4 0.1524 31.7 0.00525474 122.771
592
+ 2500 5.4 0.1524 31.7 0.00525474 119.151
593
+ 3150 5.4 0.1524 31.7 0.00525474 118.291
594
+ 4000 5.4 0.1524 31.7 0.00525474 116.181
595
+ 5000 5.4 0.1524 31.7 0.00525474 115.691
596
+ 6300 5.4 0.1524 31.7 0.00525474 115.591
597
+ 315 7.2 0.1524 71.3 0.00752039 128.713
598
+ 400 7.2 0.1524 71.3 0.00752039 130.123
599
+ 500 7.2 0.1524 71.3 0.00752039 132.043
600
+ 630 7.2 0.1524 71.3 0.00752039 134.853
601
+ 800 7.2 0.1524 71.3 0.00752039 136.023
602
+ 1000 7.2 0.1524 71.3 0.00752039 134.273
603
+ 1250 7.2 0.1524 71.3 0.00752039 132.513
604
+ 1600 7.2 0.1524 71.3 0.00752039 130.893
605
+ 2000 7.2 0.1524 71.3 0.00752039 128.643
606
+ 2500 7.2 0.1524 71.3 0.00752039 124.353
607
+ 3150 7.2 0.1524 71.3 0.00752039 116.783
608
+ 4000 7.2 0.1524 71.3 0.00752039 119.343
609
+ 5000 7.2 0.1524 71.3 0.00752039 118.343
610
+ 6300 7.2 0.1524 71.3 0.00752039 116.603
611
+ 8000 7.2 0.1524 71.3 0.00752039 113.333
612
+ 10000 7.2 0.1524 71.3 0.00752039 110.313
613
+ 250 7.2 0.1524 39.6 0.00909175 127.488
614
+ 315 7.2 0.1524 39.6 0.00909175 130.558
615
+ 400 7.2 0.1524 39.6 0.00909175 132.118
616
+ 500 7.2 0.1524 39.6 0.00909175 132.658
617
+ 630 7.2 0.1524 39.6 0.00909175 133.198
618
+ 800 7.2 0.1524 39.6 0.00909175 132.358
619
+ 1000 7.2 0.1524 39.6 0.00909175 128.338
620
+ 1250 7.2 0.1524 39.6 0.00909175 122.428
621
+ 1600 7.2 0.1524 39.6 0.00909175 120.058
622
+ 2000 7.2 0.1524 39.6 0.00909175 120.228
623
+ 2500 7.2 0.1524 39.6 0.00909175 117.478
624
+ 3150 7.2 0.1524 39.6 0.00909175 111.818
625
+ 4000 7.2 0.1524 39.6 0.00909175 114.258
626
+ 5000 7.2 0.1524 39.6 0.00909175 113.288
627
+ 6300 7.2 0.1524 39.6 0.00909175 112.688
628
+ 8000 7.2 0.1524 39.6 0.00909175 111.588
629
+ 10000 7.2 0.1524 39.6 0.00909175 110.868
630
+ 200 9.9 0.1524 71.3 0.0193001 134.319
631
+ 250 9.9 0.1524 71.3 0.0193001 135.329
632
+ 315 9.9 0.1524 71.3 0.0193001 135.459
633
+ 400 9.9 0.1524 71.3 0.0193001 135.079
634
+ 500 9.9 0.1524 71.3 0.0193001 131.279
635
+ 630 9.9 0.1524 71.3 0.0193001 129.889
636
+ 800 9.9 0.1524 71.3 0.0193001 128.879
637
+ 1000 9.9 0.1524 71.3 0.0193001 126.349
638
+ 1250 9.9 0.1524 71.3 0.0193001 122.679
639
+ 1600 9.9 0.1524 71.3 0.0193001 121.789
640
+ 2000 9.9 0.1524 71.3 0.0193001 120.779
641
+ 2500 9.9 0.1524 71.3 0.0193001 119.639
642
+ 3150 9.9 0.1524 71.3 0.0193001 116.849
643
+ 4000 9.9 0.1524 71.3 0.0193001 115.079
644
+ 5000 9.9 0.1524 71.3 0.0193001 114.569
645
+ 6300 9.9 0.1524 71.3 0.0193001 112.039
646
+ 200 9.9 0.1524 55.5 0.0208438 131.955
647
+ 250 9.9 0.1524 55.5 0.0208438 133.235
648
+ 315 9.9 0.1524 55.5 0.0208438 132.355
649
+ 400 9.9 0.1524 55.5 0.0208438 131.605
650
+ 500 9.9 0.1524 55.5 0.0208438 127.815
651
+ 630 9.9 0.1524 55.5 0.0208438 127.315
652
+ 800 9.9 0.1524 55.5 0.0208438 126.565
653
+ 1000 9.9 0.1524 55.5 0.0208438 124.665
654
+ 1250 9.9 0.1524 55.5 0.0208438 121.635
655
+ 1600 9.9 0.1524 55.5 0.0208438 119.875
656
+ 2000 9.9 0.1524 55.5 0.0208438 119.505
657
+ 2500 9.9 0.1524 55.5 0.0208438 118.365
658
+ 3150 9.9 0.1524 55.5 0.0208438 115.085
659
+ 4000 9.9 0.1524 55.5 0.0208438 112.945
660
+ 5000 9.9 0.1524 55.5 0.0208438 112.065
661
+ 6300 9.9 0.1524 55.5 0.0208438 110.555
662
+ 200 9.9 0.1524 39.6 0.0233328 127.315
663
+ 250 9.9 0.1524 39.6 0.0233328 128.335
664
+ 315 9.9 0.1524 39.6 0.0233328 128.595
665
+ 400 9.9 0.1524 39.6 0.0233328 128.345
666
+ 500 9.9 0.1524 39.6 0.0233328 126.835
667
+ 630 9.9 0.1524 39.6 0.0233328 126.465
668
+ 800 9.9 0.1524 39.6 0.0233328 126.345
669
+ 1000 9.9 0.1524 39.6 0.0233328 123.835
670
+ 1250 9.9 0.1524 39.6 0.0233328 120.555
671
+ 1600 9.9 0.1524 39.6 0.0233328 118.545
672
+ 2000 9.9 0.1524 39.6 0.0233328 117.925
673
+ 2500 9.9 0.1524 39.6 0.0233328 116.295
674
+ 3150 9.9 0.1524 39.6 0.0233328 113.525
675
+ 4000 9.9 0.1524 39.6 0.0233328 112.265
676
+ 5000 9.9 0.1524 39.6 0.0233328 111.135
677
+ 6300 9.9 0.1524 39.6 0.0233328 109.885
678
+ 200 9.9 0.1524 31.7 0.0252785 127.299
679
+ 250 9.9 0.1524 31.7 0.0252785 128.559
680
+ 315 9.9 0.1524 31.7 0.0252785 128.809
681
+ 400 9.9 0.1524 31.7 0.0252785 128.939
682
+ 500 9.9 0.1524 31.7 0.0252785 127.179
683
+ 630 9.9 0.1524 31.7 0.0252785 126.049
684
+ 800 9.9 0.1524 31.7 0.0252785 125.539
685
+ 1000 9.9 0.1524 31.7 0.0252785 122.149
686
+ 1250 9.9 0.1524 31.7 0.0252785 118.619
687
+ 1600 9.9 0.1524 31.7 0.0252785 117.119
688
+ 2000 9.9 0.1524 31.7 0.0252785 116.859
689
+ 2500 9.9 0.1524 31.7 0.0252785 114.729
690
+ 3150 9.9 0.1524 31.7 0.0252785 112.209
691
+ 4000 9.9 0.1524 31.7 0.0252785 111.459
692
+ 5000 9.9 0.1524 31.7 0.0252785 109.949
693
+ 6300 9.9 0.1524 31.7 0.0252785 108.689
694
+ 200 12.6 0.1524 71.3 0.0483159 128.354
695
+ 250 12.6 0.1524 71.3 0.0483159 129.744
696
+ 315 12.6 0.1524 71.3 0.0483159 128.484
697
+ 400 12.6 0.1524 71.3 0.0483159 127.094
698
+ 500 12.6 0.1524 71.3 0.0483159 121.664
699
+ 630 12.6 0.1524 71.3 0.0483159 123.304
700
+ 800 12.6 0.1524 71.3 0.0483159 123.054
701
+ 1000 12.6 0.1524 71.3 0.0483159 122.044
702
+ 1250 12.6 0.1524 71.3 0.0483159 120.154
703
+ 1600 12.6 0.1524 71.3 0.0483159 120.534
704
+ 2000 12.6 0.1524 71.3 0.0483159 117.504
705
+ 2500 12.6 0.1524 71.3 0.0483159 115.234
706
+ 3150 12.6 0.1524 71.3 0.0483159 113.334
707
+ 4000 12.6 0.1524 71.3 0.0483159 108.034
708
+ 5000 12.6 0.1524 71.3 0.0483159 108.034
709
+ 6300 12.6 0.1524 71.3 0.0483159 107.284
710
+ 200 12.6 0.1524 39.6 0.0584113 114.750
711
+ 250 12.6 0.1524 39.6 0.0584113 115.890
712
+ 315 12.6 0.1524 39.6 0.0584113 116.020
713
+ 400 12.6 0.1524 39.6 0.0584113 115.910
714
+ 500 12.6 0.1524 39.6 0.0584113 114.900
715
+ 630 12.6 0.1524 39.6 0.0584113 116.550
716
+ 800 12.6 0.1524 39.6 0.0584113 116.560
717
+ 1000 12.6 0.1524 39.6 0.0584113 114.670
718
+ 1250 12.6 0.1524 39.6 0.0584113 112.160
719
+ 1600 12.6 0.1524 39.6 0.0584113 110.780
720
+ 2000 12.6 0.1524 39.6 0.0584113 109.520
721
+ 2500 12.6 0.1524 39.6 0.0584113 106.880
722
+ 3150 12.6 0.1524 39.6 0.0584113 106.260
723
+ 4000 12.6 0.1524 39.6 0.0584113 104.500
724
+ 5000 12.6 0.1524 39.6 0.0584113 104.130
725
+ 6300 12.6 0.1524 39.6 0.0584113 103.380
726
+ 800 0 0.0508 71.3 0.000740478 130.960
727
+ 1000 0 0.0508 71.3 0.000740478 129.450
728
+ 1250 0 0.0508 71.3 0.000740478 128.560
729
+ 1600 0 0.0508 71.3 0.000740478 129.680
730
+ 2000 0 0.0508 71.3 0.000740478 131.060
731
+ 2500 0 0.0508 71.3 0.000740478 131.310
732
+ 3150 0 0.0508 71.3 0.000740478 135.070
733
+ 4000 0 0.0508 71.3 0.000740478 134.430
734
+ 5000 0 0.0508 71.3 0.000740478 134.430
735
+ 6300 0 0.0508 71.3 0.000740478 133.040
736
+ 8000 0 0.0508 71.3 0.000740478 130.890
737
+ 10000 0 0.0508 71.3 0.000740478 128.740
738
+ 12500 0 0.0508 71.3 0.000740478 125.220
739
+ 800 0 0.0508 55.5 0.00076193 124.336
740
+ 1000 0 0.0508 55.5 0.00076193 125.586
741
+ 1250 0 0.0508 55.5 0.00076193 127.076
742
+ 1600 0 0.0508 55.5 0.00076193 128.576
743
+ 2000 0 0.0508 55.5 0.00076193 131.456
744
+ 2500 0 0.0508 55.5 0.00076193 133.956
745
+ 3150 0 0.0508 55.5 0.00076193 134.826
746
+ 4000 0 0.0508 55.5 0.00076193 134.946
747
+ 5000 0 0.0508 55.5 0.00076193 134.556
748
+ 6300 0 0.0508 55.5 0.00076193 132.796
749
+ 8000 0 0.0508 55.5 0.00076193 130.156
750
+ 10000 0 0.0508 55.5 0.00076193 127.636
751
+ 12500 0 0.0508 55.5 0.00076193 125.376
752
+ 800 0 0.0508 39.6 0.000791822 126.508
753
+ 1000 0 0.0508 39.6 0.000791822 127.638
754
+ 1250 0 0.0508 39.6 0.000791822 129.148
755
+ 1600 0 0.0508 39.6 0.000791822 130.908
756
+ 2000 0 0.0508 39.6 0.000791822 132.918
757
+ 2500 0 0.0508 39.6 0.000791822 134.938
758
+ 3150 0 0.0508 39.6 0.000791822 135.938
759
+ 4000 0 0.0508 39.6 0.000791822 135.308
760
+ 5000 0 0.0508 39.6 0.000791822 134.308
761
+ 6300 0 0.0508 39.6 0.000791822 131.918
762
+ 8000 0 0.0508 39.6 0.000791822 128.518
763
+ 10000 0 0.0508 39.6 0.000791822 125.998
764
+ 12500 0 0.0508 39.6 0.000791822 123.988
765
+ 800 0 0.0508 31.7 0.000812164 122.790
766
+ 1000 0 0.0508 31.7 0.000812164 126.780
767
+ 1250 0 0.0508 31.7 0.000812164 129.270
768
+ 1600 0 0.0508 31.7 0.000812164 131.010
769
+ 2000 0 0.0508 31.7 0.000812164 133.010
770
+ 2500 0 0.0508 31.7 0.000812164 134.870
771
+ 3150 0 0.0508 31.7 0.000812164 135.490
772
+ 4000 0 0.0508 31.7 0.000812164 134.110
773
+ 5000 0 0.0508 31.7 0.000812164 133.230
774
+ 6300 0 0.0508 31.7 0.000812164 130.340
775
+ 8000 0 0.0508 31.7 0.000812164 126.590
776
+ 10000 0 0.0508 31.7 0.000812164 122.450
777
+ 12500 0 0.0508 31.7 0.000812164 119.070
778
+ 1600 4.2 0.0508 71.3 0.00142788 124.318
779
+ 2000 4.2 0.0508 71.3 0.00142788 129.848
780
+ 2500 4.2 0.0508 71.3 0.00142788 131.978
781
+ 3150 4.2 0.0508 71.3 0.00142788 133.728
782
+ 4000 4.2 0.0508 71.3 0.00142788 133.598
783
+ 5000 4.2 0.0508 71.3 0.00142788 132.828
784
+ 6300 4.2 0.0508 71.3 0.00142788 129.308
785
+ 8000 4.2 0.0508 71.3 0.00142788 125.268
786
+ 10000 4.2 0.0508 71.3 0.00142788 121.238
787
+ 12500 4.2 0.0508 71.3 0.00142788 117.328
788
+ 1000 4.2 0.0508 39.6 0.00152689 125.647
789
+ 1250 4.2 0.0508 39.6 0.00152689 128.427
790
+ 1600 4.2 0.0508 39.6 0.00152689 130.197
791
+ 2000 4.2 0.0508 39.6 0.00152689 132.587
792
+ 2500 4.2 0.0508 39.6 0.00152689 133.847
793
+ 3150 4.2 0.0508 39.6 0.00152689 133.587
794
+ 4000 4.2 0.0508 39.6 0.00152689 131.807
795
+ 5000 4.2 0.0508 39.6 0.00152689 129.777
796
+ 6300 4.2 0.0508 39.6 0.00152689 125.717
797
+ 8000 4.2 0.0508 39.6 0.00152689 120.397
798
+ 10000 4.2 0.0508 39.6 0.00152689 116.967
799
+ 800 8.4 0.0508 71.3 0.00529514 127.556
800
+ 1000 8.4 0.0508 71.3 0.00529514 129.946
801
+ 1250 8.4 0.0508 71.3 0.00529514 132.086
802
+ 1600 8.4 0.0508 71.3 0.00529514 133.846
803
+ 2000 8.4 0.0508 71.3 0.00529514 134.476
804
+ 2500 8.4 0.0508 71.3 0.00529514 134.226
805
+ 3150 8.4 0.0508 71.3 0.00529514 131.966
806
+ 4000 8.4 0.0508 71.3 0.00529514 126.926
807
+ 5000 8.4 0.0508 71.3 0.00529514 121.146
808
+ 400 8.4 0.0508 55.5 0.00544854 121.582
809
+ 500 8.4 0.0508 55.5 0.00544854 123.742
810
+ 630 8.4 0.0508 55.5 0.00544854 126.152
811
+ 800 8.4 0.0508 55.5 0.00544854 128.562
812
+ 1000 8.4 0.0508 55.5 0.00544854 130.722
813
+ 1250 8.4 0.0508 55.5 0.00544854 132.252
814
+ 1600 8.4 0.0508 55.5 0.00544854 133.032
815
+ 2000 8.4 0.0508 55.5 0.00544854 133.042
816
+ 2500 8.4 0.0508 55.5 0.00544854 131.542
817
+ 3150 8.4 0.0508 55.5 0.00544854 128.402
818
+ 4000 8.4 0.0508 55.5 0.00544854 122.612
819
+ 5000 8.4 0.0508 55.5 0.00544854 115.812
820
+ 400 8.4 0.0508 39.6 0.00566229 120.015
821
+ 500 8.4 0.0508 39.6 0.00566229 122.905
822
+ 630 8.4 0.0508 39.6 0.00566229 126.045
823
+ 800 8.4 0.0508 39.6 0.00566229 128.435
824
+ 1000 8.4 0.0508 39.6 0.00566229 130.195
825
+ 1250 8.4 0.0508 39.6 0.00566229 131.205
826
+ 1600 8.4 0.0508 39.6 0.00566229 130.965
827
+ 2000 8.4 0.0508 39.6 0.00566229 129.965
828
+ 2500 8.4 0.0508 39.6 0.00566229 127.465
829
+ 3150 8.4 0.0508 39.6 0.00566229 123.965
830
+ 4000 8.4 0.0508 39.6 0.00566229 118.955
831
+ 400 8.4 0.0508 31.7 0.00580776 120.076
832
+ 500 8.4 0.0508 31.7 0.00580776 122.966
833
+ 630 8.4 0.0508 31.7 0.00580776 125.856
834
+ 800 8.4 0.0508 31.7 0.00580776 128.246
835
+ 1000 8.4 0.0508 31.7 0.00580776 129.516
836
+ 1250 8.4 0.0508 31.7 0.00580776 130.156
837
+ 1600 8.4 0.0508 31.7 0.00580776 129.296
838
+ 2000 8.4 0.0508 31.7 0.00580776 127.686
839
+ 2500 8.4 0.0508 31.7 0.00580776 125.576
840
+ 3150 8.4 0.0508 31.7 0.00580776 122.086
841
+ 4000 8.4 0.0508 31.7 0.00580776 118.106
842
+ 200 11.2 0.0508 71.3 0.014072 125.941
843
+ 250 11.2 0.0508 71.3 0.014072 127.101
844
+ 315 11.2 0.0508 71.3 0.014072 128.381
845
+ 400 11.2 0.0508 71.3 0.014072 129.281
846
+ 500 11.2 0.0508 71.3 0.014072 130.311
847
+ 630 11.2 0.0508 71.3 0.014072 133.611
848
+ 800 11.2 0.0508 71.3 0.014072 136.031
849
+ 1000 11.2 0.0508 71.3 0.014072 136.941
850
+ 1250 11.2 0.0508 71.3 0.014072 136.191
851
+ 1600 11.2 0.0508 71.3 0.014072 135.191
852
+ 2000 11.2 0.0508 71.3 0.014072 133.311
853
+ 2500 11.2 0.0508 71.3 0.014072 130.541
854
+ 3150 11.2 0.0508 71.3 0.014072 127.141
855
+ 4000 11.2 0.0508 71.3 0.014072 122.471
856
+ 200 11.2 0.0508 39.6 0.0150478 125.010
857
+ 250 11.2 0.0508 39.6 0.0150478 126.430
858
+ 315 11.2 0.0508 39.6 0.0150478 128.990
859
+ 400 11.2 0.0508 39.6 0.0150478 130.670
860
+ 500 11.2 0.0508 39.6 0.0150478 131.960
861
+ 630 11.2 0.0508 39.6 0.0150478 133.130
862
+ 800 11.2 0.0508 39.6 0.0150478 133.790
863
+ 1000 11.2 0.0508 39.6 0.0150478 132.430
864
+ 1250 11.2 0.0508 39.6 0.0150478 130.050
865
+ 1600 11.2 0.0508 39.6 0.0150478 126.540
866
+ 2000 11.2 0.0508 39.6 0.0150478 124.420
867
+ 2500 11.2 0.0508 39.6 0.0150478 122.170
868
+ 3150 11.2 0.0508 39.6 0.0150478 119.670
869
+ 4000 11.2 0.0508 39.6 0.0150478 115.520
870
+ 200 15.4 0.0508 71.3 0.0264269 123.595
871
+ 250 15.4 0.0508 71.3 0.0264269 124.835
872
+ 315 15.4 0.0508 71.3 0.0264269 126.195
873
+ 400 15.4 0.0508 71.3 0.0264269 126.805
874
+ 500 15.4 0.0508 71.3 0.0264269 127.285
875
+ 630 15.4 0.0508 71.3 0.0264269 129.645
876
+ 800 15.4 0.0508 71.3 0.0264269 131.515
877
+ 1000 15.4 0.0508 71.3 0.0264269 131.865
878
+ 1250 15.4 0.0508 71.3 0.0264269 130.845
879
+ 1600 15.4 0.0508 71.3 0.0264269 130.065
880
+ 2000 15.4 0.0508 71.3 0.0264269 129.285
881
+ 2500 15.4 0.0508 71.3 0.0264269 127.625
882
+ 3150 15.4 0.0508 71.3 0.0264269 125.715
883
+ 4000 15.4 0.0508 71.3 0.0264269 122.675
884
+ 5000 15.4 0.0508 71.3 0.0264269 119.135
885
+ 6300 15.4 0.0508 71.3 0.0264269 115.215
886
+ 8000 15.4 0.0508 71.3 0.0264269 112.675
887
+ 200 15.4 0.0508 55.5 0.0271925 122.940
888
+ 250 15.4 0.0508 55.5 0.0271925 124.170
889
+ 315 15.4 0.0508 55.5 0.0271925 125.390
890
+ 400 15.4 0.0508 55.5 0.0271925 126.500
891
+ 500 15.4 0.0508 55.5 0.0271925 127.220
892
+ 630 15.4 0.0508 55.5 0.0271925 129.330
893
+ 800 15.4 0.0508 55.5 0.0271925 130.430
894
+ 1000 15.4 0.0508 55.5 0.0271925 130.400
895
+ 1250 15.4 0.0508 55.5 0.0271925 130.000
896
+ 1600 15.4 0.0508 55.5 0.0271925 128.200
897
+ 2000 15.4 0.0508 55.5 0.0271925 127.040
898
+ 2500 15.4 0.0508 55.5 0.0271925 125.630
899
+ 3150 15.4 0.0508 55.5 0.0271925 123.460
900
+ 4000 15.4 0.0508 55.5 0.0271925 120.920
901
+ 5000 15.4 0.0508 55.5 0.0271925 117.110
902
+ 6300 15.4 0.0508 55.5 0.0271925 112.930
903
+ 200 15.4 0.0508 39.6 0.0282593 121.783
904
+ 250 15.4 0.0508 39.6 0.0282593 122.893
905
+ 315 15.4 0.0508 39.6 0.0282593 124.493
906
+ 400 15.4 0.0508 39.6 0.0282593 125.353
907
+ 500 15.4 0.0508 39.6 0.0282593 125.963
908
+ 630 15.4 0.0508 39.6 0.0282593 127.443
909
+ 800 15.4 0.0508 39.6 0.0282593 128.423
910
+ 1000 15.4 0.0508 39.6 0.0282593 127.893
911
+ 1250 15.4 0.0508 39.6 0.0282593 126.743
912
+ 1600 15.4 0.0508 39.6 0.0282593 124.843
913
+ 2000 15.4 0.0508 39.6 0.0282593 123.443
914
+ 2500 15.4 0.0508 39.6 0.0282593 122.413
915
+ 3150 15.4 0.0508 39.6 0.0282593 120.513
916
+ 4000 15.4 0.0508 39.6 0.0282593 118.113
917
+ 5000 15.4 0.0508 39.6 0.0282593 114.453
918
+ 6300 15.4 0.0508 39.6 0.0282593 109.663
919
+ 200 15.4 0.0508 31.7 0.0289853 119.975
920
+ 250 15.4 0.0508 31.7 0.0289853 121.225
921
+ 315 15.4 0.0508 31.7 0.0289853 122.845
922
+ 400 15.4 0.0508 31.7 0.0289853 123.705
923
+ 500 15.4 0.0508 31.7 0.0289853 123.695
924
+ 630 15.4 0.0508 31.7 0.0289853 124.685
925
+ 800 15.4 0.0508 31.7 0.0289853 125.555
926
+ 1000 15.4 0.0508 31.7 0.0289853 124.525
927
+ 1250 15.4 0.0508 31.7 0.0289853 123.255
928
+ 1600 15.4 0.0508 31.7 0.0289853 121.485
929
+ 2000 15.4 0.0508 31.7 0.0289853 120.835
930
+ 2500 15.4 0.0508 31.7 0.0289853 119.945
931
+ 3150 15.4 0.0508 31.7 0.0289853 118.045
932
+ 4000 15.4 0.0508 31.7 0.0289853 115.635
933
+ 5000 15.4 0.0508 31.7 0.0289853 112.355
934
+ 6300 15.4 0.0508 31.7 0.0289853 108.185
935
+ 200 19.7 0.0508 71.3 0.0341183 118.005
936
+ 250 19.7 0.0508 71.3 0.0341183 119.115
937
+ 315 19.7 0.0508 71.3 0.0341183 121.235
938
+ 400 19.7 0.0508 71.3 0.0341183 123.865
939
+ 500 19.7 0.0508 71.3 0.0341183 126.995
940
+ 630 19.7 0.0508 71.3 0.0341183 128.365
941
+ 800 19.7 0.0508 71.3 0.0341183 124.555
942
+ 1000 19.7 0.0508 71.3 0.0341183 121.885
943
+ 1250 19.7 0.0508 71.3 0.0341183 121.485
944
+ 1600 19.7 0.0508 71.3 0.0341183 120.575
945
+ 2000 19.7 0.0508 71.3 0.0341183 120.055
946
+ 2500 19.7 0.0508 71.3 0.0341183 118.385
947
+ 3150 19.7 0.0508 71.3 0.0341183 116.225
948
+ 4000 19.7 0.0508 71.3 0.0341183 113.045
949
+ 200 19.7 0.0508 39.6 0.036484 125.974
950
+ 250 19.7 0.0508 39.6 0.036484 127.224
951
+ 315 19.7 0.0508 39.6 0.036484 129.864
952
+ 400 19.7 0.0508 39.6 0.036484 130.614
953
+ 500 19.7 0.0508 39.6 0.036484 128.444
954
+ 630 19.7 0.0508 39.6 0.036484 120.324
955
+ 800 19.7 0.0508 39.6 0.036484 119.174
956
+ 1000 19.7 0.0508 39.6 0.036484 118.904
957
+ 1250 19.7 0.0508 39.6 0.036484 118.634
958
+ 1600 19.7 0.0508 39.6 0.036484 117.604
959
+ 2000 19.7 0.0508 39.6 0.036484 117.724
960
+ 2500 19.7 0.0508 39.6 0.036484 116.184
961
+ 3150 19.7 0.0508 39.6 0.036484 113.004
962
