MatthiasPi
commited on
Commit
•
ffd9d26
1
Parent(s):
d7e5e8c
commit WAR
Browse files- .gitattributes +2 -0
- README.md +24 -0
- WAR-notebook.ipynb +255 -0
- WAR/Experiment_functions.py +94 -0
- WAR/Models.py +57 -0
- WAR/__pycache__/EarlyStop.cpython-39.pyc +0 -0
- WAR/__pycache__/Experiment_functions.cpython-39.pyc +0 -0
- WAR/__pycache__/Models.cpython-39.pyc +0 -0
- WAR/__pycache__/dataset_handler.cpython-39.pyc +0 -0
- WAR/__pycache__/full_training_process.cpython-39.pyc +0 -0
- WAR/__pycache__/training.cpython-39.pyc +0 -0
- WAR/__pycache__/training_and_query.cpython-39.pyc +0 -0
- WAR/dataset_handler.py +124 -0
- WAR/full_training_process.py +116 -0
- WAR/training_and_query.py +226 -0
- datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv +3 -0
- datasets/OnlineNewsPopularity/OnlineNewsPopularity.names +194 -0
- datasets/airfoil_self_noise.dat +1503 -0
- datasets/conditions_based_maintenance/.DS_Store +0 -0
- datasets/conditions_based_maintenance/Features.txt +18 -0
- datasets/conditions_based_maintenance/README.txt +92 -0
- datasets/conditions_based_maintenance/data.txt +0 -0
- datasets/energy efficiency.csv +769 -0
- datasets/forestfires.csv +518 -0
- datasets/slump_test.data +104 -0
- datasets/traffic_flow_forecasting/Traffic Flow Prediction Dataset.docx +0 -0
- datasets/traffic_flow_forecasting/traffic_dataset.mat +3 -0
- datasets/yacht_hydrodynamics.data +309 -0
- requirements.txt +9 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv filter=lfs diff=lfs merge=lfs -text
|
36 |
+
datasets/traffic_flow_forecasting/traffic_dataset.mat filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Representativity-based active learning for regression using Wasserstein distance and GroupSort Neural Networks
|
2 |
+
|
3 |
+
You will find in this repository the codes used to test the performance of the WAR model on a fully labeled dataset
|
4 |
+
|
5 |
+
**WAR-notebook** : you can run the algorithm from there and change the desired parameters
|
6 |
+
|
7 |
+
|
8 |
+
### WAR directory
|
9 |
+
|
10 |
+
**Experiment_functions.py** : functions used to vizualise information about WAR process (loss, metrics, points queried every rounds...).
|
11 |
+
|
12 |
+
**Models.py**: Definition of the two neural networks h and phi.
|
13 |
+
|
14 |
+
**dataset_handler.py**: Import and preprocess datasets.
|
15 |
+
|
16 |
+
**full_training_process.py**: main function.
|
17 |
+
|
18 |
+
**training_and_query.py**: function to run one round (one training and querying process).
|
19 |
+
|
20 |
+
|
21 |
+
## Abstract
|
22 |
+
This paper proposes a new active learning strategy called Wasserstein active regression (WAR) based on the principle of distribution-matching to measure the representativeness of our labeled dataset compared to the global data distribution. We use GroupSort Neural Networks to compute the Wasserstein distance and provide theoretical foundations to justify the use of such networks with explicit bounds for their size and depth. We combine this solution with another diversity and uncertainty-based approach to sharpen our query strategy. Finally, we compare our method with other solutions and show empirically that we consistently achieve better estimations with less labeled data.
|
23 |
+
|
24 |
+
|
WAR-notebook.ipynb
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Notebook to test WAR performances on a fully labelled dataset"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {
|
14 |
+
"scrolled": false
|
15 |
+
},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import numpy as np\n",
|
19 |
+
"import itertools\n",
|
20 |
+
"import time\n",
|
21 |
+
"import matplotlib.pyplot as plt\n",
|
22 |
+
"\n",
|
23 |
+
"import torch\n",
|
24 |
+
"import torch.optim as optim\n",
|
25 |
+
"\n",
|
26 |
+
"from WAR.Models import NN_phi,NN_h_RELU\n",
|
27 |
+
"from WAR.training_and_query import WAR\n",
|
28 |
+
"from WAR.dataset_handler import myData,import_dataset,get_dataset\n",
|
29 |
+
"from WAR.Experiment_functions import *\n",
|
30 |
+
"from WAR.full_training_process import full_training,check_num_round\n",
|
31 |
+
"from sklearn.cluster import KMeans\n",
|
32 |
+
"\n",
|
33 |
+
"from sklearn.decomposition import PCA\n",
|
34 |
+
"\n",
|
35 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
36 |
+
"print(f\"Using {device} device\")"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"metadata": {
|
43 |
+
"scrolled": false
|
44 |
+
},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"#choosing dataset and splitting it with the desired testset proportion\n",
|
48 |
+
"# for now dataset=\n",
|
49 |
+
"#\"boston\",\"airfoil\",\"energy1\",\"energy2\",\"yacht\"\n",
|
50 |
+
"#,\"concrete_slump\",\"concrete_flow\",\"concrete_compressive\",x_squared\",\"news_popularity\"\n",
|
51 |
+
"\n",
|
52 |
+
"X_train,X_test,y_train,y_test=get_dataset(proportion=0.2,dataset=\"boston\")"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"#2D PCA visualization of the data\n",
|
62 |
+
"#kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit_predict(X_train)\n",
|
63 |
+
"pca = PCA(n_components=2)\n",
|
64 |
+
"transformed = pca.fit_transform(X=X_train)\n",
|
65 |
+
"print(f\"{round(sum(pca.explained_variance_),4)*100}% variance explained\")\n",
|
66 |
+
"plt.figure(figsize=(8.5, 6))\n",
|
67 |
+
"plt.scatter(x=transformed[:, 0], y=transformed[:, 1]#,c=kmeans\n",
|
68 |
+
" )"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "markdown",
|
73 |
+
"metadata": {},
|
74 |
+
"source": [
|
75 |
+
"# WAR"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {
|
82 |
+
"scrolled": true
|
83 |
+
},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"total_epoch_h=100 # number of epochs to train h each round\n",
|
87 |
+
"total_epoch_phi=100 # number of epochs to train phi each round \n",
|
88 |
+
"num_elem_queried= int(0.02*X_train.shape[0]) # number of elem queried each round \n",
|
89 |
+
"nb_initial_labelled_datas = int(0.02*X_train.shape[0]) #nb of labelled datas at round 0\n",
|
90 |
+
"init_method=\"k_mean\" # how the initial data will be chosen. \"random\" or \"k-means\" \n",