+ 4000 19.7 0.0508 39.6 0.036484 108.684
963
+ 2500 0 0.0254 71.3 0.000400682 133.707
964
+ 3150 0 0.0254 71.3 0.000400682 137.007
965
+ 4000 0 0.0254 71.3 0.000400682 138.557
966
+ 5000 0 0.0254 71.3 0.000400682 136.837
967
+ 6300 0 0.0254 71.3 0.000400682 134.987
968
+ 8000 0 0.0254 71.3 0.000400682 129.867
969
+ 10000 0 0.0254 71.3 0.000400682 130.787
970
+ 12500 0 0.0254 71.3 0.000400682 133.207
971
+ 16000 0 0.0254 71.3 0.000400682 130.477
972
+ 20000 0 0.0254 71.3 0.000400682 123.217
973
+ 2000 0 0.0254 55.5 0.00041229 127.623
974
+ 2500 0 0.0254 55.5 0.00041229 130.073
975
+ 3150 0 0.0254 55.5 0.00041229 130.503
976
+ 4000 0 0.0254 55.5 0.00041229 133.223
977
+ 5000 0 0.0254 55.5 0.00041229 135.803
978
+ 6300 0 0.0254 55.5 0.00041229 136.103
979
+ 8000 0 0.0254 55.5 0.00041229 136.163
980
+ 10000 0 0.0254 55.5 0.00041229 134.563
981
+ 12500 0 0.0254 55.5 0.00041229 131.453
982
+ 16000 0 0.0254 55.5 0.00041229 125.683
983
+ 20000 0 0.0254 55.5 0.00041229 121.933
984
+ 1600 0 0.0254 39.6 0.000428464 124.156
985
+ 2000 0 0.0254 39.6 0.000428464 130.026
986
+ 2500 0 0.0254 39.6 0.000428464 131.836
987
+ 3150 0 0.0254 39.6 0.000428464 133.276
988
+ 4000 0 0.0254 39.6 0.000428464 135.346
989
+ 5000 0 0.0254 39.6 0.000428464 136.536
990
+ 6300 0 0.0254 39.6 0.000428464 136.826
991
+ 8000 0 0.0254 39.6 0.000428464 135.866
992
+ 10000 0 0.0254 39.6 0.000428464 133.376
993
+ 12500 0 0.0254 39.6 0.000428464 129.116
994
+ 16000 0 0.0254 39.6 0.000428464 124.986
995
+ 1000 0 0.0254 31.7 0.000439472 125.127
996
+ 1250 0 0.0254 31.7 0.000439472 127.947
997
+ 1600 0 0.0254 31.7 0.000439472 129.267
998
+ 2000 0 0.0254 31.7 0.000439472 130.697
999
+ 2500 0 0.0254 31.7 0.000439472 132.897
1000
+ 3150 0 0.0254 31.7 0.000439472 135.227
1001
+ 4000 0 0.0254 31.7 0.000439472 137.047
1002
+ 5000 0 0.0254 31.7 0.000439472 138.607
1003
+ 6300 0 0.0254 31.7 0.000439472 138.537
1004
+ 8000 0 0.0254 31.7 0.000439472 137.207
1005
+ 10000 0 0.0254 31.7 0.000439472 134.227
1006
+ 12500 0 0.0254 31.7 0.000439472 128.977
1007
+ 16000 0 0.0254 31.7 0.000439472 125.627
1008
+ 2000 4.8 0.0254 71.3 0.000848633 128.398
1009
+ 2500 4.8 0.0254 71.3 0.000848633 130.828
1010
+ 3150 4.8 0.0254 71.3 0.000848633 133.378
1011
+ 4000 4.8 0.0254 71.3 0.000848633 134.928
1012
+ 5000 4.8 0.0254 71.3 0.000848633 135.468
1013
+ 6300 4.8 0.0254 71.3 0.000848633 134.498
1014
+ 8000 4.8 0.0254 71.3 0.000848633 131.518
1015
+ 10000 4.8 0.0254 71.3 0.000848633 127.398
1016
+ 12500 4.8 0.0254 71.3 0.000848633 127.688
1017
+ 16000 4.8 0.0254 71.3 0.000848633 124.208
1018
+ 20000 4.8 0.0254 71.3 0.000848633 119.708
1019
+ 1600 4.8 0.0254 55.5 0.000873218 121.474
1020
+ 2000 4.8 0.0254 55.5 0.000873218 125.054
1021
+ 2500 4.8 0.0254 55.5 0.000873218 129.144
1022
+ 3150 4.8 0.0254 55.5 0.000873218 132.354
1023
+ 4000 4.8 0.0254 55.5 0.000873218 133.924
1024
+ 5000 4.8 0.0254 55.5 0.000873218 135.484
1025
+ 6300 4.8 0.0254 55.5 0.000873218 135.164
1026
+ 8000 4.8 0.0254 55.5 0.000873218 132.184
1027
+ 10000 4.8 0.0254 55.5 0.000873218 126.944
1028
+ 12500 4.8 0.0254 55.5 0.000873218 125.094
1029
+ 16000 4.8 0.0254 55.5 0.000873218 124.394
1030
+ 20000 4.8 0.0254 55.5 0.000873218 121.284
1031
+ 500 4.8 0.0254 39.6 0.000907475 116.366
1032
+ 630 4.8 0.0254 39.6 0.000907475 118.696
1033
+ 800 4.8 0.0254 39.6 0.000907475 120.766
1034
+ 1000 4.8 0.0254 39.6 0.000907475 122.956
1035
+ 1250 4.8 0.0254 39.6 0.000907475 125.026
1036
+ 1600 4.8 0.0254 39.6 0.000907475 125.966
1037
+ 2000 4.8 0.0254 39.6 0.000907475 128.916
1038
+ 2500 4.8 0.0254 39.6 0.000907475 131.236
1039
+ 3150 4.8 0.0254 39.6 0.000907475 133.436
1040
+ 4000 4.8 0.0254 39.6 0.000907475 134.996
1041
+ 5000 4.8 0.0254 39.6 0.000907475 135.426
1042
+ 6300 4.8 0.0254 39.6 0.000907475 134.336
1043
+ 8000 4.8 0.0254 39.6 0.000907475 131.346
1044
+ 10000 4.8 0.0254 39.6 0.000907475 126.066
1045
+ 500 4.8 0.0254 31.7 0.000930789 116.128
1046
+ 630 4.8 0.0254 31.7 0.000930789 120.078
1047
+ 800 4.8 0.0254 31.7 0.000930789 122.648
1048
+ 1000 4.8 0.0254 31.7 0.000930789 125.348
1049
+ 1250 4.8 0.0254 31.7 0.000930789 127.408
1050
+ 1600 4.8 0.0254 31.7 0.000930789 128.718
1051
+ 2000 4.8 0.0254 31.7 0.000930789 130.148
1052
+ 2500 4.8 0.0254 31.7 0.000930789 132.588
1053
+ 3150 4.8 0.0254 31.7 0.000930789 134.268
1054
+ 4000 4.8 0.0254 31.7 0.000930789 135.328
1055
+ 5000 4.8 0.0254 31.7 0.000930789 135.248
1056
+ 6300 4.8 0.0254 31.7 0.000930789 132.898
1057
+ 8000 4.8 0.0254 31.7 0.000930789 127.008
1058
+ 630 9.5 0.0254 71.3 0.00420654 125.726
1059
+ 800 9.5 0.0254 71.3 0.00420654 127.206
1060
+ 1000 9.5 0.0254 71.3 0.00420654 129.556
1061
+ 1250 9.5 0.0254 71.3 0.00420654 131.656
1062
+ 1600 9.5 0.0254 71.3 0.00420654 133.756
1063
+ 2000 9.5 0.0254 71.3 0.00420654 134.976
1064
+ 2500 9.5 0.0254 71.3 0.00420654 135.956
1065
+ 3150 9.5 0.0254 71.3 0.00420654 136.166
1066
+ 4000 9.5 0.0254 71.3 0.00420654 134.236
1067
+ 5000 9.5 0.0254 71.3 0.00420654 131.186
1068
+ 6300 9.5 0.0254 71.3 0.00420654 127.246
1069
+ 400 9.5 0.0254 55.5 0.0043284 120.952
1070
+ 500 9.5 0.0254 55.5 0.0043284 123.082
1071
+ 630 9.5 0.0254 55.5 0.0043284 125.452
1072
+ 800 9.5 0.0254 55.5 0.0043284 128.082
1073
+ 1000 9.5 0.0254 55.5 0.0043284 130.332
1074
+ 1250 9.5 0.0254 55.5 0.0043284 132.202
1075
+ 1600 9.5 0.0254 55.5 0.0043284 133.062
1076
+ 2000 9.5 0.0254 55.5 0.0043284 134.052
1077
+ 2500 9.5 0.0254 55.5 0.0043284 134.152
1078
+ 3150 9.5 0.0254 55.5 0.0043284 133.252
1079
+ 4000 9.5 0.0254 55.5 0.0043284 131.582
1080
+ 5000 9.5 0.0254 55.5 0.0043284 128.412
1081
+ 6300 9.5 0.0254 55.5 0.0043284 124.222
1082
+ 200 9.5 0.0254 39.6 0.00449821 116.074
1083
+ 250 9.5 0.0254 39.6 0.00449821 116.924
1084
+ 315 9.5 0.0254 39.6 0.00449821 119.294
1085
+ 400 9.5 0.0254 39.6 0.00449821 121.154
1086
+ 500 9.5 0.0254 39.6 0.00449821 123.894
1087
+ 630 9.5 0.0254 39.6 0.00449821 126.514
1088
+ 800 9.5 0.0254 39.6 0.00449821 129.014
1089
+ 1000 9.5 0.0254 39.6 0.00449821 130.374
1090
+ 1250 9.5 0.0254 39.6 0.00449821 130.964
1091
+ 1600 9.5 0.0254 39.6 0.00449821 131.184
1092
+ 2000 9.5 0.0254 39.6 0.00449821 131.274
1093
+ 2500 9.5 0.0254 39.6 0.00449821 131.234
1094
+ 3150 9.5 0.0254 39.6 0.00449821 129.934
1095
+ 4000 9.5 0.0254 39.6 0.00449821 127.864
1096
+ 5000 9.5 0.0254 39.6 0.00449821 125.044
1097
+ 6300 9.5 0.0254 39.6 0.00449821 120.324
1098
+ 200 9.5 0.0254 31.7 0.00461377 119.146
1099
+ 250 9.5 0.0254 31.7 0.00461377 120.136
1100
+ 315 9.5 0.0254 31.7 0.00461377 122.766
1101
+ 400 9.5 0.0254 31.7 0.00461377 124.756
1102
+ 500 9.5 0.0254 31.7 0.00461377 126.886
1103
+ 630 9.5 0.0254 31.7 0.00461377 129.006
1104
+ 800 9.5 0.0254 31.7 0.00461377 130.746
1105
+ 1000 9.5 0.0254 31.7 0.00461377 131.346
1106
+ 1250 9.5 0.0254 31.7 0.00461377 131.446
1107
+ 1600 9.5 0.0254 31.7 0.00461377 131.036
1108
+ 2000 9.5 0.0254 31.7 0.00461377 130.496
1109
+ 2500 9.5 0.0254 31.7 0.00461377 130.086
1110
+ 3150 9.5 0.0254 31.7 0.00461377 128.536
1111
+ 4000 9.5 0.0254 31.7 0.00461377 126.736
1112
+ 5000 9.5 0.0254 31.7 0.00461377 124.426
1113
+ 6300 9.5 0.0254 31.7 0.00461377 120.726
1114
+ 250 12.7 0.0254 71.3 0.0121808 119.698
1115
+ 315 12.7 0.0254 71.3 0.0121808 122.938
1116
+ 400 12.7 0.0254 71.3 0.0121808 125.048
1117
+ 500 12.7 0.0254 71.3 0.0121808 126.898
1118
+ 630 12.7 0.0254 71.3 0.0121808 128.878
1119
+ 800 12.7 0.0254 71.3 0.0121808 130.348
1120
+ 1000 12.7 0.0254 71.3 0.0121808 131.698
1121
+ 1250 12.7 0.0254 71.3 0.0121808 133.048
1122
+ 1600 12.7 0.0254 71.3 0.0121808 134.528
1123
+ 2000 12.7 0.0254 71.3 0.0121808 134.228
1124
+ 2500 12.7 0.0254 71.3 0.0121808 134.058
1125
+ 3150 12.7 0.0254 71.3 0.0121808 133.758
1126
+ 4000 12.7 0.0254 71.3 0.0121808 131.808
1127
+ 5000 12.7 0.0254 71.3 0.0121808 128.978
1128
+ 6300 12.7 0.0254 71.3 0.0121808 125.398
1129
+ 8000 12.7 0.0254 71.3 0.0121808 120.538
1130
+ 10000 12.7 0.0254 71.3 0.0121808 114.418
1131
+ 250 12.7 0.0254 39.6 0.0130253 121.547
1132
+ 315 12.7 0.0254 39.6 0.0130253 123.537
1133
+ 400 12.7 0.0254 39.6 0.0130253 125.527
1134
+ 500 12.7 0.0254 39.6 0.0130253 127.127
1135
+ 630 12.7 0.0254 39.6 0.0130253 128.867
1136
+ 800 12.7 0.0254 39.6 0.0130253 130.217
1137
+ 1000 12.7 0.0254 39.6 0.0130253 130.947
1138
+ 1250 12.7 0.0254 39.6 0.0130253 130.777
1139
+ 1600 12.7 0.0254 39.6 0.0130253 129.977
1140
+ 2000 12.7 0.0254 39.6 0.0130253 129.567
1141
+ 2500 12.7 0.0254 39.6 0.0130253 129.027
1142
+ 3150 12.7 0.0254 39.6 0.0130253 127.847
1143
+ 4000 12.7 0.0254 39.6 0.0130253 126.537
1144
+ 5000 12.7 0.0254 39.6 0.0130253 125.107
1145
+ 6300 12.7 0.0254 39.6 0.0130253 123.177
1146
+ 8000 12.7 0.0254 39.6 0.0130253 120.607
1147
+ 10000 12.7 0.0254 39.6 0.0130253 116.017
1148
+ 200 17.4 0.0254 71.3 0.016104 112.506
1149
+ 250 17.4 0.0254 71.3 0.016104 113.796
1150
+ 315 17.4 0.0254 71.3 0.016104 115.846
1151
+ 400 17.4 0.0254 71.3 0.016104 117.396
1152
+ 500 17.4 0.0254 71.3 0.016104 119.806
1153
+ 630 17.4 0.0254 71.3 0.016104 122.606
1154
+ 800 17.4 0.0254 71.3 0.016104 124.276
1155
+ 1000 17.4 0.0254 71.3 0.016104 125.816
1156
+ 1250 17.4 0.0254 71.3 0.016104 126.356
1157
+ 1600 17.4 0.0254 71.3 0.016104 126.406
1158
+ 2000 17.4 0.0254 71.3 0.016104 126.826
1159
+ 2500 17.4 0.0254 71.3 0.016104 126.746
1160
+ 3150 17.4 0.0254 71.3 0.016104 126.536
1161
+ 4000 17.4 0.0254 71.3 0.016104 125.586
1162
+ 5000 17.4 0.0254 71.3 0.016104 123.126
1163
+ 6300 17.4 0.0254 71.3 0.016104 119.916
1164
+ 8000 17.4 0.0254 71.3 0.016104 115.466
1165
+ 200 17.4 0.0254 55.5 0.0165706 109.951
1166
+ 250 17.4 0.0254 55.5 0.0165706 110.491
1167
+ 315 17.4 0.0254 55.5 0.0165706 111.911
1168
+ 400 17.4 0.0254 55.5 0.0165706 115.461
1169
+ 500 17.4 0.0254 55.5 0.0165706 119.621
1170
+ 630 17.4 0.0254 55.5 0.0165706 122.411
1171
+ 800 17.4 0.0254 55.5 0.0165706 123.091
1172
+ 1000 17.4 0.0254 55.5 0.0165706 126.001
1173
+ 1250 17.4 0.0254 55.5 0.0165706 129.301
1174
+ 1600 17.4 0.0254 55.5 0.0165706 126.471
1175
+ 2000 17.4 0.0254 55.5 0.0165706 125.261
1176
+ 2500 17.4 0.0254 55.5 0.0165706 124.931
1177
+ 3150 17.4 0.0254 55.5 0.0165706 124.101
1178
+ 4000 17.4 0.0254 55.5 0.0165706 121.771
1179
+ 5000 17.4 0.0254 55.5 0.0165706 118.941
1180
+ 6300 17.4 0.0254 55.5 0.0165706 114.861
1181
+ 200 17.4 0.0254 39.6 0.0172206 114.044
1182
+ 250 17.4 0.0254 39.6 0.0172206 114.714
1183
+ 315 17.4 0.0254 39.6 0.0172206 115.144
1184
+ 400 17.4 0.0254 39.6 0.0172206 115.444
1185
+ 500 17.4 0.0254 39.6 0.0172206 117.514
1186
+ 630 17.4 0.0254 39.6 0.0172206 124.514
1187
+ 800 17.4 0.0254 39.6 0.0172206 135.324
1188
+ 1000 17.4 0.0254 39.6 0.0172206 138.274
1189
+ 1250 17.4 0.0254 39.6 0.0172206 131.364
1190
+ 1600 17.4 0.0254 39.6 0.0172206 127.614
1191
+ 2000 17.4 0.0254 39.6 0.0172206 126.644
1192
+ 2500 17.4 0.0254 39.6 0.0172206 124.154
1193
+ 3150 17.4 0.0254 39.6 0.0172206 123.564
1194
+ 4000 17.4 0.0254 39.6 0.0172206 122.724
1195
+ 5000 17.4 0.0254 39.6 0.0172206 119.854
1196
+ 200 17.4 0.0254 31.7 0.0176631 116.146
1197
+ 250 17.4 0.0254 31.7 0.0176631 116.956
1198
+ 315 17.4 0.0254 31.7 0.0176631 118.416
1199
+ 400 17.4 0.0254 31.7 0.0176631 120.766
1200
+ 500 17.4 0.0254 31.7 0.0176631 127.676
1201
+ 630 17.4 0.0254 31.7 0.0176631 136.886
1202
+ 800 17.4 0.0254 31.7 0.0176631 139.226
1203
+ 1000 17.4 0.0254 31.7 0.0176631 131.796
1204
+ 1250 17.4 0.0254 31.7 0.0176631 128.306
1205
+ 1600 17.4 0.0254 31.7 0.0176631 126.846
1206
+ 2000 17.4 0.0254 31.7 0.0176631 124.356
1207
+ 2500 17.4 0.0254 31.7 0.0176631 124.166
1208
+ 3150 17.4 0.0254 31.7 0.0176631 123.466
1209
+ 4000 17.4 0.0254 31.7 0.0176631 121.996
1210
+ 5000 17.4 0.0254 31.7 0.0176631 117.996
1211
+ 315 22.2 0.0254 71.3 0.0214178 115.857
1212
+ 400 22.2 0.0254 71.3 0.0214178 117.927
1213
+ 500 22.2 0.0254 71.3 0.0214178 117.967
1214
+ 630 22.2 0.0254 71.3 0.0214178 120.657
1215
+ 800 22.2 0.0254 71.3 0.0214178 123.227
1216
+ 1000 22.2 0.0254 71.3 0.0214178 134.247
1217
+ 1250 22.2 0.0254 71.3 0.0214178 140.987
1218
+ 1600 22.2 0.0254 71.3 0.0214178 131.817
1219
+ 2000 22.2 0.0254 71.3 0.0214178 127.197
1220
+ 2500 22.2 0.0254 71.3 0.0214178 126.097
1221
+ 3150 22.2 0.0254 71.3 0.0214178 124.127
1222
+ 4000 22.2 0.0254 71.3 0.0214178 123.917
1223
+ 5000 22.2 0.0254 71.3 0.0214178 125.727
1224
+ 6300 22.2 0.0254 71.3 0.0214178 123.127
1225
+ 8000 22.2 0.0254 71.3 0.0214178 121.657
1226
+ 200 22.2 0.0254 39.6 0.0229028 116.066
1227
+ 250 22.2 0.0254 39.6 0.0229028 117.386
1228
+ 315 22.2 0.0254 39.6 0.0229028 120.716
1229
+ 400 22.2 0.0254 39.6 0.0229028 123.416
1230
+ 500 22.2 0.0254 39.6 0.0229028 129.776
1231
+ 630 22.2 0.0254 39.6 0.0229028 137.026
1232
+ 800 22.2 0.0254 39.6 0.0229028 137.076
1233
+ 1000 22.2 0.0254 39.6 0.0229028 128.416
1234
+ 1250 22.2 0.0254 39.6 0.0229028 126.446
1235
+ 1600 22.2 0.0254 39.6 0.0229028 122.216
1236
+ 2000 22.2 0.0254 39.6 0.0229028 121.256
1237
+ 2500 22.2 0.0254 39.6 0.0229028 121.306
1238
+ 3150 22.2 0.0254 39.6 0.0229028 120.856
1239
+ 4000 22.2 0.0254 39.6 0.0229028 119.646
1240
+ 5000 22.2 0.0254 39.6 0.0229028 118.816
1241
+ 630 0 0.1016 71.3 0.00121072 124.155
1242
+ 800 0 0.1016 71.3 0.00121072 126.805
1243
+ 1000 0 0.1016 71.3 0.00121072 128.825
1244
+ 1250 0 0.1016 71.3 0.00121072 130.335
1245
+ 1600 0 0.1016 71.3 0.00121072 131.725
1246
+ 2000 0 0.1016 71.3 0.00121072 132.095
1247
+ 2500 0 0.1016 71.3 0.00121072 132.595
1248
+ 3150 0 0.1016 71.3 0.00121072 131.955
1249
+ 4000 0 0.1016 71.3 0.00121072 130.935
1250
+ 5000 0 0.1016 71.3 0.00121072 130.795
1251
+ 6300 0 0.1016 71.3 0.00121072 129.395
1252
+ 8000 0 0.1016 71.3 0.00121072 125.465
1253
+ 10000 0 0.1016 71.3 0.00121072 123.305
1254
+ 12500 0 0.1016 71.3 0.00121072 119.375
1255
+ 630 0 0.1016 55.5 0.00131983 126.170
1256
+ 800 0 0.1016 55.5 0.00131983 127.920
1257
+ 1000 0 0.1016 55.5 0.00131983 129.800
1258
+ 1250 0 0.1016 55.5 0.00131983 131.430
1259
+ 1600 0 0.1016 55.5 0.00131983 132.050
1260
+ 2000 0 0.1016 55.5 0.00131983 132.540
1261
+ 2500 0 0.1016 55.5 0.00131983 133.040
1262
+ 3150 0 0.1016 55.5 0.00131983 131.780
1263
+ 4000 0 0.1016 55.5 0.00131983 129.500
1264
+ 5000 0 0.1016 55.5 0.00131983 128.360
1265
+ 6300 0 0.1016 55.5 0.00131983 127.730
1266
+ 8000 0 0.1016 55.5 0.00131983 124.450
1267
+ 10000 0 0.1016 55.5 0.00131983 121.930
1268
+ 12500 0 0.1016 55.5 0.00131983 119.910
1269
+ 630 0 0.1016 39.6 0.00146332 125.401
1270
+ 800 0 0.1016 39.6 0.00146332 128.401
1271
+ 1000 0 0.1016 39.6 0.00146332 130.781
1272
+ 1250 0 0.1016 39.6 0.00146332 132.271
1273
+ 1600 0 0.1016 39.6 0.00146332 133.261
1274
+ 2000 0 0.1016 39.6 0.00146332 133.251
1275
+ 2500 0 0.1016 39.6 0.00146332 132.611
1276
+ 3150 0 0.1016 39.6 0.00146332 130.961
1277
+ 4000 0 0.1016 39.6 0.00146332 127.801
1278
+ 5000 0 0.1016 39.6 0.00146332 126.021
1279
+ 6300 0 0.1016 39.6 0.00146332 125.631
1280
+ 8000 0 0.1016 39.6 0.00146332 122.341
1281
+ 10000 0 0.1016 39.6 0.00146332 119.561
1282
+ 630 0 0.1016 31.7 0.00150092 126.413
1283
+ 800 0 0.1016 31.7 0.00150092 129.053
1284
+ 1000 0 0.1016 31.7 0.00150092 131.313
1285
+ 1250 0 0.1016 31.7 0.00150092 133.063
1286
+ 1600 0 0.1016 31.7 0.00150092 133.553
1287
+ 2000 0 0.1016 31.7 0.00150092 133.153
1288
+ 2500 0 0.1016 31.7 0.00150092 132.003
1289
+ 3150 0 0.1016 31.7 0.00150092 129.973
1290
+ 4000 0 0.1016 31.7 0.00150092 126.933
1291
+ 5000 0 0.1016 31.7 0.00150092 124.393
1292
+ 6300 0 0.1016 31.7 0.00150092 124.253
1293
+ 8000 0 0.1016 31.7 0.00150092 120.193
1294
+ 10000 0 0.1016 31.7 0.00150092 115.893
1295
+ 800 3.3 0.1016 71.3 0.00202822 131.074
1296
+ 1000 3.3 0.1016 71.3 0.00202822 131.434
1297
+ 1250 3.3 0.1016 71.3 0.00202822 132.304
1298
+ 1600 3.3 0.1016 71.3 0.00202822 133.664
1299
+ 2000 3.3 0.1016 71.3 0.00202822 134.034
1300
+ 2500 3.3 0.1016 71.3 0.00202822 133.894
1301
+ 3150 3.3 0.1016 71.3 0.00202822 132.114
1302
+ 4000 3.3 0.1016 71.3 0.00202822 128.704
1303
+ 5000 3.3 0.1016 71.3 0.00202822 127.054
1304
+ 6300 3.3 0.1016 71.3 0.00202822 124.904
1305
+ 8000 3.3 0.1016 71.3 0.00202822 121.234
1306
+ 10000 3.3 0.1016 71.3 0.00202822 116.694
1307
+ 630 3.3 0.1016 55.5 0.002211 126.599
1308
+ 800 3.3 0.1016 55.5 0.002211 129.119
1309
+ 1000 3.3 0.1016 55.5 0.002211 131.129
1310
+ 1250 3.3 0.1016 55.5 0.002211 132.769
1311
+ 1600 3.3 0.1016 55.5 0.002211 133.649
1312
+ 2000 3.3 0.1016 55.5 0.002211 133.649
1313
+ 2500 3.3 0.1016 55.5 0.002211 132.889
1314
+ 3150 3.3 0.1016 55.5 0.002211 130.629
1315
+ 4000 3.3 0.1016 55.5 0.002211 127.229
1316
+ 5000 3.3 0.1016 55.5 0.002211 124.839
1317
+ 6300 3.3 0.1016 55.5 0.002211 123.839
1318
+ 8000 3.3 0.1016 55.5 0.002211 120.569
1319
+ 10000 3.3 0.1016 55.5 0.002211 115.659
1320
+ 630 3.3 0.1016 39.6 0.00245138 127.251
1321
+ 800 3.3 0.1016 39.6 0.00245138 129.991
1322
+ 1000 3.3 0.1016 39.6 0.00245138 131.971
1323
+ 1250 3.3 0.1016 39.6 0.00245138 133.211
1324
+ 1600 3.3 0.1016 39.6 0.00245138 133.071
1325
+ 2000 3.3 0.1016 39.6 0.00245138 132.301
1326
+ 2500 3.3 0.1016 39.6 0.00245138 130.791
1327
+ 3150 3.3 0.1016 39.6 0.00245138 128.401
1328
+ 4000 3.3 0.1016 39.6 0.00245138 124.881
1329
+ 5000 3.3 0.1016 39.6 0.00245138 122.371
1330
+ 6300 3.3 0.1016 39.6 0.00245138 120.851
1331
+ 8000 3.3 0.1016 39.6 0.00245138 118.091
1332
+ 10000 3.3 0.1016 39.6 0.00245138 115.321
1333
+ 630 3.3 0.1016 31.7 0.00251435 128.952
1334
+ 800 3.3 0.1016 31.7 0.00251435 131.362
1335
+ 1000 3.3 0.1016 31.7 0.00251435 133.012
1336
+ 1250 3.3 0.1016 31.7 0.00251435 134.022
1337
+ 1600 3.3 0.1016 31.7 0.00251435 133.402
1338
+ 2000 3.3 0.1016 31.7 0.00251435 131.642
1339
+ 2500 3.3 0.1016 31.7 0.00251435 130.392
1340
+ 3150 3.3 0.1016 31.7 0.00251435 128.252
1341
+ 4000 3.3 0.1016 31.7 0.00251435 124.852
1342
+ 5000 3.3 0.1016 31.7 0.00251435 122.082
1343
+ 6300 3.3 0.1016 31.7 0.00251435 120.702
1344
+ 8000 3.3 0.1016 31.7 0.00251435 117.432
1345
+ 630 6.7 0.1016 71.3 0.00478288 131.448
1346
+ 800 6.7 0.1016 71.3 0.00478288 134.478
1347
+ 1000 6.7 0.1016 71.3 0.00478288 136.758
1348
+ 1250 6.7 0.1016 71.3 0.00478288 137.658
1349
+ 1600 6.7 0.1016 71.3 0.00478288 136.678
1350
+ 2000 6.7 0.1016 71.3 0.00478288 134.568
1351
+ 2500 6.7 0.1016 71.3 0.00478288 131.458
1352
+ 3150 6.7 0.1016 71.3 0.00478288 124.458
1353
+ 500 6.7 0.1016 55.5 0.0052139 129.343
1354
+ 630 6.7 0.1016 55.5 0.0052139 133.023
1355
+ 800 6.7 0.1016 55.5 0.0052139 135.953
1356
+ 1000 6.7 0.1016 55.5 0.0052139 137.233
1357
+ 1250 6.7 0.1016 55.5 0.0052139 136.883
1358
+ 1600 6.7 0.1016 55.5 0.0052139 133.653
1359
+ 2000 6.7 0.1016 55.5 0.0052139 129.653
1360
+ 2500 6.7 0.1016 55.5 0.0052139 124.273
1361
+ 400 6.7 0.1016 39.6 0.00578076 128.295
1362
+ 500 6.7 0.1016 39.6 0.00578076 130.955
1363
+ 630 6.7 0.1016 39.6 0.00578076 133.355
1364
+ 800 6.7 0.1016 39.6 0.00578076 134.625
1365
+ 1000 6.7 0.1016 39.6 0.00578076 134.515
1366
+ 1250 6.7 0.1016 39.6 0.00578076 132.395
1367
+ 1600 6.7 0.1016 39.6 0.00578076 127.375
1368
+ 2000 6.7 0.1016 39.6 0.00578076 122.235
1369
+ 315 6.7 0.1016 31.7 0.00592927 126.266
1370
+ 400 6.7 0.1016 31.7 0.00592927 128.296
1371
+ 500 6.7 0.1016 31.7 0.00592927 130.206
1372
+ 630 6.7 0.1016 31.7 0.00592927 132.116
1373
+ 800 6.7 0.1016 31.7 0.00592927 132.886
1374
+ 1000 6.7 0.1016 31.7 0.00592927 131.636
1375
+ 1250 6.7 0.1016 31.7 0.00592927 129.256
1376
+ 1600 6.7 0.1016 31.7 0.00592927 124.346
1377
+ 2000 6.7 0.1016 31.7 0.00592927 120.446
1378
+ 200 8.9 0.1016 71.3 0.0103088 133.503
1379
+ 250 8.9 0.1016 71.3 0.0103088 134.533
1380
+ 315 8.9 0.1016 71.3 0.0103088 136.583
1381
+ 400 8.9 0.1016 71.3 0.0103088 138.123
1382
+ 500 8.9 0.1016 71.3 0.0103088 138.523
1383
+ 630 8.9 0.1016 71.3 0.0103088 138.423
1384
+ 800 8.9 0.1016 71.3 0.0103088 137.813
1385
+ 1000 8.9 0.1016 71.3 0.0103088 135.433
1386
+ 1250 8.9 0.1016 71.3 0.0103088 132.793
1387
+ 1600 8.9 0.1016 71.3 0.0103088 128.763
1388
+ 2000 8.9 0.1016 71.3 0.0103088 124.233
1389
+ 2500 8.9 0.1016 71.3 0.0103088 123.623
1390
+ 3150 8.9 0.1016 71.3 0.0103088 123.263
1391
+ 4000 8.9 0.1016 71.3 0.0103088 120.243
1392
+ 5000 8.9 0.1016 71.3 0.0103088 116.723
1393
+ 6300 8.9 0.1016 71.3 0.0103088 117.253
1394
+ 200 8.9 0.1016 39.6 0.0124596 133.420
1395
+ 250 8.9 0.1016 39.6 0.0124596 134.340
1396
+ 315 8.9 0.1016 39.6 0.0124596 135.380
1397
+ 400 8.9 0.1016 39.6 0.0124596 135.540
1398
+ 500 8.9 0.1016 39.6 0.0124596 133.790
1399
+ 630 8.9 0.1016 39.6 0.0124596 131.920
1400
+ 800 8.9 0.1016 39.6 0.0124596 130.940
1401
+ 1000 8.9 0.1016 39.6 0.0124596 129.580
1402
+ 1250 8.9 0.1016 39.6 0.0124596 127.710
1403
+ 1600 8.9 0.1016 39.6 0.0124596 123.820
1404
+ 2000 8.9 0.1016 39.6 0.0124596 119.040
1405
+ 2500 8.9 0.1016 39.6 0.0124596 119.190
1406
+ 3150 8.9 0.1016 39.6 0.0124596 119.350
1407
+ 4000 8.9 0.1016 39.6 0.0124596 116.220
1408
+ 5000 8.9 0.1016 39.6 0.0124596 113.080
1409
+ 6300 8.9 0.1016 39.6 0.0124596 113.110
1410
+ 200 12.3 0.1016 71.3 0.0337792 130.588
1411
+ 250 12.3 0.1016 71.3 0.0337792 131.568
1412
+ 315 12.3 0.1016 71.3 0.0337792 137.068
1413
+ 400 12.3 0.1016 71.3 0.0337792 139.428
1414
+ 500 12.3 0.1016 71.3 0.0337792 140.158
1415
+ 630 12.3 0.1016 71.3 0.0337792 135.368
1416
+ 800 12.3 0.1016 71.3 0.0337792 127.318
1417
+ 1000 12.3 0.1016 71.3 0.0337792 127.928
1418
+ 1250 12.3 0.1016 71.3 0.0337792 126.648
1419
+ 1600 12.3 0.1016 71.3 0.0337792 124.748
1420
+ 2000 12.3 0.1016 71.3 0.0337792 122.218
1421
+ 2500 12.3 0.1016 71.3 0.0337792 121.318
1422
+ 3150 12.3 0.1016 71.3 0.0337792 120.798
1423
+ 4000 12.3 0.1016 71.3 0.0337792 118.018
1424
+ 5000 12.3 0.1016 71.3 0.0337792 116.108
1425
+ 6300 12.3 0.1016 71.3 0.0337792 113.958
1426
+ 200 12.3 0.1016 55.5 0.0368233 132.304
1427
+ 250 12.3 0.1016 55.5 0.0368233 133.294
1428
+ 315 12.3 0.1016 55.5 0.0368233 135.674
1429
+ 400 12.3 0.1016 55.5 0.0368233 136.414
1430
+ 500 12.3 0.1016 55.5 0.0368233 133.774
1431
+ 630 12.3 0.1016 55.5 0.0368233 124.244
1432
+ 800 12.3 0.1016 55.5 0.0368233 125.114
1433
+ 1000 12.3 0.1016 55.5 0.0368233 125.484
1434
+ 1250 12.3 0.1016 55.5 0.0368233 124.214
1435
+ 1600 12.3 0.1016 55.5 0.0368233 121.824
1436
+ 2000 12.3 0.1016 55.5 0.0368233 118.564
1437
+ 2500 12.3 0.1016 55.5 0.0368233 117.054
1438
+ 3150 12.3 0.1016 55.5 0.0368233 116.914
1439
+ 4000 12.3 0.1016 55.5 0.0368233 114.404
1440
+ 5000 12.3 0.1016 55.5 0.0368233 112.014
1441
+ 6300 12.3 0.1016 55.5 0.0368233 110.124
1442
+ 200 12.3 0.1016 39.6 0.0408268 128.545
1443
+ 250 12.3 0.1016 39.6 0.0408268 129.675
1444
+ 315 12.3 0.1016 39.6 0.0408268 129.415
1445
+ 400 12.3 0.1016 39.6 0.0408268 128.265
1446
+ 500 12.3 0.1016 39.6 0.0408268 122.205
1447
+ 630 12.3 0.1016 39.6 0.0408268 121.315
1448
+ 800 12.3 0.1016 39.6 0.0408268 122.315
1449
+ 1000 12.3 0.1016 39.6 0.0408268 122.435
1450
+ 1250 12.3 0.1016 39.6 0.0408268 121.165
1451
+ 1600 12.3 0.1016 39.6 0.0408268 117.875
1452
+ 2000 12.3 0.1016 39.6 0.0408268 114.085
1453
+ 2500 12.3 0.1016 39.6 0.0408268 113.315
1454
+ 3150 12.3 0.1016 39.6 0.0408268 113.055
1455
+ 4000 12.3 0.1016 39.6 0.0408268 110.905
1456
+ 5000 12.3 0.1016 39.6 0.0408268 108.625
1457
+ 6300 12.3 0.1016 39.6 0.0408268 107.985
1458
+ 200 12.3 0.1016 31.7 0.0418756 124.987
1459
+ 250 12.3 0.1016 31.7 0.0418756 125.857
1460
+ 315 12.3 0.1016 31.7 0.0418756 124.717
1461
+ 400 12.3 0.1016 31.7 0.0418756 123.207
1462
+ 500 12.3 0.1016 31.7 0.0418756 118.667
1463
+ 630 12.3 0.1016 31.7 0.0418756 119.287
1464
+ 800 12.3 0.1016 31.7 0.0418756 120.037
1465
+ 1000 12.3 0.1016 31.7 0.0418756 119.777
1466
+ 1250 12.3 0.1016 31.7 0.0418756 118.767
1467
+ 1600 12.3 0.1016 31.7 0.0418756 114.477
1468
+ 2000 12.3 0.1016 31.7 0.0418756 110.447
1469
+ 2500 12.3 0.1016 31.7 0.0418756 110.317
1470
+ 3150 12.3 0.1016 31.7 0.0418756 110.307
1471
+ 4000 12.3 0.1016 31.7 0.0418756 108.407
1472
+ 5000 12.3 0.1016 31.7 0.0418756 107.147
1473
+ 6300 12.3 0.1016 31.7 0.0418756 107.267
1474
+ 200 15.6 0.1016 71.3 0.0437259 130.898
1475
+ 250 15.6 0.1016 71.3 0.0437259 132.158
1476
+ 315 15.6 0.1016 71.3 0.0437259 133.808
1477
+ 400 15.6 0.1016 71.3 0.0437259 134.058
1478
+ 500 15.6 0.1016 71.3 0.0437259 130.638
1479
+ 630 15.6 0.1016 71.3 0.0437259 122.288
1480
+ 800 15.6 0.1016 71.3 0.0437259 124.188
1481
+ 1000 15.6 0.1016 71.3 0.0437259 124.438
1482
+ 1250 15.6 0.1016 71.3 0.0437259 123.178
1483
+ 1600 15.6 0.1016 71.3 0.0437259 121.528
1484
+ 2000 15.6 0.1016 71.3 0.0437259 119.888
1485
+ 2500 15.6 0.1016 71.3 0.0437259 118.998
1486
+ 3150 15.6 0.1016 71.3 0.0437259 116.468
1487
+ 4000 15.6 0.1016 71.3 0.0437259 113.298
1488
+ 200 15.6 0.1016 39.6 0.0528487 123.514
1489
+ 250 15.6 0.1016 39.6 0.0528487 124.644
1490
+ 315 15.6 0.1016 39.6 0.0528487 122.754
1491
+ 400 15.6 0.1016 39.6 0.0528487 120.484
1492
+ 500 15.6 0.1016 39.6 0.0528487 115.304
1493
+ 630 15.6 0.1016 39.6 0.0528487 118.084
1494
+ 800 15.6 0.1016 39.6 0.0528487 118.964
1495
+ 1000 15.6 0.1016 39.6 0.0528487 119.224
1496
+ 1250 15.6 0.1016 39.6 0.0528487 118.214
1497
+ 1600 15.6 0.1016 39.6 0.0528487 114.554
1498
+ 2000 15.6 0.1016 39.6 0.0528487 110.894
1499
+ 2500 15.6 0.1016 39.6 0.0528487 110.264
1500
+ 3150 15.6 0.1016 39.6 0.0528487 109.254
1501
+ 4000 15.6 0.1016 39.6 0.0528487 106.604
1502
+ 5000 15.6 0.1016 39.6 0.0528487 106.224
1503
+ 6300 15.6 0.1016 39.6 0.0528487 104.204
datasets/conditions_based_maintenance/.DS_Store ADDED
Binary file (6.15 kB). View file
 
datasets/conditions_based_maintenance/Features.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1 - Lever position (lp) [ ]
2
+ 2 - Ship speed (v) [knots]
3
+ 3 - Gas Turbine shaft torque (GTT) [kN m]
4
+ 4 - Gas Turbine rate of revolutions (GTn) [rpm]
5
+ 5 - Gas Generator rate of revolutions (GGn) [rpm]
6
+ 6 - Starboard Propeller Torque (Ts) [kN]
7
+ 7 - Port Propeller Torque (Tp) [kN]
8
+ 8 - HP Turbine exit temperature (T48) [C]
9
+ 9 - GT Compressor inlet air temperature (T1) [C]
10
+ 10 - GT Compressor outlet air temperature (T2) [C]
11
+ 11 - HP Turbine exit pressure (P48) [bar]
12
+ 12 - GT Compressor inlet air pressure (P1) [bar]
13
+ 13 - GT Compressor outlet air pressure (P2) [bar]
14
+ 14 - Gas Turbine exhaust gas pressure (Pexh) [bar]
15
+ 15 - Turbine Injecton Control (TIC) [%]
16
+ 16 - Fuel flow (mf) [kg/s]
17
+ 17 - GT Compressor decay state coefficient.
18
+ 18 - GT Turbine decay state coefficient.
datasets/conditions_based_maintenance/README.txt ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ =================================================================================================================
2
+ Human Activity Recognition Using Smartphones Dataset
3
+ Version 1.0
4
+ =================================================================================================================
5
+ Andrea Coraddu(2), Luca Oneto(1), Alessandro Ghio(1), Stefano Savio(2), Davide Anguita(1), Massimo Figari(2)
6
+ 1 - Smartlab - Non-Linear Complex Systems Laboratory
7
+ DITEN - Universit� degli Studi di Genova, Genoa (I-16145), Italy.
8
+ {luca.oneto,alessandro.ghio,davide.anguita}@unige.it
9
+ 2 - Marine Technology Research Team
10
+ DITEN - Universit� degli Studi di Genova, Genoa (I-16145), Italy.
11
+ {andrea.coraddu,stefano.savio,massimo.figari}@unige.it
12
+ =================================================================================================================
13
+
14
+ The experiments have been carried out by means of a numerical simulator of a naval vessel (Frigate) characterized by a Gas Turbine (GT) propulsion plant. The different blocks forming the complete simulator (Propeller, Hull, GT, Gear Box and Controller) have been developed and fine tuned over the year on several similar real propulsion plants. In view of these observations the available data are in agreement with a possible real vessel.
15
+ In this release of the simulator it is also possible to take into account the performance decay over time of the GT components such as GT compressor and turbines.
16
+ The propulsion system behaviour has been described with this parameters:
17
+ - Ship speed (linear function of the lever position lp).
18
+ - Compressor degradation coefficient kMc.
19
+ - Turbine degradation coefficient kMt.
20
+ so that each possible degradation state can be described by a combination of this triple (lp,kMt,kMc).
21
+ The range of decay of compressor and turbine has been sampled with an uniform grid of precision 0.001 so to have a good granularity of representation.
22
+ In particular for the compressor decay state discretization the kMc coefficient has been investigated in the domain [1; 0.95], and the turbine coefficient in the domain [1; 0.975].
23
+ Ship speed has been investigated sampling the range of feasible speed from 3 knots to 27 knots with a granularity of representation equal to tree knots.
24
+ A series of measures (16 features) which indirectly represents of the state of the system subject to performance decay has been acquired and stored in the dataset over the parameter's space.
25
+ Check the README.txt file for further details about this dataset.
26
+
27
+ For each record it is provided:
28
+ ======================================
29
+
30
+ - A 16-feature vector containing the GT measures at steady state of the physical asset:
31
+ Lever position (lp) [ ]
32
+ Ship speed (v) [knots]
33
+ Gas Turbine (GT) shaft torque (GTT) [kN m]
34
+ GT rate of revolutions (GTn) [rpm]
35
+ Gas Generator rate of revolutions (GGn) [rpm]
36
+ Starboard Propeller Torque (Ts) [kN]
37
+ Port Propeller Torque (Tp) [kN]
38
+ Hight Pressure (HP) Turbine exit temperature (T48) [C]
39
+ GT Compressor inlet air temperature (T1) [C]
40
+ GT Compressor outlet air temperature (T2) [C]
41
+ HP Turbine exit pressure (P48) [bar]
42
+ GT Compressor inlet air pressure (P1) [bar]
43
+ GT Compressor outlet air pressure (P2) [bar]
44
+ GT exhaust gas pressure (Pexh) [bar]
45
+ Turbine Injecton Control (TIC) [%]
46
+ Fuel flow (mf) [kg/s]
47
+ - GT Compressor decay state coefficient
48
+ - GT Turbine decay state coefficient
49
+
50
+ The dataset includes the following files:
51
+ =========================================
52
+
53
+ - 'README.txt'
54
+
55
+ - 'Features.txt': List of all features.
56
+
57
+ - 'data.txt': Dataset.
58
+
59
+ Notes:
60
+ ======
61
+ - Features are not normalized
62
+ - Each feature vector is a row on the text file (18 elements in each row)
63
+
64
+ For more information about this dataset please contact: cbm@smartlab.ws
65
+ Check at www.cbm.smartlab.ws for updates on this dataset.
66
+
67
+ License:
68
+ ========
69
+ Use of this dataset in publications must be acknowledged by referencing the following publication [1]
70
+
71
+ [1] A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, M. Figari, Machine Learning Approaches for Improving Condition?Based Maintenance of Naval Propulsion Plants, Journal of Engineering for the Maritime Environment, 2014, DOI: 10.1177/1475090214540874, (In Press)
72
+
73
+ @article{Coraddu2013Machine,
74
+ author={Coraddu, Andrea and Oneto, Luca and Ghio, Alessandro and
75
+ Savio, Stefano and Anguita, Davide and Figari, Massimo},
76
+ title={Machine Learning Approaches for Improving Condition?Based Maintenance of Naval Propulsion Plants},
77
+ journal={Journal of Engineering for the Maritime Environment},
78
+ volume={--},
79
+ number={--},
80
+ pages={--},
81
+ year={2014}
82
+ }
83
+
84
+ This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.
85
+
86
+ Other Related Publications:
87
+ ===========================
88
+
89
+ [2] M. Altosole, G. Benvenuto, M. Figari, U. Campora, Real-time simulation of a cogag naval ship propulsion system, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223 (1) (2009) 47-62.
90
+
91
+ =================================================================================================================
92
+ Andrea Coraddu, Luca Oneto, Alessandro Ghio, Stefano Savio, Davide Anguita, Massimo Figari. September 2014.
datasets/conditions_based_maintenance/data.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/energy efficiency.csv ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ X1,X2,X3,X4,X5,X6,X7,X8,Y1,Y2
2
+ 0.98,514.5,294,110.25,7,2,0,0,15.55,21.33
3
+ 0.98,514.5,294,110.25,7,3,0,0,15.55,21.33
4
+ 0.98,514.5,294,110.25,7,4,0,0,15.55,21.33
5
+ 0.98,514.5,294,110.25,7,5,0,0,15.55,21.33
6
+ 0.9,563.5,318.5,122.5,7,2,0,0,20.84,28.28
7
+ 0.9,563.5,318.5,122.5,7,3,0,0,21.46,25.38
8
+ 0.9,563.5,318.5,122.5,7,4,0,0,20.71,25.16
9
+ 0.9,563.5,318.5,122.5,7,5,0,0,19.68,29.6
10
+ 0.86,588,294,147,7,2,0,0,19.5,27.3
11
+ 0.86,588,294,147,7,3,0,0,19.95,21.97
12
+ 0.86,588,294,147,7,4,0,0,19.34,23.49
13
+ 0.86,588,294,147,7,5,0,0,18.31,27.87
14
+ 0.82,612.5,318.5,147,7,2,0,0,17.05,23.77
15
+ 0.82,612.5,318.5,147,7,3,0,0,17.41,21.46
16
+ 0.82,612.5,318.5,147,7,4,0,0,16.95,21.16
17
+ 0.82,612.5,318.5,147,7,5,0,0,15.98,24.93
18
+ 0.79,637,343,147,7,2,0,0,28.52,37.73
19
+ 0.79,637,343,147,7,3,0,0,29.9,31.27
20
+ 0.79,637,343,147,7,4,0,0,29.63,30.93
21
+ 0.79,637,343,147,7,5,0,0,28.75,39.44
22
+ 0.76,661.5,416.5,122.5,7,2,0,0,24.77,29.79
23
+ 0.76,661.5,416.5,122.5,7,3,0,0,23.93,29.68
24
+ 0.76,661.5,416.5,122.5,7,4,0,0,24.77,29.79
25
+ 0.76,661.5,416.5,122.5,7,5,0,0,23.93,29.4
26
+ 0.74,686,245,220.5,3.5,2,0,0,6.07,10.9
27
+ 0.74,686,245,220.5,3.5,3,0,0,6.05,11.19
28
+ 0.74,686,245,220.5,3.5,4,0,0,6.01,10.94
29
+ 0.74,686,245,220.5,3.5,5,0,0,6.04,11.17
30
+ 0.71,710.5,269.5,220.5,3.5,2,0,0,6.37,11.27
31
+ 0.71,710.5,269.5,220.5,3.5,3,0,0,6.4,11.72
32
+ 0.71,710.5,269.5,220.5,3.5,4,0,0,6.366,11.29
33
+ 0.71,710.5,269.5,220.5,3.5,5,0,0,6.4,11.67
34
+ 0.69,735,294,220.5,3.5,2,0,0,6.85,11.74
35
+ 0.69,735,294,220.5,3.5,3,0,0,6.79,12.05
36
+ 0.69,735,294,220.5,3.5,4,0,0,6.77,11.73
37
+ 0.69,735,294,220.5,3.5,5,0,0,6.81,11.93
38
+ 0.66,759.5,318.5,220.5,3.5,2,0,0,7.18,12.4