|
91 |
+
"second_query_strategy=\"loss_approximation\" # query strategy assisting our distribution-matching criterion. \"loss_approximation\" or None for now\n",
|
92 |
+
"lr_h=0.001 # learning rate h \n",
|
93 |
+
"lr_phi=0.01 # learning rate phi \n",
|
94 |
+
"weight_decay=0.001 # L2 regularization on h\n",
|
95 |
+
"\n",
|
96 |
+
"batch_size_train=len(X_train) # size of the batch during the training process #len(X_train)\n",
|
97 |
+
"num_round=500 # number of rounds\n",
|
98 |
+
"num_round=check_num_round(num_round,len(y_train),nb_initial_labelled_datas,num_elem_queried)\n",
|
99 |
+
"\n",
|
100 |
+
"\n",
|
101 |
+
"reset_phi=False # reset the training of phi each round or not\n",
|
102 |
+
"reset_h=False # reset the training of h each round or not\n",
|
103 |
+
"\n",
|
104 |
+
"reduced=True # if true (recommended),\n",
|
105 |
+
"#the heterogeneity and representativity criteria will have the same standard deviation,\n",
|
106 |
+
"#to give them the same weight in the query process. This give us more control on our querying strategy\n",
|
107 |
+
"\n",
|
108 |
+
"eta=3 # weight of the representativity criterion. if relatively low (<3) can lead WAR to query too many outliers\n",
|
109 |
+
"# cnst_t3phi>3 recommended, can be put higher if there are a lot of outliers in the data distribution \n",
|
110 |
+
"\n",
|
111 |
+
"show_losses=False # show T1 and T2 losses each rounds in a graph\n",
|
112 |
+
"show_chosen_each_round=False # show which data have been chosen each round in a 2D PCA representation of the data\n",
|
113 |
+
"\n",
|
114 |
+
"dim_input=X_train.shape[1]\n",
|
115 |
+
"\n",
|
116 |
+
"start=time.time()\n",
|
117 |
+
"\n",
|
118 |
+
"n_pool = len(y_train)\n",
|
119 |
+
"n_test = len(y_test)\n",
|
120 |
+
"idxs_lb = np.zeros(n_pool, dtype=bool)\n",
|
121 |
+
"idxs_tmp = np.arange(n_pool)\n",
|
122 |
+
"\n",
|
123 |
+
"\n",
|
124 |
+
"if init_method==\"random\":\n",
|
125 |
+
" # Generate the initial labeled pool\n",
|
126 |
+
" np.random.shuffle(idxs_tmp)\n",
|
127 |
+
" idxs_lb[idxs_tmp[:nb_initial_labelled_datas]] = True\n",
|
128 |
+
" \n",
|
129 |
+
"elif init_method==\"k_mean\":\n",
|
130 |
+
" init_indices=[]\n",
|
131 |
+
" kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit(X_train)\n",
|
132 |
+
" for i in range(nb_initial_labelled_datas):\n",
|
133 |
+
" xsc = kmeans.cluster_centers_[i]\n",
|
134 |
+
" ind = np.argmin(((X_train - xsc) ** 2).sum(axis=1))\n",
|
135 |
+
" init_indices.append(ind)\n",
|
136 |
+
" idxs_lb[init_indices] = True\n",
|
137 |
+
"\n",
|
138 |
+
"h=NN_h_RELU(dim_input)\n",
|
139 |
+
"opti_h = optim.Adam(h.parameters(), lr=lr_h,weight_decay=weight_decay)\n",
|
140 |
+
"\n",
|
141 |
+
"phi=NN_phi(dim_input)\n",
|
142 |
+
"opti_phi = optim.Adam(phi.parameters(), lr=lr_phi,maximize=True)\n",
|
143 |
+
"\n",
|
144 |
+
"strategy = WAR(X_train,y_train,X_test,y_test,idxs_lb,total_epoch_h,total_epoch_phi,batch_size_train,num_elem_queried,phi\n",
|
145 |
+
" ,h,opti_phi,opti_h,second_query_strategy)\n",
|
146 |
+
" \n",
|
147 |
+
"error_each_round,error_each_round_per,error_each_round_rmse,t1_descend_list,t2_ascend_list=full_training(\n",
|
148 |
+
" strategy,num_round,show_losses,show_chosen_each_round\n",
|
149 |
+
" ,reset_phi,reset_h,weight_decay,lr_h,lr_phi,reduced,eta)\n",
|
150 |
+
"\n",
|
151 |
+
"\n",
|
152 |
+
"stop=time.time()\n",
|
153 |
+
"\n",
|
154 |
+
"time_execution(start,stop)"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {
|
161 |
+
"scrolled": true
|
162 |
+
},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"#plot the loss of h\n",
|
166 |
+
"\n",
|
167 |
+
"plt.plot(list(itertools.chain(*t1_descend_list)),c=\"green\")\n",
|
168 |
+
"plt.grid(True)\n",
|
169 |
+
"plt.yscale(\"log\")\n",
|
170 |
+
"plt.title(\"T1 loss evolution each batch\",fontsize=20)"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {
|
177 |
+
"scrolled": true
|
178 |
+
},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"#plot the loss of phi\n",
|
182 |
+
"\n",
|
183 |
+
"plt.plot(np.array(list(itertools.chain(*t2_ascend_list))),c=\"brown\")\n",
|
184 |
+
"plt.grid(True)\n",
|
185 |
+
"plt.title(\"T2 loss evolution each batch\",fontsize=20)"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"metadata": {
|
192 |
+
"scrolled": false
|
193 |
+
},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"#plot RMSE\n",
|
197 |
+
"\n",
|
198 |
+
"plt.plot(error_each_round_rmse)\n",
|
199 |
+
"plt.grid(True)\n",
|
200 |
+
"plt.title(\"RMSE of h each rounds\",fontsize=20)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
+
"metadata": {
|
207 |
+
"scrolled": true
|
208 |
+
},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"#plot MAE\n",
|
212 |
+
"\n",
|
213 |
+
"plt.plot(error_each_round)\n",
|
214 |
+
"plt.grid(True)\n",
|
215 |
+
"plt.title(\"mean absolute error of h each rounds\",fontsize=20)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"metadata": {
|
222 |
+
"scrolled": true
|
223 |
+
},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"#plot MAPE\n",
|
227 |
+
"\n",
|
228 |
+
"plt.plot(error_each_round_per)\n",
|
229 |
+
"plt.grid(True)\n",
|
230 |
+
"plt.title(\"mean absolute percentage error of h each rounds\",fontsize=20)"
|
231 |
+
]
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"kernelspec": {
|
236 |
+
"display_name": "Python 3 (ipykernel)",
|
237 |
+
"language": "python",
|
238 |
+
"name": "python3"
|
239 |
+
},
|
240 |
+
"language_info": {
|
241 |
+
"codemirror_mode": {
|
242 |
+
"name": "ipython",
|
243 |
+
"version": 3
|
244 |
+
},
|
245 |
+
"file_extension": ".py",
|
246 |
+
"mimetype": "text/x-python",
|
247 |
+
"name": "python",
|
248 |
+
"nbconvert_exporter": "python",
|
249 |
+
"pygments_lexer": "ipython3",
|
250 |
+
"version": "3.9.16"
|
251 |
+
}
|
252 |
+
},
|
253 |
+
"nbformat": 4,
|
254 |
+
"nbformat_minor": 4
|
255 |
+
}
|
WAR/Experiment_functions.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import seaborn as sns
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.decomposition import PCA
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