39
+ 0.66,759.5,318.5,220.5,3.5,3,0,0,7.1,12.23
40
+ 0.66,759.5,318.5,220.5,3.5,4,0,0,7.1,12.4
41
+ 0.66,759.5,318.5,220.5,3.5,5,0,0,7.1,12.14
42
+ 0.64,784,343,220.5,3.5,2,0,0,10.85,16.78
43
+ 0.64,784,343,220.5,3.5,3,0,0,10.54,16.8
44
+ 0.64,784,343,220.5,3.5,4,0,0,10.77,16.75
45
+ 0.64,784,343,220.5,3.5,5,0,0,10.56,16.67
46
+ 0.62,808.5,367.5,220.5,3.5,2,0,0,8.6,12.07
47
+ 0.62,808.5,367.5,220.5,3.5,3,0,0,8.49,12.22
48
+ 0.62,808.5,367.5,220.5,3.5,4,0,0,8.45,12.08
49
+ 0.62,808.5,367.5,220.5,3.5,5,0,0,8.5,12.04
50
+ 0.98,514.5,294,110.25,7,2,0.1,1,24.58,26.47
51
+ 0.98,514.5,294,110.25,7,3,0.1,1,24.63,26.37
52
+ 0.98,514.5,294,110.25,7,4,0.1,1,24.63,26.44
53
+ 0.98,514.5,294,110.25,7,5,0.1,1,24.59,26.29
54
+ 0.9,563.5,318.5,122.5,7,2,0.1,1,29.03,32.92
55
+ 0.9,563.5,318.5,122.5,7,3,0.1,1,29.87,29.87
56
+ 0.9,563.5,318.5,122.5,7,4,0.1,1,29.14,29.58
57
+ 0.9,563.5,318.5,122.5,7,5,0.1,1,28.09,34.33
58
+ 0.86,588,294,147,7,2,0.1,1,26.28,30.89
59
+ 0.86,588,294,147,7,3,0.1,1,26.91,25.6
60
+ 0.86,588,294,147,7,4,0.1,1,26.37,27.03
61
+ 0.86,588,294,147,7,5,0.1,1,25.27,31.73
62
+ 0.82,612.5,318.5,147,7,2,0.1,1,23.53,27.31
63
+ 0.82,612.5,318.5,147,7,3,0.1,1,24.03,24.91
64
+ 0.82,612.5,318.5,147,7,4,0.1,1,23.54,24.61
65
+ 0.82,612.5,318.5,147,7,5,0.1,1,22.58,28.51
66
+ 0.79,637,343,147,7,2,0.1,1,35.56,41.68
67
+ 0.79,637,343,147,7,3,0.1,1,37.12,35.28
68
+ 0.79,637,343,147,7,4,0.1,1,36.9,34.43
69
+ 0.79,637,343,147,7,5,0.1,1,35.94,43.33
70
+ 0.76,661.5,416.5,122.5,7,2,0.1,1,32.96,33.87
71
+ 0.76,661.5,416.5,122.5,7,3,0.1,1,32.12,34.07
72
+ 0.76,661.5,416.5,122.5,7,4,0.1,1,32.94,34.14
73
+ 0.76,661.5,416.5,122.5,7,5,0.1,1,32.21,33.67
74
+ 0.74,686,245,220.5,3.5,2,0.1,1,10.36,13.43
75
+ 0.74,686,245,220.5,3.5,3,0.1,1,10.43,13.71
76
+ 0.74,686,245,220.5,3.5,4,0.1,1,10.36,13.48
77
+ 0.74,686,245,220.5,3.5,5,0.1,1,10.39,13.7
78
+ 0.71,710.5,269.5,220.5,3.5,2,0.1,1,10.71,13.8
79
+ 0.71,710.5,269.5,220.5,3.5,3,0.1,1,10.8,14.28
80
+ 0.71,710.5,269.5,220.5,3.5,4,0.1,1,10.7,13.87
81
+ 0.71,710.5,269.5,220.5,3.5,5,0.1,1,10.75,14.27
82
+ 0.69,735,294,220.5,3.5,2,0.1,1,11.11,14.28
83
+ 0.69,735,294,220.5,3.5,3,0.1,1,11.13,14.61
84
+ 0.69,735,294,220.5,3.5,4,0.1,1,11.09,14.3
85
+ 0.69,735,294,220.5,3.5,5,0.1,1,11.16,14.45
86
+ 0.66,759.5,318.5,220.5,3.5,2,0.1,1,11.68,13.9
87
+ 0.66,759.5,318.5,220.5,3.5,3,0.1,1,11.69,13.72
88
+ 0.66,759.5,318.5,220.5,3.5,4,0.1,1,11.7,13.88
89
+ 0.66,759.5,318.5,220.5,3.5,5,0.1,1,11.69,13.65
90
+ 0.64,784,343,220.5,3.5,2,0.1,1,15.41,19.37
91
+ 0.64,784,343,220.5,3.5,3,0.1,1,15.2,19.43
92
+ 0.64,784,343,220.5,3.5,4,0.1,1,15.42,19.34
93
+ 0.64,784,343,220.5,3.5,5,0.1,1,15.21,19.32
94
+ 0.62,808.5,367.5,220.5,3.5,2,0.1,1,12.96,14.34
95
+ 0.62,808.5,367.5,220.5,3.5,3,0.1,1,12.97,14.5
96
+ 0.62,808.5,367.5,220.5,3.5,4,0.1,1,12.93,14.33
97
+ 0.62,808.5,367.5,220.5,3.5,5,0.1,1,13.02,14.27
98
+ 0.98,514.5,294,110.25,7,2,0.1,2,24.29,25.95
99
+ 0.98,514.5,294,110.25,7,3,0.1,2,24.31,25.63
100
+ 0.98,514.5,294,110.25,7,4,0.1,2,24.13,26.13
101
+ 0.98,514.5,294,110.25,7,5,0.1,2,24.25,25.89
102
+ 0.9,563.5,318.5,122.5,7,2,0.1,2,28.88,32.54
103
+ 0.9,563.5,318.5,122.5,7,3,0.1,2,29.68,29.44
104
+ 0.9,563.5,318.5,122.5,7,4,0.1,2,28.83,29.36
105
+ 0.9,563.5,318.5,122.5,7,5,0.1,2,27.9,34.2
106
+ 0.86,588,294,147,7,2,0.1,2,26.48,30.91
107
+ 0.86,588,294,147,7,3,0.1,2,27.02,25.63
108
+ 0.86,588,294,147,7,4,0.1,2,26.33,27.36
109
+ 0.86,588,294,147,7,5,0.1,2,25.36,31.9
110
+ 0.82,612.5,318.5,147,7,2,0.1,2,23.75,27.38
111
+ 0.82,612.5,318.5,147,7,3,0.1,2,24.23,25.02
112
+ 0.82,612.5,318.5,147,7,4,0.1,2,23.67,24.8
113
+ 0.82,612.5,318.5,147,7,5,0.1,2,22.79,28.79
114
+ 0.79,637,343,147,7,2,0.1,2,35.65,41.07
115
+ 0.79,637,343,147,7,3,0.1,2,37.26,34.62
116
+ 0.79,637,343,147,7,4,0.1,2,36.97,33.87
117
+ 0.79,637,343,147,7,5,0.1,2,36.03,42.86
118
+ 0.76,661.5,416.5,122.5,7,2,0.1,2,33.16,33.91
119
+ 0.76,661.5,416.5,122.5,7,3,0.1,2,32.4,34.07
120
+ 0.76,661.5,416.5,122.5,7,4,0.1,2,33.12,34.17
121
+ 0.76,661.5,416.5,122.5,7,5,0.1,2,32.41,33.78
122
+ 0.74,686,245,220.5,3.5,2,0.1,2,10.42,13.39
123
+ 0.74,686,245,220.5,3.5,3,0.1,2,10.46,13.72
124
+ 0.74,686,245,220.5,3.5,4,0.1,2,10.32,13.57
125
+ 0.74,686,245,220.5,3.5,5,0.1,2,10.45,13.79
126
+ 0.71,710.5,269.5,220.5,3.5,2,0.1,2,10.64,13.67
127
+ 0.71,710.5,269.5,220.5,3.5,3,0.1,2,10.72,14.11
128
+ 0.71,710.5,269.5,220.5,3.5,4,0.1,2,10.55,13.8
129
+ 0.71,710.5,269.5,220.5,3.5,5,0.1,2,10.68,14.21
130
+ 0.69,735,294,220.5,3.5,2,0.1,2,11.45,13.2
131
+ 0.69,735,294,220.5,3.5,3,0.1,2,11.46,13.54
132
+ 0.69,735,294,220.5,3.5,4,0.1,2,11.32,13.32
133
+ 0.69,735,294,220.5,3.5,5,0.1,2,11.49,13.51
134
+ 0.66,759.5,318.5,220.5,3.5,2,0.1,2,11.45,14.86
135
+ 0.66,759.5,318.5,220.5,3.5,3,0.1,2,11.42,14.75
136
+ 0.66,759.5,318.5,220.5,3.5,4,0.1,2,11.33,15
137
+ 0.66,759.5,318.5,220.5,3.5,5,0.1,2,11.43,14.74
138
+ 0.64,784,343,220.5,3.5,2,0.1,2,15.41,19.23
139
+ 0.64,784,343,220.5,3.5,3,0.1,2,15.18,19.34
140
+ 0.64,784,343,220.5,3.5,4,0.1,2,15.34,19.32
141
+ 0.64,784,343,220.5,3.5,5,0.1,2,15.19,19.3
142
+ 0.62,808.5,367.5,220.5,3.5,2,0.1,2,12.88,14.37
143
+ 0.62,808.5,367.5,220.5,3.5,3,0.1,2,13,14.57
144
+ 0.62,808.5,367.5,220.5,3.5,4,0.1,2,12.97,14.27
145
+ 0.62,808.5,367.5,220.5,3.5,5,0.1,2,13.04,14.24
146
+ 0.98,514.5,294,110.25,7,2,0.1,3,24.28,25.68
147
+ 0.98,514.5,294,110.25,7,3,0.1,3,24.4,26.02
148
+ 0.98,514.5,294,110.25,7,4,0.1,3,24.11,25.84
149
+ 0.98,514.5,294,110.25,7,5,0.1,3,24.35,26.14
150
+ 0.9,563.5,318.5,122.5,7,2,0.1,3,28.07,34.14
151
+ 0.9,563.5,318.5,122.5,7,3,0.1,3,29.01,32.85
152
+ 0.9,563.5,318.5,122.5,7,4,0.1,3,29.62,30.08
153
+ 0.9,563.5,318.5,122.5,7,5,0.1,3,29.05,29.67
154
+ 0.86,588,294,147,7,2,0.1,3,25.41,31.73
155
+ 0.86,588,294,147,7,3,0.1,3,26.47,31.01
156
+ 0.86,588,294,147,7,4,0.1,3,26.89,25.9
157
+ 0.86,588,294,147,7,5,0.1,3,26.46,27.4
158
+ 0.82,612.5,318.5,147,7,2,0.1,3,22.93,28.68
159
+ 0.82,612.5,318.5,147,7,3,0.1,3,23.84,27.54
160
+ 0.82,612.5,318.5,147,7,4,0.1,3,24.17,25.35
161
+ 0.82,612.5,318.5,147,7,5,0.1,3,23.87,24.93
162
+ 0.79,637,343,147,7,2,0.1,3,35.78,43.12
163
+ 0.79,637,343,147,7,3,0.1,3,35.48,41.22
164
+ 0.79,637,343,147,7,4,0.1,3,36.97,35.1
165
+ 0.79,637,343,147,7,5,0.1,3,36.7,34.29
166
+ 0.76,661.5,416.5,122.5,7,2,0.1,3,32.52,33.85
167
+ 0.76,661.5,416.5,122.5,7,3,0.1,3,33.28,34.11
168
+ 0.76,661.5,416.5,122.5,7,4,0.1,3,32.33,34.48
169
+ 0.76,661.5,416.5,122.5,7,5,0.1,3,33.24,34.5
170
+ 0.74,686,245,220.5,3.5,2,0.1,3,10.39,13.6
171
+ 0.74,686,245,220.5,3.5,3,0.1,3,10.34,13.36
172
+ 0.74,686,245,220.5,3.5,4,0.1,3,10.35,13.65
173
+ 0.74,686,245,220.5,3.5,5,0.1,3,10.38,13.49
174
+ 0.71,710.5,269.5,220.5,3.5,2,0.1,3,10.77,14.14
175
+ 0.71,710.5,269.5,220.5,3.5,3,0.1,3,10.68,13.77
176
+ 0.71,710.5,269.5,220.5,3.5,4,0.1,3,10.68,14.3
177
+ 0.71,710.5,269.5,220.5,3.5,5,0.1,3,10.7,13.87
178
+ 0.69,735,294,220.5,3.5,2,0.1,3,11.22,14.44
179
+ 0.69,735,294,220.5,3.5,3,0.1,3,11.16,14.27
180
+ 0.69,735,294,220.5,3.5,4,0.1,3,11.1,14.67
181
+ 0.69,735,294,220.5,3.5,5,0.1,3,11.14,14.4
182
+ 0.66,759.5,318.5,220.5,3.5,2,0.1,3,11.59,13.46
183
+ 0.66,759.5,318.5,220.5,3.5,3,0.1,3,11.6,13.7
184
+ 0.66,759.5,318.5,220.5,3.5,4,0.1,3,11.53,13.59
185
+ 0.66,759.5,318.5,220.5,3.5,5,0.1,3,11.61,13.83
186
+ 0.64,784,343,220.5,3.5,2,0.1,3,15.16,19.14
187
+ 0.64,784,343,220.5,3.5,3,0.1,3,15.36,19.18
188
+ 0.64,784,343,220.5,3.5,4,0.1,3,15.12,19.37
189
+ 0.64,784,343,220.5,3.5,5,0.1,3,15.36,19.29
190
+ 0.62,808.5,367.5,220.5,3.5,2,0.1,3,12.68,14.09
191
+ 0.62,808.5,367.5,220.5,3.5,3,0.1,3,12.63,14.23
192
+ 0.62,808.5,367.5,220.5,3.5,4,0.1,3,12.71,14.14
193
+ 0.62,808.5,367.5,220.5,3.5,5,0.1,3,12.73,13.89
194
+ 0.98,514.5,294,110.25,7,2,0.1,4,24.38,25.91
195
+ 0.98,514.5,294,110.25,7,3,0.1,4,24.23,25.72
196
+ 0.98,514.5,294,110.25,7,4,0.1,4,24.04,26.18
197
+ 0.98,514.5,294,110.25,7,5,0.1,4,24.32,25.87
198
+ 0.9,563.5,318.5,122.5,7,2,0.1,4,29.06,29.34
199
+ 0.9,563.5,318.5,122.5,7,3,0.1,4,28.05,33.91
200
+ 0.9,563.5,318.5,122.5,7,4,0.1,4,28.86,32.83
201
+ 0.9,563.5,318.5,122.5,7,5,0.1,4,29.79,29.92
202
+ 0.86,588,294,147,7,2,0.1,4,26.44,27.17
203
+ 0.86,588,294,147,7,3,0.1,4,25.37,31.76
204
+ 0.86,588,294,147,7,4,0.1,4,26.33,31.06
205
+ 0.86,588,294,147,7,5,0.1,4,27.03,25.81
206
+ 0.82,612.5,318.5,147,7,2,0.1,4,23.8,24.61
207
+ 0.82,612.5,318.5,147,7,3,0.1,4,22.8,28.61
208
+ 0.82,612.5,318.5,147,7,4,0.1,4,23.59,27.57
209
+ 0.82,612.5,318.5,147,7,5,0.1,4,24.24,25.16
210
+ 0.79,637,343,147,7,2,0.1,4,36.86,34.25
211
+ 0.79,637,343,147,7,3,0.1,4,35.89,43.3
212
+ 0.79,637,343,147,7,4,0.1,4,35.45,41.86
213
+ 0.79,637,343,147,7,5,0.1,4,37.1,35.29
214
+ 0.76,661.5,416.5,122.5,7,2,0.1,4,33.08,34.11
215
+ 0.76,661.5,416.5,122.5,7,3,0.1,4,32.38,33.62
216
+ 0.76,661.5,416.5,122.5,7,4,0.1,4,33.09,33.89
217
+ 0.76,661.5,416.5,122.5,7,5,0.1,4,32.31,34.05
218
+ 0.74,686,245,220.5,3.5,2,0.1,4,10.08,13.2
219
+ 0.74,686,245,220.5,3.5,3,0.1,4,10.15,13.36
220
+ 0.74,686,245,220.5,3.5,4,0.1,4,10.07,13.21
221
+ 0.74,686,245,220.5,3.5,5,0.1,4,10.14,13.53
222
+ 0.71,710.5,269.5,220.5,3.5,2,0.1,4,10.66,13.67
223
+ 0.71,710.5,269.5,220.5,3.5,3,0.1,4,10.68,14.12
224
+ 0.71,710.5,269.5,220.5,3.5,4,0.1,4,10.53,13.79
225
+ 0.71,710.5,269.5,220.5,3.5,5,0.1,4,10.72,14.2
226
+ 0.69,735,294,220.5,3.5,2,0.1,4,11.18,14.29
227
+ 0.69,735,294,220.5,3.5,3,0.1,4,11.22,14.49
228
+ 0.69,735,294,220.5,3.5,4,0.1,4,11.07,14.42
229
+ 0.69,735,294,220.5,3.5,5,0.1,4,11.2,14.73
230
+ 0.66,759.5,318.5,220.5,3.5,2,0.1,4,11.44,14.86
231
+ 0.66,759.5,318.5,220.5,3.5,3,0.1,4,11.42,14.67
232
+ 0.66,759.5,318.5,220.5,3.5,4,0.1,4,11.33,15
233
+ 0.66,759.5,318.5,220.5,3.5,5,0.1,4,11.43,14.83
234
+ 0.64,784,343,220.5,3.5,2,0.1,4,15.4,19.24
235
+ 0.64,784,343,220.5,3.5,3,0.1,4,15.19,19.25
236
+ 0.64,784,343,220.5,3.5,4,0.1,4,15.32,19.42
237
+ 0.64,784,343,220.5,3.5,5,0.1,4,15.16,19.48
238
+ 0.62,808.5,367.5,220.5,3.5,2,0.1,4,12.85,14.37
239
+ 0.62,808.5,367.5,220.5,3.5,3,0.1,4,13.04,14.34
240
+ 0.62,808.5,367.5,220.5,3.5,4,0.1,4,13,14.28
241
+ 0.62,808.5,367.5,220.5,3.5,5,0.1,4,13,14.47
242
+ 0.98,514.5,294,110.25,7,2,0.1,5,24.35,25.64
243
+ 0.98,514.5,294,110.25,7,3,0.1,5,24.33,25.98
244
+ 0.98,514.5,294,110.25,7,4,0.1,5,24.03,25.88
245
+ 0.98,514.5,294,110.25,7,5,0.1,5,24.26,26.18
246
+ 0.9,563.5,318.5,122.5,7,2,0.1,5,29.83,29.82
247
+ 0.9,563.5,318.5,122.5,7,3,0.1,5,29.08,29.52
248
+ 0.9,563.5,318.5,122.5,7,4,0.1,5,28.03,34.45
249
+ 0.9,563.5,318.5,122.5,7,5,0.1,5,29.02,33.01
250
+ 0.86,588,294,147,7,2,0.1,5,27.03,25.82
251
+ 0.86,588,294,147,7,3,0.1,5,26.45,27.33
252
+ 0.86,588,294,147,7,4,0.1,5,25.36,32.04
253
+ 0.86,588,294,147,7,5,0.1,5,26.45,31.28
254
+ 0.82,612.5,318.5,147,7,2,0.1,5,24.37,25.11
255
+ 0.82,612.5,318.5,147,7,3,0.1,5,23.89,24.77
256
+ 0.82,612.5,318.5,147,7,4,0.1,5,22.89,28.88
257
+ 0.82,612.5,318.5,147,7,5,0.1,5,23.86,27.69
258
+ 0.79,637,343,147,7,2,0.1,5,37.03,34.99
259
+ 0.79,637,343,147,7,3,0.1,5,36.71,34.18
260
+ 0.79,637,343,147,7,4,0.1,5,36.77,43.14
261
+ 0.79,637,343,147,7,5,0.1,5,35.48,41.26
262
+ 0.76,661.5,416.5,122.5,7,2,0.1,5,32.31,34.25
263
+ 0.76,661.5,416.5,122.5,7,3,0.1,5,33.21,34.35
264
+ 0.76,661.5,416.5,122.5,7,4,0.1,5,32.46,33.64
265
+ 0.76,661.5,416.5,122.5,7,5,0.1,5,33.27,33.88
266
+ 0.74,686,245,220.5,3.5,2,0.1,5,10.47,13.65
267
+ 0.74,686,245,220.5,3.5,3,0.1,5,10.37,13.44
268
+ 0.74,686,245,220.5,3.5,4,0.1,5,10.34,13.72
269
+ 0.74,686,245,220.5,3.5,5,0.1,5,10.39,13.5
270
+ 0.71,710.5,269.5,220.5,3.5,2,0.1,5,10.78,14.18
271
+ 0.71,710.5,269.5,220.5,3.5,3,0.1,5,10.7,13.75
272
+ 0.71,710.5,269.5,220.5,3.5,4,0.1,5,10.67,14.26
273
+ 0.71,710.5,269.5,220.5,3.5,5,0.1,5,13.69,13.89
274
+ 0.69,735,294,220.5,3.5,2,0.1,5,11.21,14.55
275
+ 0.69,735,294,220.5,3.5,3,0.1,5,11.14,14.28
276
+ 0.69,735,294,220.5,3.5,4,0.1,5,11.11,14.46
277
+ 0.69,735,294,220.5,3.5,5,0.1,5,11.16,14.39
278
+ 0.66,759.5,318.5,220.5,3.5,2,0.1,5,11.38,14.54
279
+ 0.66,759.5,318.5,220.5,3.5,3,0.1,5,11.34,14.81
280
+ 0.66,759.5,318.5,220.5,3.5,4,0.1,5,11.22,14.65
281
+ 0.66,759.5,318.5,220.5,3.5,5,0.1,5,11.34,14.87
282
+ 0.64,784,343,220.5,3.5,2,0.1,5,15.16,19.24
283
+ 0.64,784,343,220.5,3.5,3,0.1,5,15.37,19.18
284
+ 0.64,784,343,220.5,3.5,4,0.1,5,15.12,19.26
285
+ 0.64,784,343,220.5,3.5,5,0.1,5,15.36,19.29
286
+ 0.62,808.5,367.5,220.5,3.5,2,0.1,5,12.59,14.24
287
+ 0.62,808.5,367.5,220.5,3.5,3,0.1,5,12.74,13.97
288
+ 0.62,808.5,367.5,220.5,3.5,4,0.1,5,12.8,13.99
289
+ 0.62,808.5,367.5,220.5,3.5,5,0.1,5,12.62,14.15
290
+ 0.98,514.5,294,110.25,7,2,0.25,1,28.15,29.79
291
+ 0.98,514.5,294,110.25,7,3,0.25,1,28.15,29.79
292
+ 0.98,514.5,294,110.25,7,4,0.25,1,28.37,29.28
293
+ 0.98,514.5,294,110.25,7,5,0.25,1,28.41,29.49
294
+ 0.9,563.5,318.5,122.5,7,2,0.25,1,32.68,36.12
295
+ 0.9,563.5,318.5,122.5,7,3,0.25,1,33.48,33.17
296
+ 0.9,563.5,318.5,122.5,7,4,0.25,1,32.84,32.71
297
+ 0.9,563.5,318.5,122.5,7,5,0.25,1,32,37.58
298
+ 0.86,588,294,147,7,2,0.25,1,29.54,33.98
299
+ 0.86,588,294,147,7,3,0.25,1,30.05,28.61
300
+ 0.86,588,294,147,7,4,0.25,1,29.6,30.12
301
+ 0.86,588,294,147,7,5,0.25,1,28.66,34.73
302
+ 0.82,612.5,318.5,147,7,2,0.25,1,26.84,30.17
303
+ 0.82,612.5,318.5,147,7,3,0.25,1,27.27,27.84
304
+ 0.82,612.5,318.5,147,7,4,0.25,1,26.97,27.25
305
+ 0.82,612.5,318.5,147,7,5,0.25,1,26.19,31.39
306
+ 0.79,637,343,147,7,2,0.25,1,38.67,43.8
307
+ 0.79,637,343,147,7,3,0.25,1,40.03,37.81
308
+ 0.79,637,343,147,7,4,0.25,1,39.86,36.85
309
+ 0.79,637,343,147,7,5,0.25,1,39.04,45.52
310
+ 0.76,661.5,416.5,122.5,7,2,0.25,1,36.96,36.85
311
+ 0.76,661.5,416.5,122.5,7,3,0.25,1,36.13,37.58
312
+ 0.76,661.5,416.5,122.5,7,4,0.25,1,36.91,37.45
313
+ 0.76,661.5,416.5,122.5,7,5,0.25,1,36.43,36.62
314
+ 0.74,686,245,220.5,3.5,2,0.25,1,12.43,15.19
315
+ 0.74,686,245,220.5,3.5,3,0.25,1,12.5,15.5
316
+ 0.74,686,245,220.5,3.5,4,0.25,1,12.41,15.28
317
+ 0.74,686,245,220.5,3.5,5,0.25,1,12.45,15.5
318
+ 0.71,710.5,269.5,220.5,3.5,2,0.25,1,12.57,15.42
319
+ 0.71,710.5,269.5,220.5,3.5,3,0.25,1,12.65,15.85
320
+ 0.71,710.5,269.5,220.5,3.5,4,0.25,1,12.57,15.44
321
+ 0.71,710.5,269.5,220.5,3.5,5,0.25,1,12.63,15.81
322
+ 0.69,735,294,220.5,3.5,2,0.25,1,12.78,15.21
323
+ 0.69,735,294,220.5,3.5,3,0.25,1,12.93,15.63
324
+ 0.69,735,294,220.5,3.5,4,0.25,1,12.73,15.48
325
+ 0.69,735,294,220.5,3.5,5,0.25,1,12.72,15.78
326
+ 0.66,759.5,318.5,220.5,3.5,2,0.25,1,13.17,16.39
327
+ 0.66,759.5,318.5,220.5,3.5,3,0.25,1,13.18,16.27
328
+ 0.66,759.5,318.5,220.5,3.5,4,0.25,1,13.17,16.39
329
+ 0.66,759.5,318.5,220.5,3.5,5,0.25,1,13.18,16.19
330
+ 0.64,784,343,220.5,3.5,2,0.25,1,17.5,21.13
331
+ 0.64,784,343,220.5,3.5,3,0.25,1,17.35,21.19
332
+ 0.64,784,343,220.5,3.5,4,0.25,1,17.52,21.09
333
+ 0.64,784,343,220.5,3.5,5,0.25,1,17.37,21.08
334
+ 0.62,808.5,367.5,220.5,3.5,2,0.25,1,15.09,15.77
335
+ 0.62,808.5,367.5,220.5,3.5,3,0.25,1,15.12,15.95
336
+ 0.62,808.5,367.5,220.5,3.5,4,0.25,1,15.08,15.77
337
+ 0.62,808.5,367.5,220.5,3.5,5,0.25,1,15.16,15.76
338
+ 0.98,514.5,294,110.25,7,2,0.25,2,28.67,29.62
339
+ 0.98,514.5,294,110.25,7,3,0.25,2,28.57,29.69
340
+ 0.98,514.5,294,110.25,7,4,0.25,2,28.18,30.18
341
+ 0.98,514.5,294,110.25,7,5,0.25,2,28.6,30.02
342
+ 0.9,563.5,318.5,122.5,7,2,0.25,2,32.46,35.56
343
+ 0.9,563.5,318.5,122.5,7,3,0.25,2,33.27,32.64
344
+ 0.9,563.5,318.5,122.5,7,4,0.25,2,32.33,32.77
345
+ 0.9,563.5,318.5,122.5,7,5,0.25,2,31.66,37.72
346
+ 0.86,588,294,147,7,2,0.25,2,29.34,33.37
347
+ 0.86,588,294,147,7,3,0.25,2,29.87,27.89
348
+ 0.86,588,294,147,7,4,0.25,2,29.27,29.9
349
+ 0.86,588,294,147,7,5,0.25,2,28.4,34.52
350
+ 0.82,612.5,318.5,147,7,2,0.25,2,25.74,28.27
351
+ 0.82,612.5,318.5,147,7,3,0.25,2,25.98,26.96
352
+ 0.82,612.5,318.5,147,7,4,0.25,2,25.38,26.72
353
+ 0.82,612.5,318.5,147,7,5,0.25,2,24.94,29.88
354
+ 0.79,637,343,147,7,2,0.25,2,38.57,43.86
355
+ 0.79,637,343,147,7,3,0.25,2,40.19,37.41
356
+ 0.79,637,343,147,7,4,0.25,2,39.97,36.77
357
+ 0.79,637,343,147,7,5,0.25,2,38.98,45.97
358
+ 0.76,661.5,416.5,122.5,7,2,0.25,2,36.95,36.87
359
+ 0.76,661.5,416.5,122.5,7,3,0.25,2,36.28,37.35
360
+ 0.76,661.5,416.5,122.5,7,4,0.25,2,36.86,37.28
361
+ 0.76,661.5,416.5,122.5,7,5,0.25,2,36.45,36.81
362
+ 0.74,686,245,220.5,3.5,2,0.25,2,12.35,14.73
363
+ 0.74,686,245,220.5,3.5,3,0.25,2,12.45,15.1
364
+ 0.74,686,245,220.5,3.5,4,0.25,2,12.16,15.18
365
+ 0.74,686,245,220.5,3.5,5,0.25,2,12.3,15.44
366
+ 0.71,710.5,269.5,220.5,3.5,2,0.25,2,12.33,14.91
367
+ 0.71,710.5,269.5,220.5,3.5,3,0.25,2,12.29,15.4
368
+ 0.71,710.5,269.5,220.5,3.5,4,0.25,2,12.2,14.94
369
+ 0.71,710.5,269.5,220.5,3.5,5,0.25,2,12.49,15.32
370
+ 0.69,735,294,220.5,3.5,2,0.25,2,12.85,15.52
371
+ 0.69,735,294,220.5,3.5,3,0.25,2,12.87,15.85
372
+ 0.69,735,294,220.5,3.5,4,0.25,2,12.73,15.66
373
+ 0.69,735,294,220.5,3.5,5,0.25,2,12.95,15.99
374
+ 0.66,759.5,318.5,220.5,3.5,2,0.25,2,13.05,15.89
375
+ 0.66,759.5,318.5,220.5,3.5,3,0.25,2,12.93,15.85
376
+ 0.66,759.5,318.5,220.5,3.5,4,0.25,2,12.77,16.22
377
+ 0.66,759.5,318.5,220.5,3.5,5,0.25,2,13,15.87
378