#Execution duration
|
11 |
+
|
12 |
+
def time_execution(start,end):
|
13 |
+
timespan=end-start
|
14 |
+
minutes=timespan//60
|
15 |
+
secondes=timespan%60
|
16 |
+
heures=minutes//60
|
17 |
+
minutes=minutes%60
|
18 |
+
print(f"{int(heures)}h {int(minutes)} min {secondes} s")
|
19 |
+
return(f"{int(heures)}h {int(minutes)} min {secondes} s")
|
20 |
+
|
21 |
+
|
22 |
+
#Graphs
|
23 |
+
|
24 |
+
def display_prediction(X_test,h,y_test,rd):
|
25 |
+
plt.figure(figsize=[9,6])
|
26 |
+
|
27 |
+
plt.scatter(X_test,h(X_test).cpu(),label="predicted values")
|
28 |
+
plt.scatter(X_test,y_test,label="true_values")
|
29 |
+
plt.legend()
|
30 |
+
if rd=="final":
|
31 |
+
plt.title("true et predicted values at the end")
|
32 |
+
else:plt.title(f"true et predicted values after {rd} rounds")
|
33 |
+
|
34 |
+
|
35 |
+
def display_chosen_labelled_datas_PCA(X_train,idx_lb,y_train,b_idxs,rd):
|
36 |
+
|
37 |
+
pca = PCA(n_components=2)
|
38 |
+
transformed = pca.fit_transform(X=X_train)
|
39 |
+
x_component = transformed[:, 0]
|
40 |
+
|
41 |
+
plt.figure(figsize=[9,6])
|
42 |
+
plt.scatter(transformed[:, 0][~idx_lb],transformed[:, 1][~idx_lb],label="unlabelled points",c="brown")
|
43 |
+
plt.scatter(transformed[:, 0][idx_lb],transformed[:, 1][idx_lb],label="labelled points")
|
44 |
+
plt.scatter(transformed[:, 0][b_idxs],transformed[:, 1][b_idxs],label="new points added",c="yellow")
|
45 |
+
plt.legend()
|
46 |
+
plt.title(f"points selected after {rd} rounds")
|
47 |
+
|
48 |
+
def display_chosen_labelled_datas(X_train,idx_lb,y_train,b_idxs,rd):
|
49 |
+
plt.figure(figsize=[9,6])
|
50 |
+
|
51 |
+
plt.scatter(X_train[~idx_lb],y_train[~idx_lb],label="unlabelled points",c="brown")
|
52 |
+
plt.scatter(X_train[idx_lb],y_train[idx_lb],label="labelled points")
|
53 |
+
plt.scatter(X_train[b_idxs],y_train[b_idxs],label="new points added",c="yellow")
|
54 |
+
plt.legend()
|
55 |
+
plt.title(f"points selected after {rd} rounds")
|
56 |
+
|
57 |
+
def display_loss_t1(t1_descend,rd):
|
58 |
+
plt.figure(figsize=[9,6])
|
59 |
+
plt.plot(t1_descend)
|
60 |
+
plt.xlabel("batch")
|
61 |
+
plt.title(f"t1 loss evolution each batch after {rd} rounds")
|
62 |
+
|
63 |
+
|
64 |
+
def display_loss_t2(t2_ascend,rd):
|
65 |
+
plt.figure(figsize=[9,6])
|
66 |
+
plt.plot(t2_ascend)
|
67 |
+
plt.xlabel("batch")
|
68 |
+
plt.title(f"t2 loss evolution each batch after {rd} rounds")
|
69 |
+
|
70 |
+
def display_phi(X_train,phi,rd=None):
|
71 |
+
plt.figure(figsize=[9,6])
|
72 |
+
plt.scatter(X_train,phi(X_train))
|
73 |
+
plt.xlabel("X_train")
|
74 |
+
plt.title(f"phi function on the full trainset after {rd} rounds")
|
75 |
+
|
76 |
+
|
77 |
+
#Metrics
|
78 |
+
|
79 |
+
def MAPE(X_test,y_test,h):
|
80 |
+
acc_per_i=sum(abs(h(X_test)-y_test)/abs(y_test))
|
81 |
+
acc_per_i = acc_per_i[0]/len(y_test)
|
82 |
+
return acc_per_i
|
83 |
+
|
84 |
+
|
85 |
+
def MAE(X_test,y_test,h):
|
86 |
+
acc_i = sum(abs((h(X_test)-y_test)))
|
87 |
+
acc_i = acc_i[0]/len(y_test)
|
88 |
+
return acc_i
|
89 |
+
|
90 |
+
def RMSE(X_test,y_test,h):
|
91 |
+
acc_i = ((h(X_test)-y_test)**2).mean()
|
92 |
+
return torch.sqrt(acc_i)
|
93 |
+
|
94 |
+
|
WAR/Models.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
from monotonenorm import GroupSort, direct_norm
|
5 |
+
|
6 |
+
|
7 |
+
# GroupSort Neural Networks created using monotonenorm package.
|
8 |
+
#See https://github.com/niklasnolte/MonotoneNorm for more information
|
9 |
+
|
10 |
+
class NN_phi(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self,dim_input):
|
13 |
+
|
14 |
+
|
15 |
+
super(NN_phi, self).__init__()
|
16 |
+
self.linear1=direct_norm(torch.nn.Linear(dim_input,16),kind="two-inf")
|
17 |
+
self.group1=GroupSort(16//2)#GroupSort with a grouping size of 2
|
18 |
+
self.linear2=direct_norm(torch.nn.Linear(16,32),kind="inf")
|
19 |
+
self.group2=GroupSort(32//2)
|
20 |
+
self.linear3=direct_norm(torch.nn.Linear(32,1),kind="inf")
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
x=self.linear1(x)
|
25 |
+
x=self.group1(x)
|
26 |
+
x=self.linear2(x)
|
27 |
+
x=self.group2(x)
|
28 |
+
x=self.linear3(x)
|
29 |
+
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
class NN_h_RELU(nn.Module):
|
35 |
+
def __init__(self,dim_input):
|
36 |
+
|
37 |
+
|
38 |
+
super(NN_h_RELU, self).__init__()
|
39 |
+
|
40 |
+
|
41 |
+
self.linear1=torch.nn.Linear(dim_input,16)
|
42 |
+
self.RELU=torch.nn.ReLU()
|
43 |
+
self.linear2=torch.nn.Linear(16,32)
|
44 |
+
self.linear3=torch.nn.Linear(32,1)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x=self.linear1(x)
|
51 |
+
x=self.RELU(x)
|
52 |
+
x=self.linear2(x)
|
53 |
+
x=self.RELU(x)
|
54 |
+
x=self.linear3(x)
|
55 |
+
|
56 |
+
return x
|
57 |
+
|
WAR/__pycache__/EarlyStop.cpython-39.pyc
ADDED
Binary file (844 Bytes). View file
|
|
WAR/__pycache__/Experiment_functions.cpython-39.pyc
ADDED
Binary file (3.38 kB). View file
|
|
WAR/__pycache__/Models.cpython-39.pyc
ADDED
Binary file (1.62 kB). View file
|
|
WAR/__pycache__/dataset_handler.cpython-39.pyc
ADDED
Binary file (4.15 kB). View file
|
|
WAR/__pycache__/full_training_process.cpython-39.pyc
ADDED
Binary file (3.44 kB). View file
|
|
WAR/__pycache__/training.cpython-39.pyc
ADDED
Binary file (5.26 kB). View file
|
|
WAR/__pycache__/training_and_query.cpython-39.pyc
ADDED
Binary file (6.05 kB). View file
|
|
WAR/dataset_handler.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
from sklearn.preprocessing import MinMaxScaler
|
10 |
+
from sklearn import datasets
|
11 |
+
|
12 |
+
|
13 |
+
def import_dataset(name):# import dataset among a list a available ones
|
14 |
+
|
15 |
+
if name=="boston":
|
16 |
+
data_url = "http://lib.stat.cmu.edu/datasets/boston"
|
17 |
+
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
|
18 |
+
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
|
19 |
+
target = raw_df.values[1::2, 2]
|
20 |
+
y_boston=target
|
21 |
+
X_boston=data
|
22 |
+
y_boston=torch.Tensor(y_boston).view(len(y_boston),1).float()
|
23 |
+
X_boston=torch.Tensor(X_boston).float()
|
24 |
+
return X_boston,y_boston
|
25 |
+
|
26 |
+
if name=="airfoil":