+ 0.64,784,343,220.5,3.5,2,0.25,2,17.14,20.47
379
+ 0.64,784,343,220.5,3.5,3,0.25,2,16.84,20.56
380
+ 0.64,784,343,220.5,3.5,4,0.25,2,17.02,20.48
381
+ 0.64,784,343,220.5,3.5,5,0.25,2,17.11,20.43
382
+ 0.62,808.5,367.5,220.5,3.5,2,0.25,2,14.34,15.32
383
+ 0.62,808.5,367.5,220.5,3.5,3,0.25,2,14.66,15.64
384
+ 0.62,808.5,367.5,220.5,3.5,4,0.25,2,14.6,15.14
385
+ 0.62,808.5,367.5,220.5,3.5,5,0.25,2,14.6,15.3
386
+ 0.98,514.5,294,110.25,7,2,0.25,3,28.67,29.43
387
+ 0.98,514.5,294,110.25,7,3,0.25,3,28.56,29.78
388
+ 0.98,514.5,294,110.25,7,4,0.25,3,28.17,30.1
389
+ 0.98,514.5,294,110.25,7,5,0.25,3,28.63,30.19
390
+ 0.9,563.5,318.5,122.5,7,2,0.25,3,31.63,36.35
391
+ 0.9,563.5,318.5,122.5,7,3,0.25,3,32.4,35.1
392
+ 0.9,563.5,318.5,122.5,7,4,0.25,3,32.68,32.83
393
+ 0.9,563.5,318.5,122.5,7,5,0.25,3,32.29,32.46
394
+ 0.86,588,294,147,7,2,0.25,3,28.4,33.52
395
+ 0.86,588,294,147,7,3,0.25,3,29.4,32.93
396
+ 0.86,588,294,147,7,4,0.25,3,29.43,28.38
397
+ 0.86,588,294,147,7,5,0.25,3,29.07,29.82
398
+ 0.82,612.5,318.5,147,7,2,0.25,3,24.7,28.77
399
+ 0.82,612.5,318.5,147,7,3,0.25,3,25.48,27.76
400
+ 0.82,612.5,318.5,147,7,4,0.25,3,25.37,26.95
401
+ 0.82,612.5,318.5,147,7,5,0.25,3,25.17,26.41
402
+ 0.79,637,343,147,7,2,0.25,3,39.04,45.13
403
+ 0.79,637,343,147,7,3,0.25,3,38.35,43.66
404
+ 0.79,637,343,147,7,4,0.25,3,39.81,37.76
405
+ 0.79,637,343,147,7,5,0.25,3,39.83,36.87
406
+ 0.76,661.5,416.5,122.5,7,2,0.25,3,35.99,36.07
407
+ 0.76,661.5,416.5,122.5,7,3,0.25,3,36.59,36.44
408
+ 0.76,661.5,416.5,122.5,7,4,0.25,3,35.64,37.28
409
+ 0.76,661.5,416.5,122.5,7,5,0.25,3,36.52,37.29
410
+ 0.74,686,245,220.5,3.5,2,0.25,3,11.8,14.49
411
+ 0.74,686,245,220.5,3.5,3,0.25,3,12.03,13.79
412
+ 0.74,686,245,220.5,3.5,4,0.25,3,11.98,14.72
413
+ 0.74,686,245,220.5,3.5,5,0.25,3,11.69,14.76
414
+ 0.71,710.5,269.5,220.5,3.5,2,0.25,3,12.41,14.92
415
+ 0.71,710.5,269.5,220.5,3.5,3,0.25,3,12.28,14.74
416
+ 0.71,710.5,269.5,220.5,3.5,4,0.25,3,12.1,15.57
417
+ 0.71,710.5,269.5,220.5,3.5,5,0.25,3,12.19,14.94
418
+ 0.69,735,294,220.5,3.5,2,0.25,3,12.34,14.92
419
+ 0.69,735,294,220.5,3.5,3,0.25,3,12.46,14.38
420
+ 0.69,735,294,220.5,3.5,4,0.25,3,12.31,15.44
421
+ 0.69,735,294,220.5,3.5,5,0.25,3,12.12,15.17
422
+ 0.66,759.5,318.5,220.5,3.5,2,0.25,3,12.97,15.53
423
+ 0.66,759.5,318.5,220.5,3.5,3,0.25,3,13.01,15.8
424
+ 0.66,759.5,318.5,220.5,3.5,4,0.25,3,12.74,16.14
425
+ 0.66,759.5,318.5,220.5,3.5,5,0.25,3,12.84,16.26
426
+ 0.64,784,343,220.5,3.5,2,0.25,3,16.83,19.87
427
+ 0.64,784,343,220.5,3.5,3,0.25,3,16.93,20.03
428
+ 0.64,784,343,220.5,3.5,4,0.25,3,16.66,20.46
429
+ 0.64,784,343,220.5,3.5,5,0.25,3,16.86,20.28
430
+ 0.62,808.5,367.5,220.5,3.5,2,0.25,3,13.91,14.89
431
+ 0.62,808.5,367.5,220.5,3.5,3,0.25,3,14.34,14.96
432
+ 0.62,808.5,367.5,220.5,3.5,4,0.25,3,13.95,14.89
433
+ 0.62,808.5,367.5,220.5,3.5,5,0.25,3,13.99,14.35
434
+ 0.98,514.5,294,110.25,7,2,0.25,4,28.7,29.61
435
+ 0.98,514.5,294,110.25,7,3,0.25,4,28.55,29.59
436
+ 0.98,514.5,294,110.25,7,4,0.25,4,28.15,30.19
437
+ 0.98,514.5,294,110.25,7,5,0.25,4,28.62,30.12
438
+ 0.9,563.5,318.5,122.5,7,2,0.25,4,32.67,32.12
439
+ 0.9,563.5,318.5,122.5,7,3,0.25,4,31.69,37.12
440
+ 0.9,563.5,318.5,122.5,7,4,0.25,4,32.07,36.16
441
+ 0.9,563.5,318.5,122.5,7,5,0.25,4,33.28,33.16
442
+ 0.86,588,294,147,7,2,0.25,4,29.47,29.45
443
+ 0.86,588,294,147,7,3,0.25,4,28.42,34.19
444
+ 0.86,588,294,147,7,4,0.25,4,29.08,33.93
445
+ 0.86,588,294,147,7,5,0.25,4,29.88,28.31
446
+ 0.82,612.5,318.5,147,7,2,0.25,4,25.66,26.3
447
+ 0.82,612.5,318.5,147,7,3,0.25,4,24.96,29.43
448
+ 0.82,612.5,318.5,147,7,4,0.25,4,25.43,28.76
449
+ 0.82,612.5,318.5,147,7,5,0.25,4,26,27.34
450
+ 0.79,637,343,147,7,2,0.25,4,40,36.26
451
+ 0.79,637,343,147,7,3,0.25,4,38.84,45.48
452
+ 0.79,637,343,147,7,4,0.25,4,38.33,44.16
453
+ 0.79,637,343,147,7,5,0.25,4,40.12,37.26
454
+ 0.76,661.5,416.5,122.5,7,2,0.25,4,36.95,37.2
455
+ 0.76,661.5,416.5,122.5,7,3,0.25,4,36.45,36.76
456
+ 0.76,661.5,416.5,122.5,7,4,0.25,4,36.81,37.05
457
+ 0.76,661.5,416.5,122.5,7,5,0.25,4,36.26,37.51
458
+ 0.74,686,245,220.5,3.5,2,0.25,4,12.32,14.92
459
+ 0.74,686,245,220.5,3.5,3,0.25,4,12.3,15.24
460
+ 0.74,686,245,220.5,3.5,4,0.25,4,12.18,15.03
461
+ 0.74,686,245,220.5,3.5,5,0.25,4,12.43,15.35
462
+ 0.71,710.5,269.5,220.5,3.5,2,0.25,4,12.36,14.67
463
+ 0.71,710.5,269.5,220.5,3.5,3,0.25,4,12.49,15.09
464
+ 0.71,710.5,269.5,220.5,3.5,4,0.25,4,12.17,15.2
465
+ 0.71,710.5,269.5,220.5,3.5,5,0.25,4,12.28,15.64
466
+ 0.69,735,294,220.5,3.5,2,0.25,4,12.91,15.37
467
+ 0.69,735,294,220.5,3.5,3,0.25,4,12.95,15.73
468
+ 0.69,735,294,220.5,3.5,4,0.25,4,12.67,15.83
469
+ 0.69,735,294,220.5,3.5,5,0.25,4,12.86,16.13
470
+ 0.66,759.5,318.5,220.5,3.5,2,0.25,4,12.95,15.95
471
+ 0.66,759.5,318.5,220.5,3.5,3,0.25,4,13,15.59
472
+ 0.66,759.5,318.5,220.5,3.5,4,0.25,4,12.86,16.17
473
+ 0.66,759.5,318.5,220.5,3.5,5,0.25,4,12.92,16.14
474
+ 0.64,784,343,220.5,3.5,2,0.25,4,16.99,19.65
475
+ 0.64,784,343,220.5,3.5,3,0.25,4,16.69,19.76
476
+ 0.64,784,343,220.5,3.5,4,0.25,4,16.56,20.37
477
+ 0.64,784,343,220.5,3.5,5,0.25,4,16.62,19.9
478
+ 0.62,808.5,367.5,220.5,3.5,2,0.25,4,14.33,15.41
479
+ 0.62,808.5,367.5,220.5,3.5,3,0.25,4,14.61,15.56
480
+ 0.62,808.5,367.5,220.5,3.5,4,0.25,4,14.61,15.07
481
+ 0.62,808.5,367.5,220.5,3.5,5,0.25,4,14.65,15.38
482
+ 0.98,514.5,294,110.25,7,2,0.25,5,28.69,29.53
483
+ 0.98,514.5,294,110.25,7,3,0.25,5,28.58,29.77
484
+ 0.98,514.5,294,110.25,7,4,0.25,5,28.15,30
485
+ 0.98,514.5,294,110.25,7,5,0.25,5,28.61,30.2
486
+ 0.9,563.5,318.5,122.5,7,2,0.25,5,33.13,32.25
487
+ 0.9,563.5,318.5,122.5,7,3,0.25,5,32.31,32
488
+ 0.9,563.5,318.5,122.5,7,4,0.25,5,31.53,37.19
489
+ 0.9,563.5,318.5,122.5,7,5,0.25,5,32.46,35.62
490
+ 0.86,588,294,147,7,2,0.25,5,29.71,28.02
491
+ 0.86,588,294,147,7,3,0.25,5,29.09,29.43
492
+ 0.86,588,294,147,7,4,0.25,5,28.31,34.15
493
+ 0.86,588,294,147,7,5,0.25,5,29.39,33.47
494
+ 0.82,612.5,318.5,147,7,2,0.25,5,25.7,26.53
495
+ 0.82,612.5,318.5,147,7,3,0.25,5,25.17,26.08
496
+ 0.82,612.5,318.5,147,7,4,0.25,5,24.6,29.31
497
+ 0.82,612.5,318.5,147,7,5,0.25,5,25.49,28.14
498
+ 0.79,637,343,147,7,2,0.25,5,39.89,37.54
499
+ 0.79,637,343,147,7,3,0.25,5,39.83,36.66
500
+ 0.79,637,343,147,7,4,0.25,5,39.01,45.28
501
+ 0.79,637,343,147,7,5,0.25,5,38.65,43.73
502
+ 0.76,661.5,416.5,122.5,7,2,0.25,5,35.69,36.93
503
+ 0.76,661.5,416.5,122.5,7,3,0.25,5,36.64,37.01
504
+ 0.76,661.5,416.5,122.5,7,4,0.25,5,36.06,35.73
505
+ 0.76,661.5,416.5,122.5,7,5,0.25,5,36.7,36.15
506
+ 0.74,686,245,220.5,3.5,2,0.25,5,12.12,14.48
507
+ 0.74,686,245,220.5,3.5,3,0.25,5,11.67,14.58
508
+ 0.74,686,245,220.5,3.5,4,0.25,5,11.64,14.81
509
+ 0.74,686,245,220.5,3.5,5,0.25,5,12.02,14.03
510
+ 0.71,710.5,269.5,220.5,3.5,2,0.25,5,12.27,15.27
511
+ 0.71,710.5,269.5,220.5,3.5,3,0.25,5,12.19,14.71
512
+ 0.71,710.5,269.5,220.5,3.5,4,0.25,5,12.25,15.23
513
+ 0.71,710.5,269.5,220.5,3.5,5,0.25,5,12.27,14.97
514
+ 0.69,735,294,220.5,3.5,2,0.25,5,12.47,15.14
515
+ 0.69,735,294,220.5,3.5,3,0.25,5,12.12,14.97
516
+ 0.69,735,294,220.5,3.5,4,0.25,5,12.18,15.22
517
+ 0.69,735,294,220.5,3.5,5,0.25,5,12.47,14.6
518
+ 0.66,759.5,318.5,220.5,3.5,2,0.25,5,12.93,15.83
519
+ 0.66,759.5,318.5,220.5,3.5,3,0.25,5,12.82,16.03
520
+ 0.66,759.5,318.5,220.5,3.5,4,0.25,5,12.78,15.8
521
+ 0.66,759.5,318.5,220.5,3.5,5,0.25,5,13.02,16.06
522
+ 0.64,784,343,220.5,3.5,2,0.25,5,16.73,20.13
523
+ 0.64,784,343,220.5,3.5,3,0.25,5,16.86,20.01
524
+ 0.64,784,343,220.5,3.5,4,0.25,5,16.76,20.19
525
+ 0.64,784,343,220.5,3.5,5,0.25,5,16.92,20.29
526
+ 0.62,808.5,367.5,220.5,3.5,2,0.25,5,13.68,15.19
527
+ 0.62,808.5,367.5,220.5,3.5,3,0.25,5,13.99,14.61
528
+ 0.62,808.5,367.5,220.5,3.5,4,0.25,5,14.16,14.61
529
+ 0.62,808.5,367.5,220.5,3.5,5,0.25,5,13.86,14.75
530
+ 0.98,514.5,294,110.25,7,2,0.4,1,32.26,33.37
531
+ 0.98,514.5,294,110.25,7,3,0.4,1,32.26,33.34
532
+ 0.98,514.5,294,110.25,7,4,0.4,1,32.49,32.83
533
+ 0.98,514.5,294,110.25,7,5,0.4,1,32.53,33.04
534
+ 0.9,563.5,318.5,122.5,7,2,0.4,1,36.47,39.28
535
+ 0.9,563.5,318.5,122.5,7,3,0.4,1,37.24,36.38
536
+ 0.9,563.5,318.5,122.5,7,4,0.4,1,36.66,35.92
537
+ 0.9,563.5,318.5,122.5,7,5,0.4,1,35.96,40.99
538
+ 0.86,588,294,147,7,2,0.4,1,31.89,35.99
539
+ 0.86,588,294,147,7,3,0.4,1,32.39,30.66
540
+ 0.86,588,294,147,7,4,0.4,1,32.09,31.7
541
+ 0.86,588,294,147,7,5,0.4,1,31.29,36.73
542
+ 0.82,612.5,318.5,147,7,2,0.4,1,29.22,31.71
543
+ 0.82,612.5,318.5,147,7,3,0.4,1,29.91,29.13
544
+ 0.82,612.5,318.5,147,7,4,0.4,1,29.53,28.99
545
+ 0.82,612.5,318.5,147,7,5,0.4,1,28.65,33.54
546
+ 0.79,637,343,147,7,2,0.4,1,41.4,45.29
547
+ 0.79,637,343,147,7,3,0.4,1,42.62,39.07
548
+ 0.79,637,343,147,7,4,0.4,1,42.5,38.35
549
+ 0.79,637,343,147,7,5,0.4,1,41.67,46.94
550
+ 0.76,661.5,416.5,122.5,7,2,0.4,1,40.78,39.55
551
+ 0.76,661.5,416.5,122.5,7,3,0.4,1,39.97,40.85
552
+ 0.76,661.5,416.5,122.5,7,4,0.4,1,40.71,40.63
553
+ 0.76,661.5,416.5,122.5,7,5,0.4,1,40.43,39.48
554
+ 0.74,686,245,220.5,3.5,2,0.4,1,14.52,16.94
555
+ 0.74,686,245,220.5,3.5,3,0.4,1,14.61,17.25
556
+ 0.74,686,245,220.5,3.5,4,0.4,1,14.5,17.03
557
+ 0.74,686,245,220.5,3.5,5,0.4,1,14.55,17.25
558
+ 0.71,710.5,269.5,220.5,3.5,2,0.4,1,14.51,17.1
559
+ 0.71,710.5,269.5,220.5,3.5,3,0.4,1,14.6,17.51
560
+ 0.71,710.5,269.5,220.5,3.5,4,0.4,1,14.5,17.12
561
+ 0.71,710.5,269.5,220.5,3.5,5,0.4,1,14.58,17.47
562
+ 0.69,735,294,220.5,3.5,2,0.4,1,14.51,16.5
563
+ 0.69,735,294,220.5,3.5,3,0.4,1,14.7,17
564
+ 0.69,735,294,220.5,3.5,4,0.4,1,14.42,16.87
565
+ 0.69,735,294,220.5,3.5,5,0.4,1,14.42,17.2
566
+ 0.66,759.5,318.5,220.5,3.5,2,0.4,1,15.23,18.14
567
+ 0.66,759.5,318.5,220.5,3.5,3,0.4,1,15.23,18.03
568
+ 0.66,759.5,318.5,220.5,3.5,4,0.4,1,15.23,18.14
569
+ 0.66,759.5,318.5,220.5,3.5,5,0.4,1,15.23,17.95
570
+ 0.64,784,343,220.5,3.5,2,0.4,1,19.52,22.72
571
+ 0.64,784,343,220.5,3.5,3,0.4,1,19.36,22.73
572
+ 0.64,784,343,220.5,3.5,4,0.4,1,19.48,22.72
573
+ 0.64,784,343,220.5,3.5,5,0.4,1,19.42,22.53
574
+ 0.62,808.5,367.5,220.5,3.5,2,0.4,1,15.09,17.2
575
+ 0.62,808.5,367.5,220.5,3.5,3,0.4,1,17.17,17.21
576
+ 0.62,808.5,367.5,220.5,3.5,4,0.4,1,17.14,17.15
577
+ 0.62,808.5,367.5,220.5,3.5,5,0.4,1,17.14,17.2
578
+ 0.98,514.5,294,110.25,7,2,0.4,2,32.82,32.96
579
+ 0.98,514.5,294,110.25,7,3,0.4,2,32.71,33.13
580
+ 0.98,514.5,294,110.25,7,4,0.4,2,32.24,33.94
581
+ 0.98,514.5,294,110.25,7,5,0.4,2,32.72,33.78
582
+ 0.9,563.5,318.5,122.5,7,2,0.4,2,35.84,38.35
583
+ 0.9,563.5,318.5,122.5,7,3,0.4,2,36.57,35.39
584
+ 0.9,563.5,318.5,122.5,7,4,0.4,2,36.06,34.94
585
+ 0.9,563.5,318.5,122.5,7,5,0.4,2,35.69,40.66
586
+ 0.86,588,294,147,7,2,0.4,2,32.48,35.48
587
+ 0.86,588,294,147,7,3,0.4,2,32.74,30.53
588
+ 0.86,588,294,147,7,4,0.4,2,32.13,32.28
589
+ 0.86,588,294,147,7,5,0.4,2,31.64,36.86
590
+ 0.82,612.5,318.5,147,7,2,0.4,2,28.95,30.34
591
+ 0.82,612.5,318.5,147,7,3,0.4,2,29.49,27.93
592
+ 0.82,612.5,318.5,147,7,4,0.4,2,28.64,28.95
593
+ 0.82,612.5,318.5,147,7,5,0.4,2,28.01,32.92
594
+ 0.79,637,343,147,7,2,0.4,2,41.64,45.59
595
+ 0.79,637,343,147,7,3,0.4,2,43.1,39.41
596
+ 0.79,637,343,147,7,4,0.4,2,42.74,38.84
597
+ 0.79,637,343,147,7,5,0.4,2,41.92,48.03
598
+ 0.76,661.5,416.5,122.5,7,2,0.4,2,40.78,39.48
599
+ 0.76,661.5,416.5,122.5,7,3,0.4,2,40.15,40.4
600
+ 0.76,661.5,416.5,122.5,7,4,0.4,2,40.57,40.47
601
+ 0.76,661.5,416.5,122.5,7,5,0.4,2,40.42,39.7
602
+ 0.74,686,245,220.5,3.5,2,0.4,2,14.54,16.43
603
+ 0.74,686,245,220.5,3.5,3,0.4,2,14.45,16.93
604
+ 0.74,686,245,220.5,3.5,4,0.4,2,14.18,16.99
605
+ 0.74,686,245,220.5,3.5,5,0.4,2,14.5,17.03
606
+ 0.71,710.5,269.5,220.5,3.5,2,0.4,2,14.7,16.77
607
+ 0.71,710.5,269.5,220.5,3.5,3,0.4,2,14.66,17.37
608
+ 0.71,710.5,269.5,220.5,3.5,4,0.4,2,14.4,17.27
609
+ 0.71,710.5,269.5,220.5,3.5,5,0.4,2,14.71,17.51
610
+ 0.69,735,294,220.5,3.5,2,0.4,2,14.75,16.44
611
+ 0.69,735,294,220.5,3.5,3,0.4,2,14.71,17.01
612
+ 0.69,735,294,220.5,3.5,4,0.4,2,14.33,17.23
613
+ 0.69,735,294,220.5,3.5,5,0.4,2,14.62,17.22
614
+ 0.66,759.5,318.5,220.5,3.5,2,0.4,2,15.34,17.85
615
+ 0.66,759.5,318.5,220.5,3.5,3,0.4,2,15.29,17.89
616
+ 0.66,759.5,318.5,220.5,3.5,4,0.4,2,15.09,18.36
617
+ 0.66,759.5,318.5,220.5,3.5,5,0.4,2,15.3,18.15
618
+ 0.64,784,343,220.5,3.5,2,0.4,2,19.2,21.72
619
+ 0.64,784,343,220.5,3.5,3,0.4,2,18.88,22.07
620
+ 0.64,784,343,220.5,3.5,4,0.4,2,18.9,22.09
621
+ 0.64,784,343,220.5,3.5,5,0.4,2,19.12,21.93
622
+ 0.62,808.5,367.5,220.5,3.5,2,0.4,2,16.76,17.36
623
+ 0.62,808.5,367.5,220.5,3.5,3,0.4,2,17.23,17.38
624
+ 0.62,808.5,367.5,220.5,3.5,4,0.4,2,17.26,16.86
625
+ 0.62,808.5,367.5,220.5,3.5,5,0.4,2,17.15,16.99
626
+ 0.98,514.5,294,110.25,7,2,0.4,3,32.82,32.78
627
+ 0.98,514.5,294,110.25,7,3,0.4,3,32.69,33.24
628
+ 0.98,514.5,294,110.25,7,4,0.4,3,32.23,33.86
629
+ 0.98,514.5,294,110.25,7,5,0.4,3,32.75,34
630
+ 0.9,563.5,318.5,122.5,7,2,0.4,3,34.24,37.26
631
+ 0.9,563.5,318.5,122.5,7,3,0.4,3,34.95,35.04
632
+ 0.9,563.5,318.5,122.5,7,4,0.4,3,35.05,33.82
633
+ 0.9,563.5,318.5,122.5,7,5,0.4,3,34.29,33.31
634
+ 0.86,588,294,147,7,2,0.4,3,31.28,35.22
635
+ 0.86,588,294,147,7,3,0.4,3,32.12,34.7
636
+ 0.86,588,294,147,7,4,0.4,3,32.05,30.11
637
+ 0.86,588,294,147,7,5,0.4,3,31.84,31.6
638
+ 0.82,612.5,318.5,147,7,2,0.4,3,28.67,32.43
639
+ 0.82,612.5,318.5,147,7,3,0.4,3,29.67,30.65
640
+ 0.82,612.5,318.5,147,7,4,0.4,3,29.47,29.77
641
+ 0.82,612.5,318.5,147,7,5,0.4,3,28.91,29.64
642
+ 0.79,637,343,147,7,2,0.4,3,41.26,46.44
643
+ 0.79,637,343,147,7,3,0.4,3,41.3,44.18
644
+ 0.79,637,343,147,7,4,0.4,3,42.49,38.81
645
+ 0.79,637,343,147,7,5,0.4,3,42.08,38.23
646
+ 0.76,661.5,416.5,122.5,7,2,0.4,3,39.32,38.17
647
+ 0.76,661.5,416.5,122.5,7,3,0.4,3,39.84,38.48
648
+ 0.76,661.5,416.5,122.5,7,4,0.4,3,38.89,39.66
649
+ 0.76,661.5,416.5,122.5,7,5,0.4,3,39.68,40.1
650
+ 0.74,686,245,220.5,3.5,2,0.4,3,13.97,16.08
651
+ 0.74,686,245,220.5,3.5,3,0.4,3,14.22,15.39
652
+ 0.74,686,245,220.5,3.5,4,0.4,3,14.1,16.57
653
+ 0.74,686,245,220.5,3.5,5,0.4,3,13.78,16.6
654
+ 0.71,710.5,269.5,220.5,3.5,2,0.4,3,14.07,16.11
655
+ 0.71,710.5,269.5,220.5,3.5,3,0.4,3,14.03,15.47
656
+ 0.71,710.5,269.5,220.5,3.5,4,0.4,3,13.94,16.7
657
+ 0.71,710.5,269.5,220.5,3.5,5,0.4,3,13.86,16.1
658
+ 0.69,735,294,220.5,3.5,2,0.4,3,14.32,16.35
659
+ 0.69,735,294,220.5,3.5,3,0.4,3,14.56,15.84
660
+ 0.69,735,294,220.5,3.5,4,0.4,3,14.33,16.99
661
+ 0.69,735,294,220.5,3.5,5,0.4,3,14.08,17.02
662
+ 0.66,759.5,318.5,220.5,3.5,2,0.4,3,15.16,17.04
663
+ 0.66,759.5,318.5,220.5,3.5,3,0.4,3,15.18,17.63
664
+ 0.66,759.5,318.5,220.5,3.5,4,0.4,3,14.72,18.1
665
+ 0.66,759.5,318.5,220.5,3.5,5,0.4,3,14.9,18.22
666
+ 0.64,784,343,220.5,3.5,2,0.4,3,18.48,20.78
667
+ 0.64,784,343,220.5,3.5,3,0.4,3,18.71,20.72
668
+ 0.64,784,343,220.5,3.5,4,0.4,3,18.48,21.54
669
+ 0.64,784,343,220.5,3.5,5,0.4,3,18.46,21.53
670
+ 0.62,808.5,367.5,220.5,3.5,2,0.4,3,16.47,16.9
671
+ 0.62,808.5,367.5,220.5,3.5,3,0.4,3,16.35,17.14
672
+ 0.62,808.5,367.5,220.5,3.5,4,0.4,3,16.55,16.56
673
+ 0.62,808.5,367.5,220.5,3.5,5,0.4,3,16.74,16
674
+ 0.98,514.5,294,110.25,7,2,0.4,4,32.85,32.95
675
+ 0.98,514.5,294,110.25,7,3,0.4,4,32.67,33.06
676
+ 0.98,514.5,294,110.25,7,4,0.4,4,32.21,33.95
677
+ 0.98,514.5,294,110.25,7,5,0.4,4,32.74,33.88
678
+ 0.9,563.5,318.5,122.5,7,2,0.4,4,36.45,33.98
679
+ 0.9,563.5,318.5,122.5,7,3,0.4,4,35.73,39.92
680
+ 0.9,563.5,318.5,122.5,7,4,0.4,4,35.4,39.22
681
+ 0.9,563.5,318.5,122.5,7,5,0.4,4,36.57,36.1
682
+ 0.86,588,294,147,7,2,0.4,4,32.38,31.53
683
+ 0.86,588,294,147,7,3,0.4,4,31.66,36.2
684
+ 0.86,588,294,147,7,4,0.4,4,32.15,36.21
685
+ 0.86,588,294,147,7,5,0.4,4,32.75,31
686
+ 0.82,612.5,318.5,147,7,2,0.4,4,28.93,28.2
687
+ 0.82,612.5,318.5,147,7,3,0.4,4,28.05,32.35
688
+ 0.82,612.5,318.5,147,7,4,0.4,4,28.64,31.14
689
+ 0.82,612.5,318.5,147,7,5,0.4,4,29.52,28.43
690
+ 0.79,637,343,147,7,2,0.4,4,42.77,38.33
691
+ 0.79,637,343,147,7,3,0.4,4,41.73,47.59
692
+ 0.79,637,343,147,7,4,0.4,4,41.32,46.23
693
+ 0.79,637,343,147,7,5,0.4,4,42.96,39.56
694
+ 0.76,661.5,416.5,122.5,7,2,0.4,4,40.68,40.36
695
+ 0.76,661.5,416.5,122.5,7,3,0.4,4,40.4,39.67
696
+ 0.76,661.5,416.5,122.5,7,4,0.4,4,40.6,39.85
697
+ 0.76,661.5,416.5,122.5,7,5,0.4,4,40.11,40.77
698
+ 0.74,686,245,220.5,3.5,2,0.4,4,14.37,16.61
699
+ 0.74,686,245,220.5,3.5,3,0.4,4,14.48,16.74
700
+ 0.74,686,245,220.5,3.5,4,0.4,4,14.32,16.9
701
+ 0.74,686,245,220.5,3.5,5,0.4,4,14.44,17.32
702
+ 0.71,710.5,269.5,220.5,3.5,2,0.4,4,14.6,16.85
703
+ 0.71,710.5,269.5,220.5,3.5,3,0.4,4,14.7,17.2
704
+ 0.71,710.5,269.5,220.5,3.5,4,0.4,4,14.47,17.23
705
+ 0.71,710.5,269.5,220.5,3.5,5,0.4,4,14.66,17.74
706
+ 0.69,735,294,220.5,3.5,2,0.4,4,14.54,16.81
707
+ 0.69,735,294,220.5,3.5,3,0.4,4,14.62,16.88
708
+ 0.69,735,294,220.5,3.5,4,0.4,4,14.53,16.9
709
+ 0.69,735,294,220.5,3.5,5,0.4,4,14.71,17.39
710
+ 0.66,759.5,318.5,220.5,3.5,2,0.4,4,15.34,17.86
711
+ 0.66,759.5,318.5,220.5,3.5,3,0.4,4,15.29,17.82
712
+ 0.66,759.5,318.5,220.5,3.5,4,0.4,4,15.09,18.36
713
+ 0.66,759.5,318.5,220.5,3.5,5,0.4,4,15.3,18.24
714
+ 0.64,784,343,220.5,3.5,2,0.4,4,19.06,21.68
715
+ 0.64,784,343,220.5,3.5,3,0.4,4,19.13,21.54
716
+ 0.64,784,343,220.5,3.5,4,0.4,4,19,22.25
717
+ 0.64,784,343,220.5,3.5,5,0.4,4,18.84,22.49
718
+ 0.62,808.5,367.5,220.5,3.5,2,0.4,4,16.44,17.1
719
+ 0.62,808.5,367.5,220.5,3.5,3,0.4,4,16.9,16.79
720
+ 0.62,808.5,367.5,220.5,3.5,4,0.4,4,16.94,16.58
721
+ 0.62,808.5,367.5,220.5,3.5,5,0.4,4,16.77,16.79
722
+ 0.98,514.5,294,110.25,7,2,0.4,5,32.84,32.88
723
+ 0.98,514.5,294,110.25,7,3,0.4,5,32.72,33.23
724
+ 0.98,514.5,294,110.25,7,4,0.4,5,32.21,33.76
725
+ 0.98,514.5,294,110.25,7,5,0.4,5,32.73,34.01
726
+ 0.9,563.5,318.5,122.5,7,2,0.4,5,35.67,33.94
727
+ 0.9,563.5,318.5,122.5,7,3,0.4,5,35.01,33.14
728
+ 0.9,563.5,318.5,122.5,7,4,0.4,5,34.72,38.79
729
+ 0.9,563.5,318.5,122.5,7,5,0.4,5,35.24,37.27
730
+ 0.86,588,294,147,7,2,0.4,5,32.31,29.69
731
+ 0.86,588,294,147,7,3,0.4,5,31.81,31.2
732
+ 0.86,588,294,147,7,4,0.4,5,31.12,36.26
733
+ 0.86,588,294,147,7,5,0.4,5,32.06,35.71
734
+ 0.82,612.5,318.5,147,7,2,0.4,5,30,29.93
735
+ 0.82,612.5,318.5,147,7,3,0.4,5,29.5,29.56
736
+ 0.82,612.5,318.5,147,7,4,0.4,5,29.06,33.84
737
+ 0.82,612.5,318.5,147,7,5,0.4,5,29.92,32.54
738
+ 0.79,637,343,147,7,2,0.4,5,42.11,38.56
739
+ 0.79,637,343,147,7,3,0.4,5,41.96,37.7
740
+ 0.79,637,343,147,7,4,0.4,5,41.09,47.01
741
+ 0.79,637,343,147,7,5,0.4,5,40.79,44.87
742
+ 0.76,661.5,416.5,122.5,7,2,0.4,5,38.82,39.37
743
+ 0.76,661.5,416.5,122.5,7,3,0.4,5,39.72,39.8
744
+ 0.76,661.5,416.5,122.5,7,4,0.4,5,39.31,37.79
745
+ 0.76,661.5,416.5,122.5,7,5,0.4,5,39.86,38.18
746
+ 0.74,686,245,220.5,3.5,2,0.4,5,14.41,16.69
747
+ 0.74,686,245,220.5,3.5,3,0.4,5,14.19,16.62
748
+ 0.74,686,245,220.5,3.5,4,0.4,5,14.17,16.94
749
+ 0.74,686,245,220.5,3.5,5,0.4,5,14.39,16.7
750
+ 0.71,710.5,269.5,220.5,3.5,2,0.4,5,12.43,15.59
751
+ 0.71,710.5,269.5,220.5,3.5,3,0.4,5,12.63,14.58
752
+ 0.71,710.5,269.5,220.5,3.5,4,0.4,5,12.76,15.33
753
+ 0.71,710.5,269.5,220.5,3.5,5,0.4,5,12.42,15.31
754
+ 0.69,735,294,220.5,3.5,2,0.4,5,14.12,16.63
755
+ 0.69,735,294,220.5,3.5,3,0.4,5,14.28,15.87
756
+ 0.69,735,294,220.5,3.5,4,0.4,5,14.37,16.54
757
+ 0.69,735,294,220.5,3.5,5,0.4,5,14.21,16.74
758
+ 0.66,759.5,318.5,220.5,3.5,2,0.4,5,14.96,17.64
759
+ 0.66,759.5,318.5,220.5,3.5,3,0.4,5,14.92,17.79
760
+ 0.66,759.5,318.5,220.5,3.5,4,0.4,5,14.92,17.55
761
+ 0.66,759.5,318.5,220.5,3.5,5,0.4,5,15.16,18.06
762
+ 0.64,784,343,220.5,3.5,2,0.4,5,17.69,20.82
763
+ 0.64,784,343,220.5,3.5,3,0.4,5,18.19,20.21
764
+ 0.64,784,343,220.5,3.5,4,0.4,5,18.16,20.71
765
+ 0.64,784,343,220.5,3.5,5,0.4,5,17.88,21.4
766
+ 0.62,808.5,367.5,220.5,3.5,2,0.4,5,16.54,16.88
767
+ 0.62,808.5,367.5,220.5,3.5,3,0.4,5,16.44,17.11
768
+ 0.62,808.5,367.5,220.5,3.5,4,0.4,5,16.48,16.61
769
+ 0.62,808.5,367.5,220.5,3.5,5,0.4,5,16.64,16.03
datasets/forestfires.csv ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ X,Y,month,day,FFMC,DMC,DC,ISI,temp,RH,wind,rain,area
2
+ 7,5,mar,fri,86.2,26.2,94.3,5.1,8.2,51,6.7,0,0
3
+ 7,4,oct,tue,90.6,35.4,669.1,6.7,18,33,0.9,0,0
4
+ 7,4,oct,sat,90.6,43.7,686.9,6.7,14.6,33,1.3,0,0
5
+ 8,6,mar,fri,91.7,33.3,77.5,9,8.3,97,4,0.2,0
6
+ 8,6,mar,sun,89.3,51.3,102.2,9.6,11.4,99,1.8,0,0
7
+ 8,6,aug,sun,92.3,85.3,488,14.7,22.2,29,5.4,0,0
8
+ 8,6,aug,mon,92.3,88.9,495.6,8.5,24.1,27,3.1,0,0
9
+ 8,6,aug,mon,91.5,145.4,608.2,10.7,8,86,2.2,0,0
10
+ 8,6,sep,tue,91,129.5,692.6,7,13.1,63,5.4,0,0
11
+ 7,5,sep,sat,92.5,88,698.6,7.1,22.8,40,4,0,0
12
+ 7,5,sep,sat,92.5,88,698.6,7.1,17.8,51,7.2,0,0
13
+ 7,5,sep,sat,92.8,73.2,713,22.6,19.3,38,4,0,0
14
+ 6,5,aug,fri,63.5,70.8,665.3,0.8,17,72,6.7,0,0
15
+ 6,5,sep,mon,90.9,126.5,686.5,7,21.3,42,2.2,0,0
16
+ 6,5,sep,wed,92.9,133.3,699.6,9.2,26.4,21,4.5,0,0
17
+ 6,5,sep,fri,93.3,141.2,713.9,13.9,22.9,44,5.4,0,0
18
+ 5,5,mar,sat,91.7,35.8,80.8,7.8,15.1,27,5.4,0,0
19
+ 8,5,oct,mon,84.9,32.8,664.2,3,16.7,47,4.9,0,0
20
+ 6,4,mar,wed,89.2,27.9,70.8,6.3,15.9,35,4,0,0
21
+ 6,4,apr,sat,86.3,27.4,97.1,5.1,9.3,44,4.5,0,0
22
+ 6,4,sep,tue,91,129.5,692.6,7,18.3,40,2.7,0,0
23
+ 5,4,sep,mon,91.8,78.5,724.3,9.2,19.1,38,2.7,0,0
24
+ 7,4,jun,sun,94.3,96.3,200,56.1,21,44,4.5,0,0
25
+ 7,4,aug,sat,90.2,110.9,537.4,6.2,19.5,43,5.8,0,0
26
+ 7,4,aug,sat,93.5,139.4,594.2,20.3,23.7,32,5.8,0,0
27
+ 7,4,aug,sun,91.4,142.4,601.4,10.6,16.3,60,5.4,0,0
28
+ 7,4,sep,fri,92.4,117.9,668,12.2,19,34,5.8,0,0
29
+ 7,4,sep,mon,90.9,126.5,686.5,7,19.4,48,1.3,0,0
30
+ 6,3,sep,sat,93.4,145.4,721.4,8.1,30.2,24,2.7,0,0
31
+ 6,3,sep,sun,93.5,149.3,728.6,8.1,22.8,39,3.6,0,0
32
+ 6,3,sep,fri,94.3,85.1,692.3,15.9,25.4,24,3.6,0,0
33
+ 6,3,sep,mon,88.6,91.8,709.9,7.1,11.2,78,7.6,0,0
34
+ 6,3,sep,fri,88.6,69.7,706.8,5.8,20.6,37,1.8,0,0
35
+ 6,3,sep,sun,91.7,75.6,718.3,7.8,17.7,39,3.6,0,0
36
+ 6,3,sep,mon,91.8,78.5,724.3,9.2,21.2,32,2.7,0,0
37
+ 6,3,sep,tue,90.3,80.7,730.2,6.3,18.2,62,4.5,0,0
38
+ 6,3,oct,tue,90.6,35.4,669.1,6.7,21.7,24,4.5,0,0
39
+ 7,4,oct,fri,90,41.5,682.6,8.7,11.3,60,5.4,0,0
40
+ 7,3,oct,sat,90.6,43.7,686.9,6.7,17.8,27,4,0,0
41
+ 4,4,mar,tue,88.1,25.7,67.6,3.8,14.1,43,2.7,0,0
42
+ 4,4,jul,tue,79.5,60.6,366.7,1.5,23.3,37,3.1,0,0
43
+ 4,4,aug,sat,90.2,96.9,624.2,8.9,18.4,42,6.7,0,0
44
+ 4,4,aug,tue,94.8,108.3,647.1,17,16.6,54,5.4,0,0
45
+ 4,4,sep,sat,92.5,88,698.6,7.1,19.6,48,2.7,0,0
46
+ 4,4,sep,wed,90.1,82.9,735.7,6.2,12.9,74,4.9,0,0
47
+ 5,6,sep,wed,94.3,85.1,692.3,15.9,25.9,24,4,0,0
48
+ 5,6,sep,mon,90.9,126.5,686.5,7,14.7,70,3.6,0,0
49
+ 6,6,jul,mon,94.2,62.3,442.9,11,23,36,3.1,0,0
50
+ 4,4,mar,mon,87.2,23.9,64.7,4.1,11.8,35,1.8,0,0
51
+ 4,4,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,0
52
+ 4,4,sep,thu,92.9,137,706.4,9.2,20.8,17,1.3,0,0
53
+ 4,3,aug,sun,90.2,99.6,631.2,6.3,21.5,34,2.2,0,0
54
+ 4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0
55
+ 4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0
56
+ 4,3,aug,thu,91.7,114.3,661.3,6.3,17.6,45,3.6,0,0
57
+ 4,3,sep,thu,92.9,137,706.4,9.2,27.7,24,2.2,0,0
58
+ 4,3,sep,tue,90.3,80.7,730.2,6.3,17.8,63,4.9,0,0
59
+ 4,3,oct,sun,92.6,46.5,691.8,8.8,13.8,50,2.7,0,0
60
+ 2,2,feb,mon,84,9.3,34,2.1,13.9,40,5.4,0,0
61
+ 2,2,feb,fri,86.6,13.2,43,5.3,12.3,51,0.9,0,0
62
+ 2,2,mar,sun,89.3,51.3,102.2,9.6,11.5,39,5.8,0,0
63
+ 2,2,mar,sun,89.3,51.3,102.2,9.6,5.5,59,6.3,0,0
64
+ 2,2,aug,thu,93,75.3,466.6,7.7,18.8,35,4.9,0,0
65
+ 2,2,aug,sun,90.2,99.6,631.2,6.3,20.8,33,2.7,0,0
66
+ 2,2,aug,mon,91.1,103.2,638.8,5.8,23.1,31,3.1,0,0
67
+ 2,2,aug,thu,91.7,114.3,661.3,6.3,18.6,44,4.5,0,0
68
+ 2,2,sep,fri,92.4,117.9,668,12.2,23,37,4.5,0,0
69
+ 2,2,sep,fri,92.4,117.9,668,12.2,19.6,33,5.4,0,0
70
+ 2,2,sep,fri,92.4,117.9,668,12.2,19.6,33,6.3,0,0
71
+ 4,5,mar,fri,91.7,33.3,77.5,9,17.2,26,4.5,0,0
72
+ 4,5,mar,fri,91.2,48.3,97.8,12.5,15.8,27,7.6,0,0
73
+ 4,5,sep,fri,94.3,85.1,692.3,15.9,17.7,37,3.6,0,0
74
+ 5,4,mar,fri,91.7,33.3,77.5,9,15.6,25,6.3,0,0
75
+ 5,4,aug,tue,88.8,147.3,614.5,9,17.3,43,4.5,0,0
76
+ 5,4,sep,fri,93.3,141.2,713.9,13.9,27.6,30,1.3,0,0
77
+ 9,9,feb,thu,84.2,6.8,26.6,7.7,6.7,79,3.1,0,0
78
+ 9,9,feb,fri,86.6,13.2,43,5.3,15.7,43,3.1,0,0
79
+ 1,3,mar,mon,87.6,52.2,103.8,5,8.3,72,3.1,0,0
80
+ 1,2,aug,fri,90.1,108,529.8,12.5,14.7,66,2.7,0,0
81
+ 1,2,aug,tue,91,121.2,561.6,7,21.6,19,6.7,0,0
82
+ 1,2,aug,sun,91.4,142.4,601.4,10.6,19.5,39,6.3,0,0
83
+ 1,2,aug,sun,90.2,99.6,631.2,6.3,17.9,44,2.2,0,0
84
+ 1,2,aug,tue,94.8,108.3,647.1,17,18.6,51,4.5,0,0
85
+ 1,2,aug,wed,92.1,111.2,654.1,9.6,16.6,47,0.9,0,0
86
+ 1,2,aug,thu,91.7,114.3,661.3,6.3,20.2,45,3.6,0,0
87
+ 1,2,sep,thu,92.9,137,706.4,9.2,21.5,15,0.9,0,0
88
+ 1,2,sep,thu,92.9,137,706.4,9.2,25.4,27,2.2,0,0
89
+ 1,2,sep,thu,92.9,137,706.4,9.2,22.4,34,2.2,0,0
90
+ 1,2,sep,sun,93.5,149.3,728.6,8.1,25.3,36,3.6,0,0
91
+ 6,5,mar,sat,91.7,35.8,80.8,7.8,17.4,25,4.9,0,0
92
+ 6,5,aug,sat,90.2,96.9,624.2,8.9,14.7,59,5.8,0,0
93
+ 8,6,mar,fri,91.7,35.8,80.8,7.8,17.4,24,5.4,0,0
94
+ 8,6,aug,sun,92.3,85.3,488,14.7,20.8,32,6.3,0,0
95
+ 8,6,aug,sun,91.4,142.4,601.4,10.6,18.2,43,4.9,0,0
96
+ 8,6,aug,mon,91.1,103.2,638.8,5.8,23.4,22,2.7,0,0
97
+ 4,4,sep,sun,89.7,90,704.4,4.8,17.8,64,1.3,0,0
98
+ 3,4,feb,sat,83.9,8,30.2,2.6,12.7,48,1.8,0,0
99
+ 3,4,mar,sat,69,2.4,15.5,0.7,17.4,24,5.4,0,0
100
+ 3,4,aug,sun,91.4,142.4,601.4,10.6,11.6,87,4.5,0,0
101
+ 3,4,aug,sun,91.4,142.4,601.4,10.6,19.8,39,5.4,0,0
102
+ 3,4,aug,sun,91.4,142.4,601.4,10.6,19.8,39,5.4,0,0
103
+ 3,4,aug,tue,88.8,147.3,614.5,9,14.4,66,5.4,0,0
104
+ 2,4,aug,tue,94.8,108.3,647.1,17,20.1,40,4,0,0
105
+ 2,4,sep,sat,92.5,121.1,674.4,8.6,24.1,29,4.5,0,0
106
+ 2,4,jan,sat,82.1,3.7,9.3,2.9,5.3,78,3.1,0,0
107
+ 4,5,mar,fri,85.9,19.5,57.3,2.8,12.7,52,6.3,0,0
108
+ 4,5,mar,thu,91.4,30.7,74.3,7.5,18.2,29,3.1,0,0
109
+ 4,5,aug,sun,90.2,99.6,631.2,6.3,21.4,33,3.1,0,0
110
+ 4,5,sep,sat,92.5,88,698.6,7.1,20.3,45,3.1,0,0
111
+ 4,5,sep,mon,88.6,91.8,709.9,7.1,17.4,56,5.4,0,0
112
+ 4,4,mar,fri,85.9,19.5,57.3,2.8,13.7,43,5.8,0,0
113
+ 3,4,mar,fri,91.7,33.3,77.5,9,18.8,18,4.5,0,0
114
+ 3,4,sep,sun,89.7,90,704.4,4.8,22.8,39,3.6,0,0
115
+ 3,4,sep,mon,91.8,78.5,724.3,9.2,18.9,35,2.7,0,0
116
+ 3,4,mar,tue,88.1,25.7,67.6,3.8,15.8,27,7.6,0,0
117
+ 3,5,mar,tue,88.1,25.7,67.6,3.8,15.5,27,6.3,0,0
118
+ 3,4,mar,sat,91.7,35.8,80.8,7.8,11.6,30,6.3,0,0
119
+ 3,4,mar,sat,91.7,35.8,80.8,7.8,15.2,27,4.9,0,0
120
+ 3,4,mar,mon,90.1,39.7,86.6,6.2,10.6,30,4,0,0
121
+ 3,4,aug,thu,93,75.3,466.6,7.7,19.6,36,3.1,0,0
122
+ 3,4,aug,mon,91.5,145.4,608.2,10.7,10.3,74,2.2,0,0
123
+ 3,4,aug,mon,91.5,145.4,608.2,10.7,17.1,43,5.4,0,0
124
+ 3,4,sep,sun,92.4,124.1,680.7,8.5,22.5,42,5.4,0,0
125
+ 3,4,sep,tue,84.4,73.4,671.9,3.2,17.9,45,3.1,0,0
126
+ 3,4,sep,fri,94.3,85.1,692.3,15.9,19.8,50,5.4,0,0
127
+ 3,4,oct,sun,92.6,46.5,691.8,8.8,20.6,24,5.4,0,0
128
+ 3,5,mar,mon,87.6,52.2,103.8,5,9,49,2.2,0,0
129
+ 3,5,sep,fri,93.5,149.3,728.6,8.1,17.2,43,3.1,0,0
130
+ 3,5,oct,wed,91.4,37.9,673.8,5.2,15.9,46,3.6,0,0
131
+ 2,5,oct,sun,92.6,46.5,691.8,8.8,15.4,35,0.9,0,0
132
+ 4,6,feb,sat,68.2,21.5,87.2,0.8,15.4,40,2.7,0,0
133
+ 4,6,mar,mon,87.2,23.9,64.7,4.1,14,39,3.1,0,0
134
+ 4,6,mar,sun,89.3,51.3,102.2,9.6,10.6,46,4.9,0,0
135
+ 4,6,sep,thu,93.7,80.9,685.2,17.9,17.6,42,3.1,0,0
136
+ 3,5,mar,tue,88.1,25.7,67.6,3.8,14.9,38,2.7,0,0
137
+ 3,5,aug,sat,93.5,139.4,594.2,20.3,17.6,52,5.8,0,0
138
+ 3,6,sep,sun,92.4,124.1,680.7,8.5,17.2,58,1.3,0,0
139
+ 3,6,sep,mon,90.9,126.5,686.5,7,15.6,66,3.1,0,0
140
+ 9,9,jul,tue,85.8,48.3,313.4,3.9,18,42,2.7,0,0.36
141
+ 1,4,sep,tue,91,129.5,692.6,7,21.7,38,2.2,0,0.43
142
+ 2,5,sep,mon,90.9,126.5,686.5,7,21.9,39,1.8,0,0.47
143
+ 1,2,aug,wed,95.5,99.9,513.3,13.2,23.3,31,4.5,0,0.55
144
+ 8,6,aug,fri,90.1,108,529.8,12.5,21.2,51,8.9,0,0.61
145
+ 1,2,jul,sat,90,51.3,296.3,8.7,16.6,53,5.4,0,0.71
146
+ 2,5,aug,wed,95.5,99.9,513.3,13.2,23.8,32,5.4,0,0.77
147
+ 6,5,aug,thu,95.2,131.7,578.8,10.4,27.4,22,4,0,0.9
148
+ 5,4,mar,mon,90.1,39.7,86.6,6.2,13.2,40,5.4,0,0.95
149
+ 8,3,sep,tue,84.4,73.4,671.9,3.2,24.2,28,3.6,0,0.96
150
+ 2,2,aug,tue,94.8,108.3,647.1,17,17.4,43,6.7,0,1.07
151
+ 8,6,sep,thu,93.7,80.9,685.2,17.9,23.7,25,4.5,0,1.12
152
+ 6,5,jun,fri,92.5,56.4,433.3,7.1,23.2,39,5.4,0,1.19
153
+ 9,9,jul,sun,90.1,68.6,355.2,7.2,24.8,29,2.2,0,1.36
154
+ 3,4,jul,sat,90.1,51.2,424.1,6.2,24.6,43,1.8,0,1.43
155
+ 5,4,sep,fri,94.3,85.1,692.3,15.9,20.1,47,4.9,0,1.46
156
+ 1,5,sep,sat,93.4,145.4,721.4,8.1,29.6,27,2.7,0,1.46
157
+ 7,4,aug,sun,94.8,108.3,647.1,17,16.4,47,1.3,0,1.56
158
+ 2,4,sep,sat,93.4,145.4,721.4,8.1,28.6,27,2.2,0,1.61
159
+ 2,2,aug,wed,92.1,111.2,654.1,9.6,18.4,45,3.6,0,1.63
160
+ 2,4,aug,wed,92.1,111.2,654.1,9.6,20.5,35,4,0,1.64
161
+ 7,4,sep,fri,92.4,117.9,668,12.2,19,34,5.8,0,1.69
162
+ 7,4,mar,mon,90.1,39.7,86.6,6.2,16.1,29,3.1,0,1.75
163
+ 6,4,aug,thu,95.2,131.7,578.8,10.4,20.3,41,4,0,1.9
164
+ 6,3,mar,sat,90.6,50.1,100.4,7.8,15.2,31,8.5,0,1.94
165
+ 8,6,sep,sat,92.5,121.1,674.4,8.6,17.8,56,1.8,0,1.95
166
+ 8,5,sep,sun,89.7,90,704.4,4.8,17.8,67,2.2,0,2.01
167
+ 6,5,mar,thu,84.9,18.2,55,3,5.3,70,4.5,0,2.14
168
+ 6,5,aug,wed,92.1,111.2,654.1,9.6,16.6,47,0.9,0,2.29
169
+ 6,5,aug,wed,96,127.1,570.5,16.5,23.4,33,4.5,0,2.51
170
+ 6,5,mar,fri,91.2,48.3,97.8,12.5,14.6,26,9.4,0,2.53
171
+ 8,6,aug,thu,95.2,131.7,578.8,10.4,20.7,45,2.2,0,2.55
172
+ 5,4,sep,wed,92.9,133.3,699.6,9.2,21.9,35,1.8,0,2.57
173
+ 8,6,aug,wed,85.6,90.4,609.6,6.6,17.4,50,4,0,2.69
174
+ 7,4,aug,sun,91.4,142.4,601.4,10.6,20.1,39,5.4,0,2.74
175
+ 4,4,sep,mon,90.9,126.5,686.5,7,17.7,39,2.2,0,3.07
176
+ 1,4,aug,sat,90.2,96.9,624.2,8.9,14.2,53,1.8,0,3.5
177
+ 1,4,aug,sat,90.2,96.9,624.2,8.9,20.3,39,4.9,0,4.53
178
+ 6,5,apr,thu,81.5,9.1,55.2,2.7,5.8,54,5.8,0,4.61
179
+ 2,5,aug,sun,90.2,99.6,631.2,6.3,19.2,44,2.7,0,4.69
180
+ 2,5,sep,wed,90.1,82.9,735.7,6.2,18.3,45,2.2,0,4.88
181
+ 8,6,aug,tue,88.8,147.3,614.5,9,14.4,66,5.4,0,5.23
182
+ 1,3,sep,sun,92.4,124.1,680.7,8.5,23.9,32,6.7,0,5.33
183
+ 8,6,oct,mon,84.9,32.8,664.2,3,19.1,32,4,0,5.44
184
+ 5,4,feb,sun,86.8,15.6,48.3,3.9,12.4,53,2.2,0,6.38
185
+ 7,4,oct,mon,91.7,48.5,696.1,11.1,16.8,45,4.5,0,6.83
186
+ 8,6,aug,fri,93.9,135.7,586.7,15.1,20.8,34,4.9,0,6.96
187
+ 2,5,sep,tue,91,129.5,692.6,7,17.6,46,3.1,0,7.04
188
+ 8,6,mar,sun,89.3,51.3,102.2,9.6,11.5,39,5.8,0,7.19
189
+ 1,5,sep,mon,90.9,126.5,686.5,7,21,42,2.2,0,7.3
190
+ 6,4,mar,sat,90.8,41.9,89.4,7.9,13.3,42,0.9,0,7.4
191
+ 7,4,mar,sun,90.7,44,92.4,5.5,11.5,60,4,0,8.24
192
+ 6,5,mar,fri,91.2,48.3,97.8,12.5,11.7,33,4,0,8.31
193
+ 2,5,aug,thu,95.2,131.7,578.8,10.4,24.2,28,2.7,0,8.68
194
+ 2,2,aug,tue,94.8,108.3,647.1,17,24.6,22,4.5,0,8.71
195
+ 4,5,sep,wed,92.9,133.3,699.6,9.2,24.3,25,4,0,9.41
196
+ 2,2,aug,tue,94.8,108.3,647.1,17,24.6,22,4.5,0,10.01
197
+ 2,5,aug,fri,93.9,135.7,586.7,15.1,23.5,36,5.4,0,10.02
198
+ 6,5,apr,thu,81.5,9.1,55.2,2.7,5.8,54,5.8,0,10.93
199
+ 4,5,sep,thu,92.9,137,706.4,9.2,21.5,15,0.9,0,11.06
200
+ 3,4,sep,tue,91,129.5,692.6,7,13.9,59,6.3,0,11.24
201
+ 2,4,sep,mon,63.5,70.8,665.3,0.8,22.6,38,3.6,0,11.32
202
+ 1,5,sep,tue,91,129.5,692.6,7,21.6,33,2.2,0,11.53
203
+ 6,5,mar,sun,90.1,37.6,83.7,7.2,12.4,54,3.6,0,12.1
204
+ 7,4,feb,sun,83.9,8.7,32.1,2.1,8.8,68,2.2,0,13.05
205
+ 8,6,oct,wed,91.4,37.9,673.8,5.2,20.2,37,2.7,0,13.7
206
+ 5,6,mar,sat,90.6,50.1,100.4,7.8,15.1,64,4,0,13.99
207
+ 4,5,sep,thu,92.9,137,706.4,9.2,22.1,34,1.8,0,14.57
208
+ 2,2,aug,sat,93.5,139.4,594.2,20.3,22.9,31,7.2,0,15.45
209
+ 7,5,sep,tue,91,129.5,692.6,7,20.7,37,2.2,0,17.2
210
+ 6,5,sep,fri,92.4,117.9,668,12.2,19.6,33,6.3,0,19.23
211
+ 8,3,sep,thu,93.7,80.9,685.2,17.9,23.2,26,4.9,0,23.41
212
+ 4,4,oct,sat,90.6,43.7,686.9,6.7,18.4,25,3.1,0,24.23
213
+ 7,4,aug,sat,93.5,139.4,594.2,20.3,5.1,96,5.8,0,26
214
+ 7,4,sep,fri,94.3,85.1,692.3,15.9,20.1,47,4.9,0,26.13
215
+ 7,3,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,27.35
216
+ 4,4,mar,sat,91.7,35.8,80.8,7.8,17,27,4.9,0,28.66
217
+ 4,4,mar,sat,91.7,35.8,80.8,7.8,17,27,4.9,0,28.66
218
+ 4,4,sep,sun,92.4,124.1,680.7,8.5,16.9,60,1.3,0,29.48
219
+ 1,3,sep,mon,88.6,91.8,709.9,7.1,12.4,73,6.3,0,30.32
220
+ 4,5,sep,wed,92.9,133.3,699.6,9.2,19.4,19,1.3,0,31.72
221
+ 6,5,mar,mon,90.1,39.7,86.6,6.2,15.2,27,3.1,0,31.86
222
+ 8,6,aug,sun,90.2,99.6,631.2,6.3,16.2,59,3.1,0,32.07
223
+ 3,4,sep,fri,93.3,141.2,713.9,13.9,18.6,49,3.6,0,35.88
224
+ 4,3,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,36.85
225
+ 2,2,jul,fri,88.3,150.3,309.9,6.8,13.4,79,3.6,0,37.02
226
+ 7,4,sep,wed,90.1,82.9,735.7,6.2,15.4,57,4.5,0,37.71
227
+ 4,4,sep,sun,93.5,149.3,728.6,8.1,22.9,39,4.9,0,48.55
228
+ 7,5,oct,mon,91.7,48.5,696.1,11.1,16.1,44,4,0,49.37
229
+ 8,6,aug,sat,92.2,81.8,480.8,11.9,20.1,34,4.5,0,58.3
230
+ 4,6,sep,sun,93.5,149.3,728.6,8.1,28.3,26,3.1,0,64.1
231
+ 8,6,aug,sat,92.2,81.8,480.8,11.9,16.4,43,4,0,71.3
232
+ 4,4,sep,wed,92.9,133.3,699.6,9.2,26.4,21,4.5,0,88.49
233
+ 1,5,sep,sun,93.5,149.3,728.6,8.1,27.8,27,3.1,0,95.18
234
+ 6,4,sep,tue,91,129.5,692.6,7,18.7,43,2.7,0,103.39
235
+ 9,4,sep,tue,84.4,73.4,671.9,3.2,24.3,36,3.1,0,105.66
236
+ 4,5,sep,sat,92.5,121.1,674.4,8.6,17.7,25,3.1,0,154.88
237
+ 8,6,aug,sun,91.4,142.4,601.4,10.6,19.6,41,5.8,0,196.48
238
+ 2,2,sep,sat,92.5,121.1,674.4,8.6,18.2,46,1.8,0,200.94
239
+ 1,2,sep,tue,91,129.5,692.6,7,18.8,40,2.2,0,212.88
240
+ 6,5,sep,sat,92.5,121.1,674.4,8.6,25.1,27,4,0,1090.84
241
+ 7,5,apr,sun,81.9,3,7.9,3.5,13.4,75,1.8,0,0
242
+ 6,3,apr,wed,88,17.2,43.5,3.8,15.2,51,2.7,0,0
243
+ 4,4,apr,fri,83,23.3,85.3,2.3,16.7,20,3.1,0,0
244
+ 2,4,aug,sun,94.2,122.3,589.9,12.9,15.4,66,4,0,10.13
245
+ 7,4,aug,sun,91.8,175.1,700.7,13.8,21.9,73,7.6,1,0
246
+ 2,4,aug,sun,91.8,175.1,700.7,13.8,22.4,54,7.6,0,2.87
247
+ 3,4,aug,sun,91.8,175.1,700.7,13.8,26.8,38,6.3,0,0.76
248
+ 5,4,aug,sun,91.8,175.1,700.7,13.8,25.7,39,5.4,0,0.09
249
+ 2,4,aug,wed,92.2,91.6,503.6,9.6,20.7,70,2.2,0,0.75
250
+ 8,6,aug,wed,93.1,157.3,666.7,13.5,28.7,28,2.7,0,0
251
+ 3,4,aug,wed,93.1,157.3,666.7,13.5,21.7,40,0.4,0,2.47
252
+ 8,5,aug,wed,93.1,157.3,666.7,13.5,26.8,25,3.1,0,0.68
253
+ 8,5,aug,wed,93.1,157.3,666.7,13.5,24,36,3.1,0,0.24
254
+ 6,5,aug,wed,93.1,157.3,666.7,13.5,22.1,37,3.6,0,0.21
255
+ 7,4,aug,thu,91.9,109.2,565.5,8,21.4,38,2.7,0,1.52
256
+ 6,3,aug,thu,91.6,138.1,621.7,6.3,18.9,41,3.1,0,10.34