|
27 |
+
columns_names=["Frequency","Angle of attack","Chord length","Free-stream velocity","Suction side displacement thickness","sound pressure level"]
|
28 |
+
airfoil=pd.read_csv('datasets/airfoil_self_noise.dat',sep='\t',names=columns_names)
|
29 |
+
y_airfoil=airfoil["sound pressure level"]
|
30 |
+
X_airfoil=airfoil.drop("sound pressure level",axis=1)
|
31 |
+
y_airfoil=torch.Tensor(y_airfoil).view(len(y_airfoil),1).float()
|
32 |
+
X_airfoil=torch.Tensor(X_airfoil.values).float()
|
33 |
+
return X_airfoil,y_airfoil
|
34 |
+
|
35 |
+
if name=="energy1":
|
36 |
+
energy=pd.read_csv('datasets/energy efficiency.csv')
|
37 |
+
y_energy=energy["Y1"]
|
38 |
+
X_energy=energy.drop(["Y2","Y1"],axis=1)
|
39 |
+
y_energy=torch.Tensor(y_energy).view(len(y_energy),1).float()
|
40 |
+
X_energy=torch.Tensor(X_energy.values).float()
|
41 |
+
return X_energy,y_energy
|
42 |
+
|
43 |
+
if name=="energy2":# other target function
|
44 |
+
energy=pd.read_csv('datasets/energy efficiency.csv')
|
45 |
+
y_energy=energy["Y2"]
|
46 |
+
X_energy=energy.drop(["Y2","Y1"],axis=1)
|
47 |
+
y_energy=torch.Tensor(y_energy).view(len(y_energy),1).float()
|
48 |
+
X_energy=torch.Tensor(X_energy.values).float()
|
49 |
+
return X_energy,y_energy
|
50 |
+
|
51 |
+
if name=="yacht":
|
52 |
+
yacht=pd.read_csv('datasets/yacht_hydrodynamics.data',sep=' ',header=None)
|
53 |
+
y_yacht=yacht[6]
|
54 |
+
X_yacht=yacht.drop([6],axis=1)
|
55 |
+
y_yacht=torch.Tensor(y_yacht).view(len(y_yacht),1).float()
|
56 |
+
X_yacht=torch.Tensor(X_yacht.values).float()
|
57 |
+
return X_yacht,y_yacht
|
58 |
+
|
59 |
+
if name=="concrete_slump":
|
60 |
+
concrete=pd.read_csv('datasets/slump_test.data',sep=',')
|
61 |
+
y_concrete=concrete["SLUMP(cm)"]
|
62 |
+
X_concrete=concrete.drop(["No","SLUMP(cm)","FLOW(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
|
63 |
+
y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
|
64 |
+
X_concrete=torch.Tensor(X_concrete.values).float()
|
65 |
+
return X_concrete,y_concrete
|
66 |
+
|
67 |
+
if name=="concrete_flow":#other target function
|
68 |
+
concrete=pd.read_csv('datasets/slump_test.data',sep=',')
|
69 |
+
y_concrete=concrete["FLOW(cm)"]
|
70 |
+
X_concrete=concrete.drop(["No","FLOW(cm)","SLUMP(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
|
71 |
+
y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
|
72 |
+
X_concrete=torch.Tensor(X_concrete.values).float()
|
73 |
+
return X_concrete,y_concrete
|
74 |
+
|
75 |
+
if name=="concrete_compressive":#other target function
|
76 |
+
concrete=pd.read_csv('datasets/slump_test.data',sep=',')
|
77 |
+
y_concrete=concrete["Compressive Strength (28-day)(Mpa)"]
|
78 |
+
X_concrete=concrete.drop(["No","FLOW(cm)","SLUMP(cm)","Compressive Strength (28-day)(Mpa)"],axis=1)
|
79 |
+
y_concrete=torch.Tensor(y_concrete).view(len(y_concrete),1).float()
|
80 |
+
X_concrete=torch.Tensor(X_concrete.values).float()
|
81 |
+
return X_concrete,y_concrete
|
82 |
+
if name=="x_squared":
|
83 |
+
|
84 |
+
data_generated=100
|
85 |
+
x_b=torch.tensor([random.random() for i in range(data_generated)])
|
86 |
+
x_carré_b=x_b.view(x_b.size()[0],1)
|
87 |
+
y_carré_b=(x_b**2 + torch.tensor([np.random.normal(loc=0,scale=0.05) for i in range(data_generated)])).view(x_b.size()[0],1)
|
88 |
+
return x_carré_b,y_carré_b
|
89 |
+
|
90 |
+
if name=="news_popularity":
|
91 |
+
news=pd.read_csv('datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv')
|
92 |
+
y_news=news[" shares"]
|
93 |
+
X_news=news.drop([" shares","url"," timedelta"],axis=1)
|
94 |
+
y_news=torch.Tensor(y_news).view(len(y_news),1).float()
|
95 |
+
X_news=torch.Tensor(X_news.values).float()
|
96 |
+
return X_news,y_news
|
97 |
+
|
98 |
+
def get_dataset(proportion=0.2,dataset="boston"):# scale and process the data
|
99 |
+
|
100 |
+
scaler = MinMaxScaler()
|
101 |
+
X,y=import_dataset(dataset)
|
102 |
+
X=torch.Tensor(scaler.fit_transform(X))
|
103 |
+
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=proportion)
|
104 |
+
print(f"Shape of the training set: {X_train.shape}")
|
105 |
+
return X_train,X_test,y_train,y_test
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
class myData(Dataset):
|
110 |
+
|
111 |
+
def __init__(self,x,y):
|
112 |
+
self.x=x
|
113 |
+
self.y=y
|
114 |
+
self.shape=x.size(0)
|
115 |
+
|
116 |
+
def __getitem__(self,index):
|
117 |
+
return self.x[index],self.y[index]
|
118 |
+
|
119 |
+
def __len__(self):
|
120 |
+
return self.shape
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
WAR/full_training_process.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import warnings
|
3 |
+
import torch.optim as optim
|
4 |
+
import torch
|
5 |
+
from WAR.Models import NN_phi,NN_h_RELU
|
6 |
+
from WAR.Experiment_functions import *
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def full_training(strategy,num_round,show_losses,show_chosen_each_round,
|
11 |
+
reset_phi,reset_h,weight_decay,lr_h=None,lr_phi=None,reduced=False,eta=1
|
12 |
+
):
|
13 |
+
|
14 |
+
"""
|
15 |
+
strategy: an object of class WAR
|
16 |
+
num_round: total number of query rounds
|
17 |
+
show_losses: display graphs showing the loss of h and phi each rounds
|
18 |
+
show_chosen_each_round:display a graph showing the data queried each round
|
19 |
+
reset_phi: if True, the phi neural network is reset after each round. can avoir overfitting but increase the number of epochs required to train the model
|
20 |
+
reset_h:if True, the h neural network is reset after each round. can avoir overfitting but increase the number of epochs required to train the model
|
21 |
+
lr_h: learning rate of h
|
22 |
+
lr_phi: learning rate of phi
|
23 |
+
reduced: will divide each query criterion by their standard deviation. In the case where they don't have the same amplitude, This will give them the same weight in the querying process. Irrelevant parameter if there is only one query criterion
|
24 |
+
eta:factor used to rebalance the criteria. If >1, distribution matching criterion gets more weight than the other(s). Irrelevant parameter if there is only one query criterion.