257
+ 2,5,aug,thu,87.5,77,694.8,5,22.3,46,4,0,0
258
+ 8,6,aug,sat,94.2,117.2,581.1,11,23.9,41,2.2,0,8.02
259
+ 4,3,aug,sat,94.2,117.2,581.1,11,21.4,44,2.7,0,0.68
260
+ 3,4,aug,sat,91.8,170.9,692.3,13.7,20.6,59,0.9,0,0
261
+ 7,4,aug,sat,91.8,170.9,692.3,13.7,23.7,40,1.8,0,1.38
262
+ 2,4,aug,mon,93.6,97.9,542,14.4,28.3,32,4,0,8.85
263
+ 3,4,aug,fri,91.6,112.4,573,8.9,11.2,84,7.6,0,3.3
264
+ 2,4,aug,fri,91.6,112.4,573,8.9,21.4,42,3.1,0,4.25
265
+ 6,3,aug,fri,91.1,141.1,629.1,7.1,19.3,39,3.6,0,1.56
266
+ 4,4,aug,fri,94.3,167.6,684.4,13,21.8,53,3.1,0,6.54
267
+ 4,4,aug,tue,93.7,102.2,550.3,14.6,22.1,54,7.6,0,0.79
268
+ 6,5,aug,tue,94.3,131.7,607.1,22.7,19.4,55,4,0,0.17
269
+ 2,2,aug,tue,92.1,152.6,658.2,14.3,23.7,24,3.1,0,0
270
+ 3,4,aug,tue,92.1,152.6,658.2,14.3,21,32,3.1,0,0
271
+ 4,4,aug,tue,92.1,152.6,658.2,14.3,19.1,53,2.7,0,4.4
272
+ 2,2,aug,tue,92.1,152.6,658.2,14.3,21.8,56,3.1,0,0.52
273
+ 8,6,aug,tue,92.1,152.6,658.2,14.3,20.1,58,4.5,0,9.27
274
+ 2,5,aug,tue,92.1,152.6,658.2,14.3,20.2,47,4,0,3.09
275
+ 4,6,dec,sun,84.4,27.2,353.5,6.8,4.8,57,8.5,0,8.98
276
+ 8,6,dec,wed,84,27.8,354.6,5.3,5.1,61,8,0,11.19
277
+ 4,6,dec,thu,84.6,26.4,352,2,5.1,61,4.9,0,5.38
278
+ 4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,17.85
279
+ 3,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,10.73
280
+ 4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,22.03
281
+ 4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,9.77
282
+ 4,6,dec,fri,84.7,26.7,352.6,4.1,2.2,59,4.9,0,9.27
283
+ 6,5,dec,tue,85.4,25.4,349.7,2.6,5.1,24,8.5,0,24.77
284
+ 6,3,feb,sun,84.9,27.5,353.5,3.4,4.2,51,4,0,0
285
+ 3,4,feb,wed,86.9,6.6,18.7,3.2,8.8,35,3.1,0,1.1
286
+ 5,4,feb,fri,85.2,4.9,15.8,6.3,7.5,46,8,0,24.24
287
+ 2,5,jul,sun,93.9,169.7,411.8,12.3,23.4,40,6.3,0,0
288
+ 7,6,jul,wed,91.2,183.1,437.7,12.5,12.6,90,7.6,0.2,0
289
+ 7,4,jul,sat,91.6,104.2,474.9,9,22.1,49,2.7,0,0
290
+ 7,4,jul,sat,91.6,104.2,474.9,9,24.2,32,1.8,0,0
291
+ 7,4,jul,sat,91.6,104.2,474.9,9,24.3,30,1.8,0,0
292
+ 2,5,jul,sat,91.6,104.2,474.9,9,18.7,53,1.8,0,0
293
+ 9,4,jul,sat,91.6,104.2,474.9,9,25.3,39,0.9,0,8
294
+ 4,5,jul,fri,91.6,100.2,466.3,6.3,22.9,40,1.3,0,2.64
295
+ 7,6,jul,tue,93.1,180.4,430.8,11,26.9,28,5.4,0,86.45
296
+ 8,6,jul,tue,92.3,88.8,440.9,8.5,17.1,67,3.6,0,6.57
297
+ 7,5,jun,sun,93.1,180.4,430.8,11,22.2,48,1.3,0,0
298
+ 6,4,jun,sun,90.4,89.5,290.8,6.4,14.3,46,1.8,0,0.9
299
+ 8,6,jun,sun,90.4,89.5,290.8,6.4,15.4,45,2.2,0,0
300
+ 8,6,jun,wed,91.2,147.8,377.2,12.7,19.6,43,4.9,0,0
301
+ 6,5,jun,sat,53.4,71,233.8,0.4,10.6,90,2.7,0,0
302
+ 6,5,jun,mon,90.4,93.3,298.1,7.5,20.7,25,4.9,0,0
303
+ 6,5,jun,mon,90.4,93.3,298.1,7.5,19.1,39,5.4,0,3.52
304
+ 3,6,jun,fri,91.1,94.1,232.1,7.1,19.2,38,4.5,0,0
305
+ 3,6,jun,fri,91.1,94.1,232.1,7.1,19.2,38,4.5,0,0
306
+ 6,5,may,sat,85.1,28,113.8,3.5,11.3,94,4.9,0,0
307
+ 1,4,sep,sun,89.6,84.1,714.3,5.7,19,52,2.2,0,0
308
+ 7,4,sep,sun,89.6,84.1,714.3,5.7,17.1,53,5.4,0,0.41
309
+ 3,4,sep,sun,89.6,84.1,714.3,5.7,23.8,35,3.6,0,5.18
310
+ 2,4,sep,sun,92.4,105.8,758.1,9.9,16,45,1.8,0,0
311
+ 2,4,sep,sun,92.4,105.8,758.1,9.9,24.9,27,2.2,0,0
312
+ 7,4,sep,sun,92.4,105.8,758.1,9.9,25.3,27,2.7,0,0
313
+ 6,3,sep,sun,92.4,105.8,758.1,9.9,24.8,28,1.8,0,14.29
314
+ 2,4,sep,sun,50.4,46.2,706.6,0.4,12.2,78,6.3,0,0
315
+ 6,5,sep,wed,92.6,115.4,777.1,8.8,24.3,27,4.9,0,0
316
+ 4,4,sep,wed,92.6,115.4,777.1,8.8,19.7,41,1.8,0,1.58
317
+ 3,4,sep,wed,91.2,134.7,817.5,7.2,18.5,30,2.7,0,0
318
+ 4,5,sep,thu,92.4,96.2,739.4,8.6,18.6,24,5.8,0,0
319
+ 4,4,sep,thu,92.4,96.2,739.4,8.6,19.2,24,4.9,0,3.78
320
+ 6,5,sep,thu,92.8,119,783.5,7.5,21.6,27,2.2,0,0
321
+ 5,4,sep,thu,92.8,119,783.5,7.5,21.6,28,6.3,0,4.41
322
+ 6,3,sep,thu,92.8,119,783.5,7.5,18.9,34,7.2,0,34.36
323
+ 1,4,sep,thu,92.8,119,783.5,7.5,16.8,28,4,0,7.21
324
+ 6,5,sep,thu,92.8,119,783.5,7.5,16.8,28,4,0,1.01
325
+ 3,5,sep,thu,90.7,136.9,822.8,6.8,12.9,39,2.7,0,2.18
326
+ 6,5,sep,thu,88.1,53.3,726.9,5.4,13.7,56,1.8,0,4.42
327
+ 1,4,sep,sat,92.2,102.3,751.5,8.4,24.2,27,3.1,0,0
328
+ 5,4,sep,sat,92.2,102.3,751.5,8.4,24.1,27,3.1,0,0
329
+ 6,5,sep,sat,92.2,102.3,751.5,8.4,21.2,32,2.2,0,0
330
+ 6,5,sep,sat,92.2,102.3,751.5,8.4,19.7,35,1.8,0,0
331
+ 4,3,sep,sat,92.2,102.3,751.5,8.4,23.5,27,4,0,3.33
332
+ 3,3,sep,sat,92.2,102.3,751.5,8.4,24.2,27,3.1,0,6.58
333
+ 7,4,sep,sat,91.2,124.4,795.3,8.5,21.5,28,4.5,0,15.64
334
+ 4,4,sep,sat,91.2,124.4,795.3,8.5,17.1,41,2.2,0,11.22
335
+ 1,4,sep,mon,92.1,87.7,721.1,9.5,18.1,54,3.1,0,2.13
336
+ 2,3,sep,mon,91.6,108.4,764,6.2,18,51,5.4,0,0
337
+ 4,3,sep,mon,91.6,108.4,764,6.2,9.8,86,1.8,0,0
338
+ 7,4,sep,mon,91.6,108.4,764,6.2,19.3,44,2.2,0,0
339
+ 6,3,sep,mon,91.6,108.4,764,6.2,23,34,2.2,0,56.04
340
+ 8,6,sep,mon,91.6,108.4,764,6.2,22.7,35,2.2,0,7.48
341
+ 2,4,sep,mon,91.6,108.4,764,6.2,20.4,41,1.8,0,1.47
342
+ 2,5,sep,mon,91.6,108.4,764,6.2,19.3,44,2.2,0,3.93
343
+ 8,6,sep,mon,91.9,111.7,770.3,6.5,15.7,51,2.2,0,0
344
+ 6,3,sep,mon,91.5,130.1,807.1,7.5,20.6,37,1.8,0,0
345
+ 8,6,sep,mon,91.5,130.1,807.1,7.5,15.9,51,4.5,0,2.18
346
+ 6,3,sep,mon,91.5,130.1,807.1,7.5,12.2,66,4.9,0,6.1
347
+ 2,2,sep,mon,91.5,130.1,807.1,7.5,16.8,43,3.1,0,5.83
348
+ 1,4,sep,mon,91.5,130.1,807.1,7.5,21.3,35,2.2,0,28.19
349
+ 5,4,sep,fri,92.1,99,745.3,9.6,10.1,75,3.6,0,0
350
+ 3,4,sep,fri,92.1,99,745.3,9.6,17.4,57,4.5,0,0
351
+ 5,4,sep,fri,92.1,99,745.3,9.6,12.8,64,3.6,0,1.64
352
+ 5,4,sep,fri,92.1,99,745.3,9.6,10.1,75,3.6,0,3.71
353
+ 4,4,sep,fri,92.1,99,745.3,9.6,15.4,53,6.3,0,7.31
354
+ 7,4,sep,fri,92.1,99,745.3,9.6,20.6,43,3.6,0,2.03
355
+ 7,4,sep,fri,92.1,99,745.3,9.6,19.8,47,2.7,0,1.72
356
+ 7,4,sep,fri,92.1,99,745.3,9.6,18.7,50,2.2,0,5.97
357
+ 4,4,sep,fri,92.1,99,745.3,9.6,20.8,35,4.9,0,13.06
358
+ 4,4,sep,fri,92.1,99,745.3,9.6,20.8,35,4.9,0,1.26
359
+ 6,3,sep,fri,92.5,122,789.7,10.2,15.9,55,3.6,0,0
360
+ 6,3,sep,fri,92.5,122,789.7,10.2,19.7,39,2.7,0,0
361
+ 1,4,sep,fri,92.5,122,789.7,10.2,21.1,39,2.2,0,8.12
362
+ 6,5,sep,fri,92.5,122,789.7,10.2,18.4,42,2.2,0,1.09
363
+ 4,3,sep,fri,92.5,122,789.7,10.2,17.3,45,4,0,3.94
364
+ 7,4,sep,fri,88.2,55.2,732.3,11.6,15.2,64,3.1,0,0.52
365
+ 4,3,sep,tue,91.9,111.7,770.3,6.5,15.9,53,2.2,0,2.93
366
+ 6,5,sep,tue,91.9,111.7,770.3,6.5,21.1,35,2.7,0,5.65
367
+ 6,5,sep,tue,91.9,111.7,770.3,6.5,19.6,45,3.1,0,20.03
368
+ 4,5,sep,tue,91.1,132.3,812.1,12.5,15.9,38,5.4,0,1.75
369
+ 4,5,sep,tue,91.1,132.3,812.1,12.5,16.4,27,3.6,0,0
370
+ 6,5,sep,sat,91.2,94.3,744.4,8.4,16.8,47,4.9,0,12.64
371
+ 4,5,sep,sun,91,276.3,825.1,7.1,13.8,77,7.6,0,0
372
+ 7,4,sep,sun,91,276.3,825.1,7.1,13.8,77,7.6,0,11.06
373
+ 3,4,jul,wed,91.9,133.6,520.5,8,14.2,58,4,0,0
374
+ 4,5,aug,sun,92,203.2,664.5,8.1,10.4,75,0.9,0,0
375
+ 5,4,aug,thu,94.8,222.4,698.6,13.9,20.3,42,2.7,0,0
376
+ 6,5,sep,fri,90.3,290,855.3,7.4,10.3,78,4,0,18.3
377
+ 6,5,sep,sat,91.2,94.3,744.4,8.4,15.4,57,4.9,0,39.35
378
+ 8,6,aug,mon,92.1,207,672.6,8.2,21.1,54,2.2,0,0
379
+ 2,2,aug,sat,93.7,231.1,715.1,8.4,21.9,42,2.2,0,174.63
380
+ 6,5,mar,thu,90.9,18.9,30.6,8,8.7,51,5.8,0,0
381
+ 4,5,jan,sun,18.7,1.1,171.4,0,5.2,100,0.9,0,0
382
+ 5,4,jul,wed,93.7,101.3,458.8,11.9,19.3,39,7.2,0,7.73
383
+ 8,6,aug,thu,90.7,194.1,643,6.8,16.2,63,2.7,0,16.33
384
+ 8,6,aug,wed,95.2,217.7,690,18,28.2,29,1.8,0,5.86
385
+ 9,6,aug,thu,91.6,248.4,753.8,6.3,20.5,58,2.7,0,42.87
386
+ 8,4,aug,sat,91.6,273.8,819.1,7.7,21.3,44,4.5,0,12.18
387
+ 2,4,aug,sun,91.6,181.3,613,7.6,20.9,50,2.2,0,16
388
+ 3,4,sep,sun,90.5,96.7,750.5,11.4,20.6,55,5.4,0,24.59
389
+ 5,5,mar,thu,90.9,18.9,30.6,8,11.6,48,5.4,0,0
390
+ 6,4,aug,fri,94.8,227,706.7,12,23.3,34,3.1,0,28.74
391
+ 7,4,aug,fri,94.8,227,706.7,12,23.3,34,3.1,0,0
392
+ 7,4,feb,mon,84.7,9.5,58.3,4.1,7.5,71,6.3,0,9.96
393
+ 8,6,sep,fri,91.1,91.3,738.1,7.2,20.7,46,2.7,0,30.18
394
+ 1,3,sep,sun,91,276.3,825.1,7.1,21.9,43,4,0,70.76
395
+ 2,4,mar,tue,93.4,15,25.6,11.4,15.2,19,7.6,0,0
396
+ 6,5,feb,mon,84.1,4.6,46.7,2.2,5.3,68,1.8,0,0
397
+ 4,5,feb,sun,85,9,56.9,3.5,10.1,62,1.8,0,51.78
398
+ 4,3,sep,sun,90.5,96.7,750.5,11.4,20.4,55,4.9,0,3.64
399
+ 5,6,aug,sun,91.6,181.3,613,7.6,24.3,33,3.6,0,3.63
400
+ 1,2,aug,sat,93.7,231.1,715.1,8.4,25.9,32,3.1,0,0
401
+ 9,5,jun,wed,93.3,49.5,297.7,14,28,34,4.5,0,0
402
+ 9,5,jun,wed,93.3,49.5,297.7,14,28,34,4.5,0,8.16
403
+ 3,4,sep,thu,91.1,88.2,731.7,8.3,22.8,46,4,0,4.95
404
+ 9,9,aug,fri,94.8,227,706.7,12,25,36,4,0,0
405
+ 8,6,aug,thu,90.7,194.1,643,6.8,21.3,41,3.6,0,0
406
+ 2,4,sep,wed,87.9,84.8,725.1,3.7,21.8,34,2.2,0,6.04
407
+ 2,2,aug,tue,94.6,212.1,680.9,9.5,27.9,27,2.2,0,0
408
+ 6,5,sep,sat,87.1,291.3,860.6,4,17,67,4.9,0,3.95
409
+ 4,5,feb,sat,84.7,8.2,55,2.9,14.2,46,4,0,0
410
+ 4,3,sep,fri,90.3,290,855.3,7.4,19.9,44,3.1,0,7.8
411
+ 1,4,jul,tue,92.3,96.2,450.2,12.1,23.4,31,5.4,0,0
412
+ 6,3,feb,fri,84.1,7.3,52.8,2.7,14.7,42,2.7,0,0
413
+ 7,4,feb,fri,84.6,3.2,43.6,3.3,8.2,53,9.4,0,4.62
414
+ 9,4,jul,mon,92.3,92.1,442.1,9.8,22.8,27,4.5,0,1.63
415
+ 7,5,aug,sat,93.7,231.1,715.1,8.4,26.4,33,3.6,0,0
416
+ 5,4,aug,sun,93.6,235.1,723.1,10.1,24.1,50,4,0,0
417
+ 8,6,aug,thu,94.8,222.4,698.6,13.9,27.5,27,4.9,0,746.28
418
+ 6,3,jul,tue,92.7,164.1,575.8,8.9,26.3,39,3.1,0,7.02
419
+ 6,5,mar,wed,93.4,17.3,28.3,9.9,13.8,24,5.8,0,0
420
+ 2,4,aug,sun,92,203.2,664.5,8.1,24.9,42,5.4,0,2.44
421
+ 2,5,aug,sun,91.6,181.3,613,7.6,24.8,36,4,0,3.05
422
+ 8,8,aug,wed,91.7,191.4,635.9,7.8,26.2,36,4.5,0,185.76
423
+ 2,4,aug,wed,95.2,217.7,690,18,30.8,19,4.5,0,0
424
+ 8,6,jul,sun,88.9,263.1,795.9,5.2,29.3,27,3.6,0,6.3
425
+ 1,3,sep,sat,91.2,94.3,744.4,8.4,22.3,48,4,0,0.72
426
+ 8,6,aug,sat,93.7,231.1,715.1,8.4,26.9,31,3.6,0,4.96
427
+ 2,2,aug,thu,91.6,248.4,753.8,6.3,20.4,56,2.2,0,0
428
+ 8,6,aug,thu,91.6,248.4,753.8,6.3,20.4,56,2.2,0,0
429
+ 2,4,aug,mon,92.1,207,672.6,8.2,27.9,33,2.2,0,2.35
430
+ 1,3,aug,thu,94.8,222.4,698.6,13.9,26.2,34,5.8,0,0
431
+ 3,4,aug,sun,91.6,181.3,613,7.6,24.6,44,4,0,3.2
432
+ 7,4,sep,thu,89.7,287.2,849.3,6.8,19.4,45,3.6,0,0
433
+ 1,3,aug,sat,92.1,178,605.3,9.6,23.3,40,4,0,6.36
434
+ 8,6,aug,thu,94.8,222.4,698.6,13.9,23.9,38,6.7,0,0
435
+ 2,4,aug,sun,93.6,235.1,723.1,10.1,20.9,66,4.9,0,15.34
436
+ 1,4,aug,fri,90.6,269.8,811.2,5.5,22.2,45,3.6,0,0
437
+ 2,5,jul,sat,90.8,84.7,376.6,5.6,23.8,51,1.8,0,0
438
+ 8,6,aug,mon,92.1,207,672.6,8.2,26.8,35,1.3,0,0.54
439
+ 8,6,aug,sat,89.4,253.6,768.4,9.7,14.2,73,2.7,0,0
440
+ 2,5,aug,sat,93.7,231.1,715.1,8.4,23.6,53,4,0,6.43
441
+ 1,3,sep,fri,91.1,91.3,738.1,7.2,19.1,46,2.2,0,0.33
442
+ 5,4,sep,fri,90.3,290,855.3,7.4,16.2,58,3.6,0,0
443
+ 8,6,aug,mon,92.1,207,672.6,8.2,25.5,29,1.8,0,1.23
444
+ 6,5,apr,mon,87.9,24.9,41.6,3.7,10.9,64,3.1,0,3.35
445
+ 1,2,jul,fri,90.7,80.9,368.3,16.8,14.8,78,8,0,0
446
+ 2,5,sep,fri,90.3,290,855.3,7.4,16.2,58,3.6,0,9.96
447
+ 5,5,aug,sun,94,47.9,100.7,10.7,17.3,80,4.5,0,0
448
+ 6,5,aug,sun,92,203.2,664.5,8.1,19.1,70,2.2,0,0
449
+ 3,4,mar,wed,93.4,17.3,28.3,9.9,8.9,35,8,0,0
450
+ 7,4,sep,wed,89.7,284.9,844,10.1,10.5,77,4,0,0
451
+ 7,4,aug,sun,91.6,181.3,613,7.6,19.3,61,4.9,0,0
452
+ 4,5,aug,wed,95.2,217.7,690,18,23.4,49,5.4,0,6.43
453
+ 1,4,aug,fri,90.5,196.8,649.9,16.3,11.8,88,4.9,0,9.71
454
+ 7,4,aug,mon,91.5,238.2,730.6,7.5,17.7,65,4,0,0
455
+ 4,5,aug,thu,89.4,266.2,803.3,5.6,17.4,54,3.1,0,0
456
+ 3,4,aug,thu,91.6,248.4,753.8,6.3,16.8,56,3.1,0,0
457
+ 3,4,jul,mon,94.6,160,567.2,16.7,17.9,48,2.7,0,0
458
+ 2,4,aug,thu,91.6,248.4,753.8,6.3,16.6,59,2.7,0,0
459
+ 1,4,aug,wed,91.7,191.4,635.9,7.8,19.9,50,4,0,82.75
460
+ 8,6,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,3.32
461
+ 7,4,aug,sat,91.6,273.8,819.1,7.7,15.5,72,8,0,1.94
462
+ 2,5,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,0
463
+ 8,6,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,0
464
+ 1,4,sep,sun,91,276.3,825.1,7.1,14.5,76,7.6,0,3.71
465
+ 6,5,feb,tue,75.1,4.4,16.2,1.9,4.6,82,6.3,0,5.39
466
+ 6,4,feb,tue,75.1,4.4,16.2,1.9,5.1,77,5.4,0,2.14
467
+ 2,2,feb,sat,79.5,3.6,15.3,1.8,4.6,59,0.9,0,6.84
468
+ 6,5,mar,mon,87.2,15.1,36.9,7.1,10.2,45,5.8,0,3.18
469
+ 3,4,mar,wed,90.2,18.5,41.1,7.3,11.2,41,5.4,0,5.55
470
+ 6,5,mar,thu,91.3,20.6,43.5,8.5,13.3,27,3.6,0,6.61
471
+ 6,3,apr,sun,91,14.6,25.6,12.3,13.7,33,9.4,0,61.13
472
+ 5,4,apr,sun,91,14.6,25.6,12.3,17.6,27,5.8,0,0
473
+ 4,3,may,fri,89.6,25.4,73.7,5.7,18,40,4,0,38.48
474
+ 8,3,jun,mon,88.2,96.2,229,4.7,14.3,79,4,0,1.94
475
+ 9,4,jun,sat,90.5,61.1,252.6,9.4,24.5,50,3.1,0,70.32
476
+ 4,3,jun,thu,93,103.8,316.7,10.8,26.4,35,2.7,0,10.08
477
+ 2,5,jun,thu,93.7,121.7,350.2,18,22.7,40,9.4,0,3.19
478
+ 4,3,jul,thu,93.5,85.3,395,9.9,27.2,28,1.3,0,1.76
479
+ 4,3,jul,sun,93.7,101.3,423.4,14.7,26.1,45,4,0,7.36
480
+ 7,4,jul,sun,93.7,101.3,423.4,14.7,18.2,82,4.5,0,2.21
481
+ 7,4,jul,mon,89.2,103.9,431.6,6.4,22.6,57,4.9,0,278.53
482
+ 9,9,jul,thu,93.2,114.4,560,9.5,30.2,25,4.5,0,2.75
483
+ 4,3,jul,thu,93.2,114.4,560,9.5,30.2,22,4.9,0,0
484
+ 3,4,aug,sun,94.9,130.3,587.1,14.1,23.4,40,5.8,0,1.29
485
+ 8,6,aug,sun,94.9,130.3,587.1,14.1,31,27,5.4,0,0
486
+ 2,5,aug,sun,94.9,130.3,587.1,14.1,33.1,25,4,0,26.43
487
+ 2,4,aug,mon,95,135.5,596.3,21.3,30.6,28,3.6,0,2.07
488
+ 5,4,aug,tue,95.1,141.3,605.8,17.7,24.1,43,6.3,0,2
489
+ 5,4,aug,tue,95.1,141.3,605.8,17.7,26.4,34,3.6,0,16.4
490
+ 4,4,aug,tue,95.1,141.3,605.8,17.7,19.4,71,7.6,0,46.7
491
+ 4,4,aug,wed,95.1,141.3,605.8,17.7,20.6,58,1.3,0,0
492
+ 4,4,aug,wed,95.1,141.3,605.8,17.7,28.7,33,4,0,0
493
+ 4,4,aug,thu,95.8,152,624.1,13.8,32.4,21,4.5,0,0
494
+ 1,3,aug,fri,95.9,158,633.6,11.3,32.4,27,2.2,0,0
495
+ 1,3,aug,fri,95.9,158,633.6,11.3,27.5,29,4.5,0,43.32
496
+ 6,6,aug,sat,96,164,643,14,30.8,30,4.9,0,8.59
497
+ 6,6,aug,mon,96.2,175.5,661.8,16.8,23.9,42,2.2,0,0
498
+ 4,5,aug,mon,96.2,175.5,661.8,16.8,32.6,26,3.1,0,2.77
499
+ 3,4,aug,tue,96.1,181.1,671.2,14.3,32.3,27,2.2,0,14.68
500
+ 6,5,aug,tue,96.1,181.1,671.2,14.3,33.3,26,2.7,0,40.54
501
+ 7,5,aug,tue,96.1,181.1,671.2,14.3,27.3,63,4.9,6.4,10.82
502
+ 8,6,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0
503
+ 7,5,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0
504
+ 4,4,aug,tue,96.1,181.1,671.2,14.3,20.7,69,4.9,0.4,0
505
+ 2,4,aug,wed,94.5,139.4,689.1,20,29.2,30,4.9,0,1.95
506
+ 4,3,aug,wed,94.5,139.4,689.1,20,28.9,29,4.9,0,49.59
507
+ 1,2,aug,thu,91,163.2,744.4,10.1,26.7,35,1.8,0,5.8
508
+ 1,2,aug,fri,91,166.9,752.6,7.1,18.5,73,8.5,0,0
509
+ 2,4,aug,fri,91,166.9,752.6,7.1,25.9,41,3.6,0,0
510
+ 1,2,aug,fri,91,166.9,752.6,7.1,25.9,41,3.6,0,0
511
+ 5,4,aug,fri,91,166.9,752.6,7.1,21.1,71,7.6,1.4,2.17
512
+ 6,5,aug,fri,91,166.9,752.6,7.1,18.2,62,5.4,0,0.43
513
+ 8,6,aug,sun,81.6,56.7,665.6,1.9,27.8,35,2.7,0,0
514
+ 4,3,aug,sun,81.6,56.7,665.6,1.9,27.8,32,2.7,0,6.44
515
+ 2,4,aug,sun,81.6,56.7,665.6,1.9,21.9,71,5.8,0,54.29
516
+ 7,4,aug,sun,81.6,56.7,665.6,1.9,21.2,70,6.7,0,11.16
517
+ 1,4,aug,sat,94.4,146,614.7,11.3,25.6,42,4,0,0
518
+ 6,3,nov,tue,79.5,3,106.7,1.1,11.8,31,4.5,0,0
datasets/slump_test.data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ No,Cement,Slag,Fly ash,Water,SP,Coarse Aggr.,Fine Aggr.,SLUMP(cm),FLOW(cm),Compressive Strength (28-day)(Mpa)
2
+ 1,273,82,105,210,9,904,680,23,62,34.99
3
+ 2,163,149,191,180,12,843,746,0,20,41.14
4
+ 3,162,148,191,179,16,840,743,1,20,41.81
5
+ 4,162,148,190,179,19,838,741,3,21.5,42.08
6
+ 5,154,112,144,220,10,923,658,20,64,26.82
7
+ 6,147,89,115,202,9,860,829,23,55,25.21
8
+ 7,152,139,178,168,18,944,695,0,20,38.86
9
+ 8,145,0,227,240,6,750,853,14.5,58.5,36.59
10
+ 9,152,0,237,204,6,785,892,15.5,51,32.71
11
+ 10,304,0,140,214,6,895,722,19,51,38.46
12
+ 11,145,106,136,208,10,751,883,24.5,61,26.02
13
+ 12,148,109,139,193,7,768,902,23.75,58,28.03
14
+ 13,142,130,167,215,6,735,836,25.5,67,31.37
15
+ 14,354,0,0,234,6,959,691,17,54,33.91
16
+ 15,374,0,0,190,7,1013,730,14.5,42.5,32.44
17
+ 16,159,116,149,175,15,953,720,23.5,54.5,34.05
18
+ 17,153,0,239,200,6,1002,684,12,35,28.29
19
+ 18,295,106,136,206,11,750,766,25,68.5,41.01
20
+ 19,310,0,143,168,10,914,804,20.5,48.2,49.3
21
+ 20,296,97,0,219,9,932,685,15,48.5,29.23
22
+ 21,305,100,0,196,10,959,705,20,49,29.77
23
+ 22,310,0,143,218,10,787,804,13,46,36.19
24
+ 23,148,180,0,183,11,972,757,0,20,18.52
25
+ 24,146,178,0,192,11,961,749,18,46,17.19
26
+ 25,142,130,167,174,11,883,785,0,20,36.72
27
+ 26,140,128,164,183,12,871,775,23.75,53,33.38
28
+ 27,308,111,142,217,10,783,686,25,70,42.08
29
+ 28,295,106,136,208,6,871,650,26.5,70,39.4
30
+ 29,298,107,137,201,6,878,655,16,26,41.27
31
+ 30,314,0,161,207,6,851,757,21.5,64,41.14
32
+ 31,321,0,164,190,5,870,774,24,60,45.82
33
+ 32,349,0,178,230,6,785,721,20,68.5,43.95
34
+ 33,366,0,187,191,7,824,757,24.75,62.7,52.65
35
+ 34,274,89,115,202,9,759,827,26.5,68,35.52
36
+ 35,137,167,214,226,6,708,757,27.5,70,34.45
37
+ 36,275,99,127,184,13,810,790,25.75,64.5,43.54
38
+ 37,252,76,97,194,8,835,821,23,54,33.11
39
+ 38,165,150,0,182,12,1023,729,14.5,20,18.26
40
+ 39,158,0,246,174,7,1035,706,19,43,34.99
41
+ 40,156,0,243,180,11,1022,698,21,57,33.78
42
+ 41,145,177,227,209,11,752,715,2.5,20,35.66
43
+ 42,154,141,181,234,11,797,683,23,65,33.51
44
+ 43,160,146,188,203,11,829,710,13,38,33.51