|
25 |
+
|
26 |
+
"""
|
27 |
+
t1_descend_list=[]
|
28 |
+
t2_ascend_list=[]
|
29 |
+
acc = []# MAE
|
30 |
+
acc_percentage=[] #MAPE
|
31 |
+
acc_rmse=[] #RMSE
|
32 |
+
|
33 |
+
only_train=False
|
34 |
+
|
35 |
+
for rd in range(1,num_round+1):
|
36 |
+
|
37 |
+
print('\n================Round {:d}==============='.format(rd))
|
38 |
+
|
39 |
+
# if not enough unlabelled data to query a full batch, we will query the remaining data
|
40 |
+
if len(np.arange(strategy.n_pool)[~strategy.idx_lb])<=strategy.num_elem_queried:
|
41 |
+
only_train=True
|
42 |
+
|
43 |
+
#reset neural networks
|
44 |
+
if reset_phi==True:
|
45 |
+
strategy.phi=NN_phi(dim_input=strategy.X_train.shape[1])
|
46 |
+
strategy.opti_phi = optim.Adam(strategy.phi.parameters(), lr=lr_phi,maximize=True)
|
47 |
+
|
48 |
+
|
49 |
+
if reset_h==True:
|
50 |
+
strategy.h=NN_h_RELU(dim_input=strategy.X_train.shape[1])
|
51 |
+
strategy.opti_h = optim.Adam(strategy.h.parameters(), lr=lr_h,weight_decay=weight_decay)
|
52 |
+
|
53 |
+
|
54 |
+
t1,t2,b_idxs=strategy.train(only_train,reduced,eta)
|
55 |
+
|
56 |
+
|
57 |
+
t1_descend_list.append(t1)
|
58 |
+
t2_ascend_list.append(t2)
|
59 |
+
if only_train==True:
|
60 |
+
strategy.idx_lb[:]= True
|
61 |
+
else:
|
62 |
+
|
63 |
+
strategy.idx_lb[b_idxs] = True #"simulation" of the oracle who label the queried samples
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
if show_losses:
|
67 |
+
display_loss_t1(t1,rd)
|
68 |
+
display_loss_t2(t2,rd)
|
69 |
+
|
70 |
+
if show_chosen_each_round:
|
71 |
+
if strategy.X_train.shape[1]==1:
|
72 |
+
#display_phi(strategy.X_train,strategy.phi,rd)
|
73 |
+
display_chosen_labelled_datas(strategy.X_train.cpu(),strategy.idx_lb,strategy.y_train.cpu(),b_idxs,rd)
|
74 |
+
#display_prediction(strategy.X_test,strategy.h,strategy.y_test,rd)
|
75 |
+
|
76 |
+
else:
|
77 |
+
display_chosen_labelled_datas_PCA(strategy.X_train.cpu(),strategy.idx_lb,strategy.y_train.cpu(),b_idxs,rd)
|
78 |
+
|
79 |
+
|
80 |
+
acc_rmse.append(RMSE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
81 |
+
acc.append(MAE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
82 |
+
acc_percentage.append(MAPE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
83 |
+
|
84 |
+
|
85 |
+
print('\n================Final training===============')
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
t1,t2,_=strategy.train(only_train,reduced,eta)
|
90 |
+
|
91 |
+
t1_descend_list.append(t1)
|
92 |
+
t2_ascend_list.append(t2)
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
#display_loss_t1(t1,rd)
|
96 |
+
#display_prediction(strategy.X_test,strategy.h,strategy.y_test,"final")
|
97 |
+
|
98 |
+
acc.append(MAE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
99 |
+
acc_percentage.append(MAPE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
100 |
+
acc_rmse.append(RMSE(strategy.X_test,strategy.y_test,strategy.h).cpu())
|
101 |
+
|
102 |
+
|
103 |
+
return acc,acc_percentage, acc_rmse,t1_descend_list,t2_ascend_list
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def check_num_round(num_round,len_dataset,nb_initial_labelled_datas,num_elem_queried):
|
111 |
+
max_round=int(np.ceil((len_dataset-nb_initial_labelled_datas)/num_elem_queried))
|
112 |
+
if num_round>max_round:
|
113 |
+
warnings.warn(f"when querying {num_elem_queried} data per round, num_rounds={num_round} is exceeding"+
|
114 |
+
f" the maximum number of rounds (total data queried superior to number of initial unlabelled data).\nnum_round set to {max_round}")
|
115 |
+
num_round=max_round
|
116 |
+
return num_round
|
WAR/training_and_query.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
import itertools
|
6 |
+
|
7 |
+
from WAR.Experiment_functions import display_phi
|
8 |
+
from WAR.dataset_handler import myData
|
9 |
+
|
10 |
+
|
11 |
+
class WAR:
|
12 |
+
|
13 |
+
def __init__(self,X_train,y_train,X_test,y_test,idx_lb,total_epoch_h,total_epoch_phi,batch_size_train,num_elem_queried
|
14 |
+
,phi,h,opti_phi,opti_h,second_query_strategy=None):
|
15 |
+
|
16 |
+
"""
|
17 |
+
device: device on which to train the model.
|
18 |
+
X_train: trainset.
|
19 |
+
Y_train: labels of the trainset
|
20 |
+
idx_lb: indices of the trainset that would be considered as labelled.
|
21 |
+
n_pool: length of the trainset.
|
22 |
+
total_epoch_h: number of epochs to train h.
|
23 |
+
total_epoch_phi: number of epochs to train phi.
|
24 |
+
batch_size_train: size of the batch in the training process.
|
25 |
+
num_elem_queried: number of elem queried each round.
|
26 |
+
phi: phi neural network.
|
27 |
+
h: h neural network.
|
28 |
+
opti_phi: phi optimizer.
|
29 |
+
opti_h: h optimizer.
|
30 |
+
cost: define the cost function for both neural network. "MSE" or MAE".
|
31 |
+
second_query_strategy: second strategy to assist our distribution-matching criterion.
|
32 |
+
"""
|
33 |
+
|
34 |
+
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
+
self.X_train = X_train.to(self.device)
|
36 |
+
self.y_train = y_train.to(self.device)
|
37 |
+
self.X_test=X_test.to(self.device)
|
38 |
+
self.y_test=y_test.to(self.device)
|
39 |
+
self.idx_lb = idx_lb
|
40 |
+
self.n_pool = len(y_train)
|
41 |
+
self.total_epoch_h=total_epoch_h
|
42 |
+
self.total_epoch_phi=total_epoch_phi
|
43 |
+
self.batch_size_train=batch_size_train
|
44 |
+
self.num_elem_queried=num_elem_queried
|
45 |
+
self.phi=phi.to(self.device)
|
46 |
+
self.h=h.to(self.device)
|
47 |
+
self.opti_phi=opti_phi
|
48 |
+
self.opti_h=opti_h
|
49 |
+
self.cost="MSE"
|
50 |
+
self.second_query_strategy=second_query_strategy
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
#cost function used to train both phi and h
|
56 |
+
def cost_func(self,predicted,true):
|
57 |
+
if self.cost=="MSE":
|
58 |
+
return (predicted-true)**2
|
59 |
+
elif self.cost=="MAE":
|
60 |
+
return abs(predicted-true)
|
61 |
+
else:
|
62 |
+
raise Exception("invalid cost function")
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def train(self,only_train=False,reduced=True,eta=3):# train function for one round
|
68 |
+
|
69 |
+
"""
|
70 |
+
only_train: activite when there is no more unlabelled data in the trainset. Will only train h and not train phi or query data.
|
71 |
+
reduced: will divide each query criterion by their standard deviation. In the case where they don't have the same amplitude, This will give them the same weight in the querying process. Irrelevant parameter if there is only one query criterion (self.second_query_strategy=None).
|
72 |
+
eta:factor used to rebalance the criteria. If >1, distribution matching criterion gets more weight than the other(s). Irrelevant parameter if there is only one query criterion.
|
73 |
+
|
74 |
+
"""
|
75 |
+
#recover loss
|
76 |
+
t1_descend=[]
|
77 |
+
t2_ascend=[]
|
78 |
+
|
79 |
+
# separating labelled and unlabelled data respectively
|
80 |
+
idx_lb_train = np.arange(self.n_pool)[self.idx_lb]
|
81 |
+
idx_ulb_train = np.arange(self.n_pool)[~self.idx_lb]
|
82 |
+
|
83 |
+
|
84 |
+
trainset_labelled=myData(self.X_train[idx_lb_train],self.y_train[idx_lb_train])
|
85 |
+
trainloader_labelled= DataLoader(trainset_labelled,shuffle=True,batch_size=self.batch_size_train)
|
86 |
+
|
87 |
+
for epoch in range(self.total_epoch_h):
|
88 |
+
|
89 |
+
for i,data in enumerate(trainloader_labelled,0):
|
90 |
+
label_x, label_y=data
|
91 |
+
self.opti_h.zero_grad()
|
92 |
+
# T1 (train h)
|
93 |
+
lb_out = self.h(label_x)
|
94 |
+
h_descent=torch.mean(self.cost_func(lb_out,label_y))
|
95 |
+
t1_descend.append(h_descent.detach().cpu())
|
96 |
+
h_descent.backward()
|
97 |
+
self.opti_h.step()
|
98 |
+
|
99 |
+
|
100 |
+
b_idxs=[]# batch of queried points
|
101 |
+
if not only_train:
|
102 |
+
#T2 (train phi)
|
103 |
+
|
104 |
+
# temporary set of labelled data indices. Used only to retrain phi during the time oracle has not been called.
|
105 |
+
#h is no retrained during this time.
|
106 |
+
idxs_temp=self.idx_lb.copy()
|
107 |
+
|
108 |
+
for elem_queried in range(self.num_elem_queried):
|
109 |
+
|
110 |
+
trainset_total=myData(self.X_train,self.y_train)
|
111 |
+
trainloader_total= DataLoader(trainset_total,shuffle=True,batch_size=len(trainset_total))
|
112 |
+
trainset_labelled=myData(self.X_train[idx_lb_train],self.y_train[idx_lb_train])
|
113 |
+
trainloader_labelled= DataLoader(trainset_labelled,shuffle=True,batch_size=self.batch_size_train)
|
114 |
+
for epoch in range(self.total_epoch_phi):
|
115 |
+
iterator_total_phi=itertools.cycle(trainloader_total)
|
116 |
+
iterator_labelled_phi=itertools.cycle(trainloader_labelled)
|
117 |
+
for i in range(len(trainloader_labelled)):
|
118 |
+
label_x,label_y = next(iterator_labelled_phi)
|
119 |
+
total_x,total_y = next(iterator_total_phi)
|
120 |
+
#display_phi(self.X_train,self.phi)
|
121 |
+
self.opti_phi.zero_grad()
|
122 |
+
phi_ascent = (torch.mean(self.phi(total_x))-torch.mean(self.phi(label_x)))
|
123 |
+
t2_ascend.append(phi_ascent.detach().cpu())
|
124 |
+
phi_ascent.backward()
|
125 |
+
self.opti_phi.step()
|
126 |
+
|
127 |
+
# Query process
|
128 |
+
b_queried=self.query(reduced,eta,idx_ulb_train)# query one element
|
129 |
+
idxs_temp[b_queried]=True #add it to the temporary set of labeled point indices indices
|
130 |
+
idx_ulb_train = np.arange(self.n_pool)[~idxs_temp] #update the set of unlabeled point indices
|
131 |
+
idx_lb_train = np.arange(self.n_pool)[idxs_temp] #update the set of labeled point indices
|
132 |
+
b_idxs.append(b_queried)#add the chosen point in the batch
|
133 |
+
self.idx_lb=idxs_temp#end of the query process: update the true set of labeled point indices indices
|
134 |
+
return t1_descend,t2_ascend,b_idxs
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
def query(self,reduced,eta,idx_ulb_train):# computing T3: query one point according to the chosen query criteria
|
139 |
+
|
140 |
+
|
141 |
+
"""
|
142 |
+
reduced:same as for function "train"
|
143 |
+
eta: sme as for function "train"
|
144 |
+
idx_ulb_train:indices of unlabeled points
|
145 |
+
|
146 |
+
"""
|
147 |
+
|
148 |
+
if self.second_query_strategy=="loss_approximation":
|
149 |
+
second_query_criterion = self.predict_loss(self.X_train[idx_ulb_train])
|
150 |
+
|
151 |
+
with torch.no_grad():
|
152 |
+
phi_scores = self.phi(self.X_train[idx_ulb_train]).view(-1)
|
153 |
+
|
154 |
+
if reduced and self.second_query_strategy!=None:
|
155 |
+
phi_scores_reduced=phi_scores/torch.std(phi_scores)
|
156 |
+
second_query_criterion_reduced=second_query_criterion/torch.std(second_query_criterion)
|
157 |
+
total_scores =-(eta*phi_scores_reduced+second_query_criterion_reduced )
|
158 |
+
|
159 |
+
elif self.second_query_strategy!=None:
|
160 |
+
total_scores =-(eta*phi_scores+second_query_criterion)
|
161 |
+
|
162 |
+
else:
|
163 |
+
total_scores =-eta*phi_scores
|
164 |
+
|
165 |
+
b=torch.argmin(total_scores)
|
166 |
+
|
167 |
+
return idx_ulb_train[b]
|
168 |
+
|
169 |
+
|
170 |
+
def predict_loss(self,X):# Second query criterion which act as loss estimator (uncertainty and diversity-based sampling)
|
171 |
+
|
172 |
+
"""
|
173 |
+
X: set of unlabeled elements of the trainset
|
174 |
+
|
175 |
+
"""
|
176 |
+
|
177 |
+
idxs_lb=np.arange(self.n_pool)[self.idx_lb]#get labeled data indices
|
178 |
+
losses=[]
|
179 |
+
with torch.no_grad():
|
180 |
+
for i in X:
|
181 |
+
idx_nearest_Xk,dist=self.Idx_NearestP(i,idxs_lb)
|
182 |
+
losses.append(self.Max_cost_B(idx_nearest_Xk,dist,i))
|
183 |
+
|
184 |
+
return torch.Tensor(losses).to(self.device)
|
185 |
+
|
186 |
+
def Idx_NearestP(self,Xu,idxs_lb):# Return the closest labeled point to the unlabeled point
|
187 |
+
|
188 |
+
|
189 |
+
"""
|
190 |
+
Xu:unlabeled point
|
191 |
+
idxs_lb: indices of labeled points
|
192 |
+
|
193 |
+
"""
|
194 |
+
|
195 |
+
distances=[]
|
196 |
+
for i in idxs_lb:
|
197 |
+
distances.append(torch.norm(Xu-self.X_train[i]))
|
198 |
+
|
199 |
+
return idxs_lb[distances.index(min(distances))],float(min(distances))
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
def Max_cost_B(self,idx_Xk,distance,i):#return the "maximum loss" of the unlabeled point
|
204 |
+
|
205 |
+
"""
|
206 |
+
idx_Xk: labeled point indice nearest to the unlabeled point
|
207 |
+
distance: distance between them
|
208 |
+
i:unlabeled point
|
209 |
+
|
210 |
+
"""
|
211 |
+
|
212 |
+
est_h_unl_X=self.h(i)
|
213 |
+
true_value_labelled_X=self.y_train[idx_Xk]
|
214 |
+
bound_min= true_value_labelled_X-distance
|
215 |
+
bound_max= true_value_labelled_X+distance
|
216 |
+
return max(self.cost_func(est_h_unl_X,bound_min),self.cost_func(est_h_unl_X,bound_max))[0]
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
datasets/OnlineNewsPopularity/OnlineNewsPopularity.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:011c4f45de56844f346f232dc455ce6fc88a7c610ac57ad16f31c6b19c2ca435
|
3 |
+
size 16874641
|
datasets/OnlineNewsPopularity/OnlineNewsPopularity.names
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. Title: Online News Popularity
|
2 |
+
|
3 |
+
2. Source Information
|
4 |
+
-- Creators: Kelwin Fernandes (kafc ‘@’ inesctec.pt, kelwinfc ’@’ gmail.com),
|
5 |
+
Pedro Vinagre (pedro.vinagre.sousa ’@’ gmail.com) and
|
6 |
+
Pedro Sernadela
|
7 |
+
-- Donor: Kelwin Fernandes (kafc ’@’ inesctec.pt, kelwinfc '@' gmail.com)
|
8 |
+
-- Date: May, 2015
|
9 |
+
|
10 |
+
3. Past Usage:
|
11 |
+
1. K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision
|
12 |
+
Support System for Predicting the Popularity of Online News. Proceedings
|
13 |
+
of the 17th EPIA 2015 - Portuguese Conference on Artificial Intelligence,
|
14 |
+
September, Coimbra, Portugal.