45
+ 44,291,105,0,205,6,859,797,24,59,27.62
46
+ 45,298,107,0,186,6,879,815,3,20,30.97
47
+ 46,318,126,0,210,6,861,737,17.5,48,31.77
48
+ 47,280,92,118,207,9,883,679,25.5,64,37.39
49
+ 48,287,94,121,188,9,904,696,25,61,43.01
50
+ 49,332,0,170,160,6,900,806,0,20,58.53
51
+ 50,326,0,167,174,6,884,792,21.5,42,52.65
52
+ 51,320,0,163,188,9,866,776,23.5,60,45.69
53
+ 52,342,136,0,225,11,770,747,21,61,32.04
54
+ 53,356,142,0,193,11,801,778,8,30,36.46
55
+ 54,309,0,142,218,10,912,680,24,62,38.59
56
+ 55,322,0,149,186,8,951,709,20.5,61.5,45.42
57
+ 56,159,193,0,208,12,821,818,23,50,19.19
58
+ 57,307,110,0,189,10,904,765,22,40,31.5
59
+ 58,313,124,0,205,11,846,758,22,49,29.63
60
+ 59,143,131,168,217,6,891,672,25,69,26.42
61
+ 60,140,128,164,237,6,869,656,24,65,29.5
62
+ 61,278,0,117,205,9,875,799,19,48,32.71
63
+ 62,288,0,121,177,7,908,829,22.5,48.5,39.93
64
+ 63,299,107,0,210,10,881,745,25,63,28.29
65
+ 64,291,104,0,231,9,857,725,23,69,30.43
66
+ 65,265,86,111,195,6,833,790,27,60,37.39
67
+ 66,159,0,248,175,12,1041,683,21,51,35.39
68
+ 67,160,0,250,168,12,1049,688,18,48,37.66
69
+ 68,166,0,260,183,13,859,827,21,54,40.34
70
+ 69,320,127,164,211,6,721,723,2,20,46.36
71
+ 70,336,134,0,222,6,756,787,26,64,31.9
72
+ 71,276,90,116,180,9,870,768,0,20,44.08
73
+ 72,313,112,0,220,10,794,789,23,58,28.16
74
+ 73,322,116,0,196,10,818,813,25.5,67,29.77
75
+ 74,294,106,136,207,6,747,778,24,47,41.27
76
+ 75,146,106,137,209,6,875,765,24,67,27.89
77
+ 76,149,109,139,193,6,892,780,23.5,58.5,28.7
78
+ 77,159,0,187,176,11,990,789,12,39,32.57
79
+ 78,261,78,100,201,9,864,761,23,63.5,34.18
80
+ 79,140,1.4,198.1,174.9,4.4,1049.9,780.5,16.25,31,30.83
81
+ 80,141.1,0.6,209.5,188.8,4.6,996.1,789.2,23.5,53,30.43
82
+ 81,140.1,4.2,215.9,193.9,4.7,1049.5,710.1,24.5,57,26.42
83
+ 82,140.1,11.8,226.1,207.8,4.9,1020.9,683.8,21,64,26.28
84
+ 83,160.2,0.3,240,233.5,9.2,781,841.1,24,75,36.19
85
+ 84,140.2,30.5,239,169.4,5.3,1028.4,742.7,21.25,46,36.32
86
+ 85,140.2,44.8,234.9,171.3,5.5,1047.6,704,23.5,52.5,33.78
87
+ 86,140.5,61.1,238.9,182.5,5.7,1017.7,681.4,24.5,60,30.97
88
+ 87,143.3,91.8,239.8,200.8,6.2,964.8,647.1,25,55,27.09
89
+ 88,194.3,0.3,240,234.2,8.9,780.6,811.3,26.5,78,38.46
90
+ 89,150.4,110.9,239.7,168.1,6.5,1000.2,667.2,9.5,27.5,37.92
91
+ 90,150.3,111.4,238.8,167.3,6.5,999.5,670.5,14.5,36.5,38.19
92
+ 91,155.4,122.1,240,179.9,6.7,966.8,652.5,14.5,41.5,35.52
93
+ 92,165.3,143.2,238.3,200.4,7.1,883.2,652.6,17,27,32.84
94
+ 93,303.8,0.2,239.8,236.4,8.3,780.1,715.3,25,78,44.48
95
+ 94,172,162.1,238.5,166,7.4,953.3,641.4,0,20,41.54
96
+ 95,172.8,158.3,239.5,166.4,7.4,952.6,644.1,0,20,41.81
97
+ 96,184.3,153.4,239.2,179,7.5,920.2,640.9,0,20,41.01
98
+ 97,215.6,112.9,239,198.7,7.4,884,649.1,27.5,64,39.13
99
+ 98,295.3,0,239.9,236.2,8.3,780.3,722.9,25,77,44.08
100
+ 99,248.3,101,239.1,168.9,7.7,954.2,640.6,0,20,49.97
101
+ 100,248,101,239.9,169.1,7.7,949.9,644.1,2,20,50.23
102
+ 101,258.8,88,239.6,175.3,7.6,938.9,646,0,20,50.5
103
+ 102,297.1,40.9,239.9,194,7.5,908.9,651.8,27.5,67,49.17
104
+ 103,348.7,0.1,223.1,208.5,9.6,786.2,758.1,29,78,48.77
datasets/traffic_flow_forecasting/Traffic Flow Prediction Dataset.docx ADDED
Binary file (16.8 kB). View file
 
datasets/traffic_flow_forecasting/traffic_dataset.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a3f8b443fd48e2d687d3169d95ac68b6bc31999343b1885eadb787d3aaedbc
3
+ size 4401723
datasets/yacht_hydrodynamics.data ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -2.3 0.568 4.78 3.99 3.17 0.125 0.11
2
+ -2.3 0.568 4.78 3.99 3.17 0.150 0.27
3
+ -2.3 0.568 4.78 3.99 3.17 0.175 0.47
4
+ -2.3 0.568 4.78 3.99 3.17 0.200 0.78
5
+ -2.3 0.568 4.78 3.99 3.17 0.225 1.18
6
+ -2.3 0.568 4.78 3.99 3.17 0.250 1.82
7
+ -2.3 0.568 4.78 3.99 3.17 0.275 2.61
8
+ -2.3 0.568 4.78 3.99 3.17 0.300 3.76
9
+ -2.3 0.568 4.78 3.99 3.17 0.325 4.99
10
+ -2.3 0.568 4.78 3.99 3.17 0.350 7.16
11
+ -2.3 0.568 4.78 3.99 3.17 0.375 11.93
12
+ -2.3 0.568 4.78 3.99 3.17 0.400 20.11
13
+ -2.3 0.568 4.78 3.99 3.17 0.425 32.75
14
+ -2.3 0.568 4.78 3.99 3.17 0.450 49.49
15
+ -2.3 0.569 4.78 3.04 3.64 0.125 0.04
16
+ -2.3 0.569 4.78 3.04 3.64 0.150 0.17
17
+ -2.3 0.569 4.78 3.04 3.64 0.175 0.37
18
+ -2.3 0.569 4.78 3.04 3.64 0.200 0.66
19
+ -2.3 0.569 4.78 3.04 3.64 0.225 1.06
20
+ -2.3 0.569 4.78 3.04 3.64 0.250 1.59
21
+ -2.3 0.569 4.78 3.04 3.64 0.275 2.33
22
+ -2.3 0.569 4.78 3.04 3.64 0.300 3.29
23
+ -2.3 0.569 4.78 3.04 3.64 0.325 4.61
24
+ -2.3 0.569 4.78 3.04 3.64 0.350 7.11
25
+ -2.3 0.569 4.78 3.04 3.64 0.375 11.99
26
+ -2.3 0.569 4.78 3.04 3.64 0.400 21.09
27
+ -2.3 0.569 4.78 3.04 3.64 0.425 35.01
28
+ -2.3 0.569 4.78 3.04 3.64 0.450 51.80
29
+ -2.3 0.565 4.78 5.35 2.76 0.125 0.09
30
+ -2.3 0.565 4.78 5.35 2.76 0.150 0.29
31
+ -2.3 0.565 4.78 5.35 2.76 0.175 0.56
32
+ -2.3 0.565 4.78 5.35 2.76 0.200 0.86
33
+ -2.3 0.565 4.78 5.35 2.76 0.225 1.31
34
+ -2.3 0.565 4.78 5.35 2.76 0.250 1.99
35
+ -2.3 0.565 4.78 5.35 2.76 0.275 2.94
36
+ -2.3 0.565 4.78 5.35 2.76 0.300 4.21
37
+ -2.3 0.565 4.78 5.35 2.76 0.325 5.54
38
+ -2.3 0.565 4.78 5.35 2.76 0.350 8.25
39
+ -2.3 0.565 4.78 5.35 2.76 0.375 13.08
40
+ -2.3 0.565 4.78 5.35 2.76 0.400 21.40
41
+ -2.3 0.565 4.78 5.35 2.76 0.425 33.14
42
+ -2.3 0.565 4.78 5.35 2.76 0.450 50.14
43
+ -2.3 0.564 5.10 3.95 3.53 0.125 0.20
44
+ -2.3 0.564 5.10 3.95 3.53 0.150 0.35
45
+ -2.3 0.564 5.10 3.95 3.53 0.175 0.65
46
+ -2.3 0.564 5.10 3.95 3.53 0.200 0.93
47
+ -2.3 0.564 5.10 3.95 3.53 0.225 1.37
48
+ -2.3 0.564 5.10 3.95 3.53 0.250 1.97
49
+ -2.3 0.564 5.10 3.95 3.53 0.275 2.83
50
+ -2.3 0.564 5.10 3.95 3.53 0.300 3.99
51
+ -2.3 0.564 5.10 3.95 3.53 0.325 5.19
52
+ -2.3 0.564 5.10 3.95 3.53 0.350 8.03
53
+ -2.3 0.564 5.10 3.95 3.53 0.375 12.86
54
+ -2.3 0.564 5.10 3.95 3.53 0.400 21.51
55
+ -2.3 0.564 5.10 3.95 3.53 0.425 33.97
56
+ -2.3 0.564 5.10 3.95 3.53 0.450 50.36
57
+ -2.4 0.574 4.36 3.96 2.76 0.125 0.20
58
+ -2.4 0.574 4.36 3.96 2.76 0.150 0.35
59
+ -2.4 0.574 4.36 3.96 2.76 0.175 0.65
60
+ -2.4 0.574 4.36 3.96 2.76 0.200 0.93
61
+ -2.4 0.574 4.36 3.96 2.76 0.225 1.37
62
+ -2.4 0.574 4.36 3.96 2.76 0.250 1.97
63
+ -2.4 0.574 4.36 3.96 2.76 0.275 2.83
64
+ -2.4 0.574 4.36 3.96 2.76 0.300 3.99
65
+ -2.4 0.574 4.36 3.96 2.76 0.325 5.19
66
+ -2.4 0.574 4.36 3.96 2.76 0.350 8.03
67
+ -2.4 0.574 4.36 3.96 2.76 0.375 12.86
68
+ -2.4 0.574 4.36 3.96 2.76 0.400 21.51
69
+ -2.4 0.574 4.36 3.96 2.76 0.425 33.97
70
+ -2.4 0.574 4.36 3.96 2.76 0.450 50.36
71
+ -2.4 0.568 4.34 2.98 3.15 0.125 0.12
72
+ -2.4 0.568 4.34 2.98 3.15 0.150 0.26
73
+ -2.4 0.568 4.34 2.98 3.15 0.175 0.43
74
+ -2.4 0.568 4.34 2.98 3.15 0.200 0.69
75
+ -2.4 0.568 4.34 2.98 3.15 0.225 1.09
76
+ -2.4 0.568 4.34 2.98 3.15 0.250 1.67
77
+ -2.4 0.568 4.34 2.98 3.15 0.275 2.46
78
+ -2.4 0.568 4.34 2.98 3.15 0.300 3.43
79
+ -2.4 0.568 4.34 2.98 3.15 0.325 4.62
80
+ -2.4 0.568 4.34 2.98 3.15 0.350 6.86
81
+ -2.4 0.568 4.34 2.98 3.15 0.375 11.56
82
+ -2.4 0.568 4.34 2.98 3.15 0.400 20.63
83
+ -2.4 0.568 4.34 2.98 3.15 0.425 34.50
84
+ -2.4 0.568 4.34 2.98 3.15 0.450 54.23
85
+ -2.3 0.562 5.14 4.95 3.17 0.125 0.28
86
+ -2.3 0.562 5.14 4.95 3.17 0.150 0.44
87
+ -2.3 0.562 5.14 4.95 3.17 0.175 0.70
88
+ -2.3 0.562 5.14 4.95 3.17 0.200 1.07
89
+ -2.3 0.562 5.14 4.95 3.17 0.225 1.57
90
+ -2.3 0.562 5.14 4.95 3.17 0.250 2.23
91
+ -2.3 0.562 5.14 4.95 3.17 0.275 3.09
92
+ -2.3 0.562 5.14 4.95 3.17 0.300 4.09
93
+ -2.3 0.562 5.14 4.95 3.17 0.325 5.82
94
+ -2.3 0.562 5.14 4.95 3.17 0.350 8.28
95
+ -2.3 0.562 5.14 4.95 3.17 0.375 12.80
96
+ -2.3 0.562 5.14 4.95 3.17 0.400 20.41
97
+ -2.3 0.562 5.14 4.95 3.17 0.425 32.34
98
+ -2.3 0.562 5.14 4.95 3.17 0.450 47.29
99
+ -2.4 0.585 4.78 3.84 3.32 0.125 0.20
100
+ -2.4 0.585 4.78 3.84 3.32 0.150 0.38
101
+ -2.4 0.585 4.78 3.84 3.32 0.175 0.64
102
+ -2.4 0.585 4.78 3.84 3.32 0.200 0.97
103
+ -2.4 0.585 4.78 3.84 3.32 0.225 1.36
104
+ -2.4 0.585 4.78 3.84 3.32 0.250 1.98
105
+ -2.4 0.585 4.78 3.84 3.32 0.275 2.91
106
+ -2.4 0.585 4.78 3.84 3.32 0.300 4.35
107
+ -2.4 0.585 4.78 3.84 3.32 0.325 5.79
108
+ -2.4 0.585 4.78 3.84 3.32 0.350 8.04
109
+ -2.4 0.585 4.78 3.84 3.32 0.375 12.15
110
+ -2.4 0.585 4.78 3.84 3.32 0.400 19.18
111
+ -2.4 0.585 4.78 3.84 3.32 0.425 30.09
112
+ -2.4 0.585 4.78 3.84 3.32 0.450 44.38
113
+ -2.2 0.546 4.78 4.13 3.07 0.125 0.15
114
+ -2.2 0.546 4.78 4.13 3.07 0.150 0.32
115
+ -2.2 0.546 4.78 4.13 3.07 0.175 0.55
116
+ -2.2 0.546 4.78 4.13 3.07 0.200 0.86
117
+ -2.2 0.546 4.78 4.13 3.07 0.225 1.24
118
+ -2.2 0.546 4.78 4.13 3.07 0.250 1.76
119
+ -2.2 0.546 4.78 4.13 3.07 0.275 2.49
120
+ -2.2 0.546 4.78 4.13 3.07 0.300 3.45
121
+ -2.2 0.546 4.78 4.13 3.07 0.325 4.83
122
+ -2.2 0.546 4.78 4.13 3.07 0.350 7.37
123
+ -2.2 0.546 4.78 4.13 3.07 0.375 12.76
124
+ -2.2 0.546 4.78 4.13 3.07 0.400 21.99
125
+ -2.2 0.546 4.78 4.13 3.07 0.425 35.64
126
+ -2.2 0.546 4.78 4.13 3.07 0.450 53.07
127
+ 0.0 0.565 4.77 3.99 3.15 0.125 0.11
128
+ 0.0 0.565 4.77 3.99 3.15 0.150 0.24
129
+ 0.0 0.565 4.77 3.99 3.15 0.175 0.49
130
+ 0.0 0.565 4.77 3.99 3.15 0.200 0.79
131
+ 0.0 0.565 4.77 3.99 3.15 0.225 1.28
132
+ 0.0 0.565 4.77 3.99 3.15 0.250 1.96
133
+ 0.0 0.565 4.77 3.99 3.15 0.275 2.88
134
+ 0.0 0.565 4.77 3.99 3.15 0.300 4.14
135
+ 0.0 0.565 4.77 3.99 3.15 0.325 5.96
136
+ 0.0 0.565 4.77 3.99 3.15 0.350 9.07
137
+ 0.0 0.565 4.77 3.99 3.15 0.375 14.93
138
+ 0.0 0.565 4.77 3.99 3.15 0.400 24.13
139
+ 0.0 0.565 4.77 3.99 3.15 0.425 38.12
140
+ 0.0 0.565 4.77 3.99 3.15 0.450 55.44
141
+ -5.0 0.565 4.77 3.99 3.15 0.125 0.07
142
+ -5.0 0.565 4.77 3.99 3.15 0.150 0.18
143
+ -5.0 0.565 4.77 3.99 3.15 0.175 0.40
144
+ -5.0 0.565 4.77 3.99 3.15 0.200 0.70
145
+ -5.0 0.565 4.77 3.99 3.15 0.225 1.14
146
+ -5.0 0.565 4.77 3.99 3.15 0.250 1.83
147
+ -5.0 0.565 4.77 3.99 3.15 0.275 2.77
148
+ -5.0 0.565 4.77 3.99 3.15 0.300 4.12
149
+ -5.0 0.565 4.77 3.99 3.15 0.325 5.41
150
+ -5.0 0.565 4.77 3.99 3.15 0.350 7.87
151
+ -5.0 0.565 4.77 3.99 3.15 0.375 12.71
152
+ -5.0 0.565 4.77 3.99 3.15 0.400 21.02
153
+ -5.0 0.565 4.77 3.99 3.15 0.425 34.58
154
+ -5.0 0.565 4.77 3.99 3.15 0.450 51.77
155
+ 0.0 0.565 5.10 3.94 3.51 0.125 0.08
156
+ 0.0 0.565 5.10 3.94 3.51 0.150 0.26
157
+ 0.0 0.565 5.10 3.94 3.51 0.175 0.50
158
+ 0.0 0.565 5.10 3.94 3.51 0.200 0.83
159
+ 0.0 0.565 5.10 3.94 3.51 0.225 1.28
160
+ 0.0 0.565 5.10 3.94 3.51 0.250 1.90
161
+ 0.0 0.565 5.10 3.94 3.51 0.275 2.68
162
+ 0.0 0.565 5.10 3.94 3.51 0.300 3.76
163
+ 0.0 0.565 5.10 3.94 3.51 0.325 5.57
164
+ 0.0 0.565 5.10 3.94 3.51 0.350 8.76
165
+ 0.0 0.565 5.10 3.94 3.51 0.375 14.24
166
+ 0.0 0.565 5.10 3.94 3.51 0.400 23.05
167
+ 0.0 0.565 5.10 3.94 3.51 0.425 35.46
168
+ 0.0 0.565 5.10 3.94 3.51 0.450 51.99
169
+ -5.0 0.565 5.10 3.94 3.51 0.125 0.08
170
+ -5.0 0.565 5.10 3.94 3.51 0.150 0.24
171
+ -5.0 0.565 5.10 3.94 3.51 0.175 0.45
172
+ -5.0 0.565 5.10 3.94 3.51 0.200 0.77
173
+ -5.0 0.565 5.10 3.94 3.51 0.225 1.19
174
+ -5.0 0.565 5.10 3.94 3.51 0.250 1.76
175
+ -5.0 0.565 5.10 3.94 3.51 0.275 2.59
176
+ -5.0 0.565 5.10 3.94 3.51 0.300 3.85
177
+ -5.0 0.565 5.10 3.94 3.51 0.325 5.27
178
+ -5.0 0.565 5.10 3.94 3.51 0.350 7.74
179
+ -5.0 0.565 5.10 3.94 3.51 0.375 12.40
180
+ -5.0 0.565 5.10 3.94 3.51 0.400 20.91
181
+ -5.0 0.565 5.10 3.94 3.51 0.425 33.23
182
+ -5.0 0.565 5.10 3.94 3.51 0.450 49.14
183
+ -2.3 0.530 5.11 3.69 3.51 0.125 0.08
184
+ -2.3 0.530 5.11 3.69 3.51 0.150 0.25
185
+ -2.3 0.530 5.11 3.69 3.51 0.175 0.46
186
+ -2.3 0.530 5.11 3.69 3.51 0.200 0.75
187
+ -2.3 0.530 5.11 3.69 3.51 0.225 1.11
188
+ -2.3 0.530 5.11 3.69 3.51 0.250 1.57
189
+ -2.3 0.530 5.11 3.69 3.51 0.275 2.17
190
+ -2.3 0.530 5.11 3.69 3.51 0.300 2.98
191
+ -2.3 0.530 5.11 3.69 3.51 0.325 4.42
192
+ -2.3 0.530 5.11 3.69 3.51 0.350 7.84
193
+ -2.3 0.530 5.11 3.69 3.51 0.375 14.11
194
+ -2.3 0.530 5.11 3.69 3.51 0.400 24.14
195
+ -2.3 0.530 5.11 3.69 3.51 0.425 37.95
196
+ -2.3 0.530 5.11 3.69 3.51 0.450 55.17
197
+ -2.3 0.530 4.76 3.68 3.16 0.125 0.10
198
+ -2.3 0.530 4.76 3.68 3.16 0.150 0.23
199
+ -2.3 0.530 4.76 3.68 3.16 0.175 0.47
200
+ -2.3 0.530 4.76 3.68 3.16 0.200 0.76
201
+ -2.3 0.530 4.76 3.68 3.16 0.225 1.15
202
+ -2.3 0.530 4.76 3.68 3.16 0.250 1.65
203
+ -2.3 0.530 4.76 3.68 3.16 0.275 2.28
204
+ -2.3 0.530 4.76 3.68 3.16 0.300 3.09
205
+ -2.3 0.530 4.76 3.68 3.16 0.325 4.41
206
+ -2.3 0.530 4.76 3.68 3.16 0.350 7.51
207
+ -2.3 0.530 4.76 3.68 3.16 0.375 13.77
208
+ -2.3 0.530 4.76 3.68 3.16 0.400 23.96
209
+ -2.3 0.530 4.76 3.68 3.16 0.425 37.38
210
+ -2.3 0.530 4.76 3.68 3.16 0.450 56.46
211
+ -2.3 0.530 4.34 2.81 3.15 0.125 0.05
212
+ -2.3 0.530 4.34 2.81 3.15 0.150 0.17
213
+ -2.3 0.530 4.34 2.81 3.15 0.175 0.35
214
+ -2.3 0.530 4.34 2.81 3.15 0.200 0.63
215
+ -2.3 0.530 4.34 2.81 3.15 0.225 1.01
216
+ -2.3 0.530 4.34 2.81 3.15 0.250 1.43
217
+ -2.3 0.530 4.34 2.81 3.15 0.275 2.05
218
+ -2.3 0.530 4.34 2.81 3.15 0.300 2.73
219
+ -2.3 0.530 4.34 2.81 3.15 0.325 3.87
220
+ -2.3 0.530 4.34 2.81 3.15 0.350 7.19
221
+ -2.3 0.530 4.34 2.81 3.15 0.375 13.96
222
+ -2.3 0.530 4.34 2.81 3.15 0.400 25.18
223
+ -2.3 0.530 4.34 2.81 3.15 0.425 41.34
224
+ -2.3 0.530 4.34 2.81 3.15 0.450 62.42
225
+ 0.0 0.600 4.78 4.24 3.15 0.125 0.03
226
+ 0.0 0.600 4.78 4.24 3.15 0.150 0.18
227
+ 0.0 0.600 4.78 4.24 3.15 0.175 0.40
228
+ 0.0 0.600 4.78 4.24 3.15 0.200 0.73
229
+ 0.0 0.600 4.78 4.24 3.15 0.225 1.30
230
+ 0.0 0.600 4.78 4.24 3.15 0.250 2.16
231
+ 0.0 0.600 4.78 4.24 3.15 0.275 3.35
232
+ 0.0 0.600 4.78 4.24 3.15 0.300 5.06
233
+ 0.0 0.600 4.78 4.24 3.15 0.325 7.14
234
+ 0.0 0.600 4.78 4.24 3.15 0.350 10.36
235
+ 0.0 0.600 4.78 4.24 3.15 0.375 15.25
236
+ 0.0 0.600 4.78 4.24 3.15 0.400 23.15
237
+ 0.0 0.600 4.78 4.24 3.15 0.425 34.62
238
+ 0.0 0.600 4.78 4.24 3.15 0.450 51.50
239
+ -5.0 0.600 4.78 4.24 3.15 0.125 0.06
240
+ -5.0 0.600 4.78 4.24 3.15 0.150 0.15
241
+ -5.0 0.600 4.78 4.24 3.15 0.175 0.34
242
+ -5.0 0.600 4.78 4.24 3.15 0.200 0.63
243
+ -5.0 0.600 4.78 4.24 3.15 0.225 1.13
244
+ -5.0 0.600 4.78 4.24 3.15 0.250 1.85
245
+ -5.0 0.600 4.78 4.24 3.15 0.275 2.84
246
+ -5.0 0.600 4.78 4.24 3.15 0.300 4.34
247
+ -5.0 0.600 4.78 4.24 3.15 0.325 6.20
248
+ -5.0 0.600 4.78 4.24 3.15 0.350 8.62
249
+ -5.0 0.600 4.78 4.24 3.15 0.375 12.49
250
+ -5.0 0.600 4.78 4.24 3.15 0.400 20.41
251
+ -5.0 0.600 4.78 4.24 3.15 0.425 32.46
252
+ -5.0 0.600 4.78 4.24 3.15 0.450 50.94
253
+ 0.0 0.530 4.78 3.75 3.15 0.125 0.16
254
+ 0.0 0.530 4.78 3.75 3.15 0.150 0.32
255
+ 0.0 0.530 4.78 3.75 3.15 0.175 0.59
256
+ 0.0 0.530 4.78 3.75 3.15 0.200 0.92
257
+ 0.0 0.530 4.78 3.75 3.15 0.225 1.37
258
+ 0.0 0.530 4.78 3.75 3.15 0.250 1.94
259
+ 0.0 0.530 4.78 3.75 3.15 0.275 2.62
260
+ 0.0 0.530 4.78 3.75 3.15 0.300 3.70
261
+ 0.0 0.530 4.78 3.75 3.15 0.325 5.45
262
+ 0.0 0.530 4.78 3.75 3.15 0.350 9.45
263
+ 0.0 0.530 4.78 3.75 3.15 0.375 16.31
264
+ 0.0 0.530 4.78 3.75 3.15 0.400 27.34
265
+ 0.0 0.530 4.78 3.75 3.15 0.425 41.77
266
+ 0.0 0.530 4.78 3.75 3.15 0.450 60.85
267
+ -5.0 0.530 4.78 3.75 3.15 0.125 0.09
268
+ -5.0 0.530 4.78 3.75 3.15 0.150 0.24
269
+ -5.0 0.530 4.78 3.75 3.15 0.175 0.47
270
+ -5.0 0.530 4.78 3.75 3.15 0.200 0.78
271
+ -5.0 0.530 4.78 3.75 3.15 0.225 1.21
272
+ -5.0 0.530 4.78 3.75 3.15 0.250 1.85
273
+ -5.0 0.530 4.78 3.75 3.15 0.275 2.62
274
+ -5.0 0.530 4.78 3.75 3.15 0.300 3.69
275
+ -5.0 0.530 4.78 3.75 3.15 0.325 5.07
276
+ -5.0 0.530 4.78 3.75 3.15 0.350 7.95
277
+ -5.0 0.530 4.78 3.75 3.15 0.375 13.73
278
+ -5.0 0.530 4.78 3.75 3.15 0.400 23.55
279
+ -5.0 0.530 4.78 3.75 3.15 0.425 37.14
280
+ -5.0 0.530 4.78 3.75 3.15 0.450 55.87
281
+ -2.3 0.600 5.10 4.17 3.51 0.125 0.01
282
+ -2.3 0.600 5.10 4.17 3.51 0.150 0.16
283
+ -2.3 0.600 5.10 4.17 3.51 0.175 0.39
284
+ -2.3 0.600 5.10 4.17 3.51 0.200 0.73
285
+ -2.3 0.600 5.10 4.17 3.51 0.225 1.24
286
+ -2.3 0.600 5.10 4.17 3.51 0.250 1.96
287
+ -2.3 0.600 5.10 4.17 3.51 0.275 3.04
288
+ -2.3 0.600 5.10 4.17 3.51 0.300 4.46
289
+ -2.3 0.600 5.10 4.17 3.51 0.325 6.31
290
+ -2.3 0.600 5.10 4.17 3.51 0.350 8.68
291
+ -2.3 0.600 5.10 4.17 3.51 0.375 12.39
292
+ -2.3 0.600 5.10 4.17 3.51 0.400 20.14
293
+ -2.3 0.600 5.10 4.17 3.51 0.425 31.77
294
+ -2.3 0.600 5.10 4.17 3.51 0.450 47.13
295
+ -2.3 0.600 4.34 4.23 2.73 0.125 0.04
296
+ -2.3 0.600 4.34 4.23 2.73 0.150 0.17
297
+ -2.3 0.600 4.34 4.23 2.73 0.175 0.36
298
+ -2.3 0.600 4.34 4.23 2.73 0.200 0.64
299
+ -2.3 0.600 4.34 4.23 2.73 0.225 1.02
300
+ -2.3 0.600 4.34 4.23 2.73 0.250 1.62
301
+ -2.3 0.600 4.34 4.23 2.73 0.275 2.63
302
+ -2.3 0.600 4.34 4.23 2.73 0.300 4.15
303
+ -2.3 0.600 4.34 4.23 2.73 0.325 6.00
304
+ -2.3 0.600 4.34 4.23 2.73 0.350 8.47
305
+ -2.3 0.600 4.34 4.23 2.73 0.375 12.27
306
+ -2.3 0.600 4.34 4.23 2.73 0.400 19.59
307
+ -2.3 0.600 4.34 4.23 2.73 0.425 30.48
308
+ -2.3 0.600 4.34 4.23 2.73 0.450 46.66
309
+
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ pandas
3
+ scikit-learn
4
+ pandas
5
+ matplotlib
6
+ seaborn
7
+ torch
8
+ torchvision
9
+ monotonenorm