|
15 |
+
|
16 |
+
-- Results:
|
17 |
+
-- Binary classification as popular vs unpopular using a decision
|
18 |
+
threshold of 1400 social interactions.
|
19 |
+
-- Experiments with different models: Random Forest (best model),
|
20 |
+
Adaboost, SVM, KNN and Naïve Bayes.
|
21 |
+
-- Recorded 67% of accuracy and 0.73 of AUC.
|
22 |
+
- Predicted attribute: online news popularity (boolean)
|
23 |
+
|
24 |
+
4. Relevant Information:
|
25 |
+
-- The articles were published by Mashable (www.mashable.com) and their
|
26 |
+
content as the rights to reproduce it belongs to them. Hence, this
|
27 |
+
dataset does not share the original content but some statistics
|
28 |
+
associated with it. The original content be publicly accessed and
|
29 |
+
retrieved using the provided urls.
|
30 |
+
-- Acquisition date: January 8, 2015
|
31 |
+
-- The estimated relative performance values were estimated by the authors
|
32 |
+
using a Random Forest classifier and a rolling windows as assessment
|
33 |
+
method. See their article for more details on how the relative
|
34 |
+
performance values were set.
|
35 |
+
|
36 |
+
5. Number of Instances: 39797
|
37 |
+
|
38 |
+
6. Number of Attributes: 61 (58 predictive attributes, 2 non-predictive,
|
39 |
+
1 goal field)
|
40 |
+
|
41 |
+
7. Attribute Information:
|
42 |
+
0. url: URL of the article
|
43 |
+
1. timedelta: Days between the article publication and
|
44 |
+
the dataset acquisition
|
45 |
+
2. n_tokens_title: Number of words in the title
|
46 |
+
3. n_tokens_content: Number of words in the content
|
47 |
+
4. n_unique_tokens: Rate of unique words in the content
|
48 |
+
5. n_non_stop_words: Rate of non-stop words in the content
|
49 |
+
6. n_non_stop_unique_tokens: Rate of unique non-stop words in the
|
50 |
+
content
|
51 |
+
7. num_hrefs: Number of links
|
52 |
+
8. num_self_hrefs: Number of links to other articles
|
53 |
+
published by Mashable
|
54 |
+
9. num_imgs: Number of images
|
55 |
+
10. num_videos: Number of videos
|
56 |
+
11. average_token_length: Average length of the words in the
|
57 |
+
content
|
58 |
+
12. num_keywords: Number of keywords in the metadata
|
59 |
+
13. data_channel_is_lifestyle: Is data channel 'Lifestyle'?
|
60 |
+
14. data_channel_is_entertainment: Is data channel 'Entertainment'?
|
61 |
+
15. data_channel_is_bus: Is data channel 'Business'?
|
62 |
+
16. data_channel_is_socmed: Is data channel 'Social Media'?
|
63 |
+
17. data_channel_is_tech: Is data channel 'Tech'?
|
64 |
+
18. data_channel_is_world: Is data channel 'World'?
|
65 |
+
19. kw_min_min: Worst keyword (min. shares)
|
66 |
+
20. kw_max_min: Worst keyword (max. shares)
|
67 |
+
21. kw_avg_min: Worst keyword (avg. shares)
|
68 |
+
22. kw_min_max: Best keyword (min. shares)
|
69 |
+
23. kw_max_max: Best keyword (max. shares)
|
70 |
+
24. kw_avg_max: Best keyword (avg. shares)
|
71 |
+
25. kw_min_avg: Avg. keyword (min. shares)
|
72 |
+
26. kw_max_avg: Avg. keyword (max. shares)
|
73 |
+
27. kw_avg_avg: Avg. keyword (avg. shares)
|
74 |
+
28. self_reference_min_shares: Min. shares of referenced articles in
|
75 |
+
Mashable
|
76 |
+
29. self_reference_max_shares: Max. shares of referenced articles in
|
77 |
+
Mashable
|
78 |
+
30. self_reference_avg_sharess: Avg. shares of referenced articles in
|
79 |
+
Mashable
|
80 |
+
31. weekday_is_monday: Was the article published on a Monday?
|
81 |
+
32. weekday_is_tuesday: Was the article published on a Tuesday?
|
82 |
+
33. weekday_is_wednesday: Was the article published on a Wednesday?
|
83 |
+
34. weekday_is_thursday: Was the article published on a Thursday?
|
84 |
+
35. weekday_is_friday: Was the article published on a Friday?
|
85 |
+
36. weekday_is_saturday: Was the article published on a Saturday?
|
86 |
+
37. weekday_is_sunday: Was the article published on a Sunday?
|
87 |
+
38. is_weekend: Was the article published on the weekend?
|
88 |
+
39. LDA_00: Closeness to LDA topic 0
|
89 |
+
40. LDA_01: Closeness to LDA topic 1
|
90 |
+
41. LDA_02: Closeness to LDA topic 2
|
91 |
+
42. LDA_03: Closeness to LDA topic 3
|
92 |
+
43. LDA_04: Closeness to LDA topic 4
|
93 |
+
44. global_subjectivity: Text subjectivity
|
94 |
+
45. global_sentiment_polarity: Text sentiment polarity
|
95 |
+
46. global_rate_positive_words: Rate of positive words in the content
|
96 |
+
47. global_rate_negative_words: Rate of negative words in the content
|
97 |
+
48. rate_positive_words: Rate of positive words among non-neutral
|
98 |
+
tokens
|
99 |
+
49. rate_negative_words: Rate of negative words among non-neutral
|
100 |
+
tokens
|
101 |
+
50. avg_positive_polarity: Avg. polarity of positive words
|
102 |
+
51. min_positive_polarity: Min. polarity of positive words
|
103 |
+
52. max_positive_polarity: Max. polarity of positive words
|
104 |
+
53. avg_negative_polarity: Avg. polarity of negative words
|
105 |
+
54. min_negative_polarity: Min. polarity of negative words
|
106 |
+
55. max_negative_polarity: Max. polarity of negative words
|
107 |
+
56. title_subjectivity: Title subjectivity
|
108 |
+
57. title_sentiment_polarity: Title polarity
|
109 |
+
58. abs_title_subjectivity: Absolute subjectivity level
|
110 |
+
59. abs_title_sentiment_polarity: Absolute polarity level
|
111 |
+
60. shares: Number of shares (target)
|
112 |
+
|
113 |
+
8. Missing Attribute Values: None
|
114 |
+
|
115 |
+
9. Class Distribution: the class value (shares) is continuously valued. We
|
116 |
+
transformed the task into a binary task using a decision
|
117 |
+
threshold of 1400.
|
118 |
+
|
119 |
+
Shares Value Range: Number of Instances in Range:
|
120 |
+
< 1400 18490
|
121 |
+
>= 1400 21154
|
122 |
+
|
123 |
+
|
124 |
+
Summary Statistics:
|
125 |
+
Feature Min Max Mean SD
|
126 |
+
timedelta 8.0000 731.0000 354.5305 214.1611
|
127 |
+
n_tokens_title 2.0000 23.0000 10.3987 2.1140
|
128 |
+
n_tokens_content 0.0000 8474.0000 546.5147 471.1016
|
129 |
+
n_unique_tokens 0.0000 701.0000 0.5482 3.5207
|
130 |
+
n_non_stop_words 0.0000 1042.0000 0.9965 5.2312
|
131 |
+
n_non_stop_unique_tokens 0.0000 650.0000 0.6892 3.2648
|
132 |
+
num_hrefs 0.0000 304.0000 10.8837 11.3319
|
133 |
+
num_self_hrefs 0.0000 116.0000 3.2936 3.8551
|
134 |
+
num_imgs 0.0000 128.0000 4.5441 8.3093
|
135 |
+
num_videos 0.0000 91.0000 1.2499 4.1078
|
136 |
+
average_token_length 0.0000 8.0415 4.5482 0.8444
|
137 |
+
num_keywords 1.0000 10.0000 7.2238 1.9091
|
138 |
+
data_channel_is_lifestyle 0.0000 1.0000 0.0529 0.2239
|
139 |
+
data_channel_is_entertainment 0.0000 1.0000 0.1780 0.3825
|
140 |
+
data_channel_is_bus 0.0000 1.0000 0.1579 0.3646
|
141 |
+
data_channel_is_socmed 0.0000 1.0000 0.0586 0.2349
|
142 |
+
data_channel_is_tech 0.0000 1.0000 0.1853 0.3885
|
143 |
+
data_channel_is_world 0.0000 1.0000 0.2126 0.4091
|
144 |
+
kw_min_min -1.0000 377.0000 26.1068 69.6323
|
145 |
+
kw_max_min 0.0000 298400.0000 1153.9517 3857.9422
|
146 |
+
kw_avg_min -1.0000 42827.8571 312.3670 620.7761
|
147 |
+
kw_min_max 0.0000 843300.0000 13612.3541 57985.2980
|
148 |
+
kw_max_max 0.0000 843300.0000 752324.0667 214499.4242
|
149 |
+
kw_avg_max 0.0000 843300.0000 259281.9381 135100.5433
|
150 |
+
kw_min_avg -1.0000 3613.0398 1117.1466 1137.4426
|
151 |
+
kw_max_avg 0.0000 298400.0000 5657.2112 6098.7950
|
152 |
+
kw_avg_avg 0.0000 43567.6599 3135.8586 1318.1338
|
153 |
+
self_reference_min_shares 0.0000 843300.0000 3998.7554 19738.4216
|
154 |
+
self_reference_max_shares 0.0000 843300.0000 10329.2127 41027.0592
|
155 |
+
self_reference_avg_sharess 0.0000 843300.0000 6401.6976 24211.0269
|
156 |
+
weekday_is_monday 0.0000 1.0000 0.1680 0.3739
|
157 |
+
weekday_is_tuesday 0.0000 1.0000 0.1864 0.3894
|
158 |
+
weekday_is_wednesday 0.0000 1.0000 0.1875 0.3903
|
159 |
+
weekday_is_thursday 0.0000 1.0000 0.1833 0.3869
|
160 |
+
weekday_is_friday 0.0000 1.0000 0.1438 0.3509
|
161 |
+
weekday_is_saturday 0.0000 1.0000 0.0619 0.2409
|
162 |
+
weekday_is_sunday 0.0000 1.0000 0.0690 0.2535
|
163 |
+
is_weekend 0.0000 1.0000 0.1309 0.3373
|
164 |
+
LDA_00 0.0000 0.9270 0.1846 0.2630
|
165 |
+
LDA_01 0.0000 0.9259 0.1413 0.2197
|
166 |
+
LDA_02 0.0000 0.9200 0.2163 0.2821
|
167 |
+
LDA_03 0.0000 0.9265 0.2238 0.2952
|
168 |
+
LDA_04 0.0000 0.9272 0.2340 0.2892
|
169 |
+
global_subjectivity 0.0000 1.0000 0.4434 0.1167
|
170 |
+
global_sentiment_polarity -0.3937 0.7278 0.1193 0.0969
|
171 |
+
global_rate_positive_words 0.0000 0.1555 0.0396 0.0174
|
172 |
+
global_rate_negative_words 0.0000 0.1849 0.0166 0.0108
|
173 |
+
rate_positive_words 0.0000 1.0000 0.6822 0.1902
|
174 |
+
rate_negative_words 0.0000 1.0000 0.2879 0.1562
|
175 |
+
avg_positive_polarity 0.0000 1.0000 0.3538 0.1045
|
176 |
+
min_positive_polarity 0.0000 1.0000 0.0954 0.0713
|
177 |
+
max_positive_polarity 0.0000 1.0000 0.7567 0.2478
|
178 |
+
avg_negative_polarity -1.0000 0.0000 -0.2595 0.1277
|
179 |
+
min_negative_polarity -1.0000 0.0000 -0.5219 0.2903
|
180 |
+
max_negative_polarity -1.0000 0.0000 -0.1075 0.0954
|
181 |
+
title_subjectivity 0.0000 1.0000 0.2824 0.3242
|
182 |
+
title_sentiment_polarity -1.0000 1.0000 0.0714 0.2654
|
183 |
+
abs_title_subjectivity 0.0000 0.5000 0.3418 0.1888
|
184 |
+
abs_title_sentiment_polarity 0.0000 1.0000 0.1561 0.2263
|
185 |
+
|
186 |
+
|
187 |
+
Citation Request:
|
188 |
+
|
189 |
+
Please include this citation if you plan to use this database:
|
190 |
+
|
191 |
+
K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision
|
192 |
+
Support System for Predicting the Popularity of Online News. Proceedings
|
193 |
+
of the 17th EPIA 2015 - Portuguese Conference on Artificial Intelligence,
|
194 |
+
September, Coimbra, Portugal.
|
datasets/airfoil_self_noise.dat
ADDED
@@ -0,0 +1,1503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
800 0 0.3048 71.3 0.00266337 126.201
|
2 |
+
1000 0 0.3048 71.3 0.00266337 125.201
|
3 |
+
1250 0 0.3048 71.3 0.00266337 125.951
|
4 |
+
1600 0 0.3048 71.3 0.00266337 127.591
|
5 |
+
2000 0 0.3048 71.3 0.00266337 127.461
|
6 |
+
2500 0 0.3048 71.3 0.00266337 125.571
|
7 |
+
3150 0 0.3048 71.3 0.00266337 125.201
|
8 |
+
4000 0 0.3048 71.3 0.00266337 123.061
|
9 |
+
5000 0 0.3048 71.3 0.00266337 121.301
|
10 |
+
6300 0 0.3048 71.3 0.00266337 119.541
|
11 |
+
8000 0 0.3048 71.3 0.00266337 117.151
|
12 |
+
10000 0 0.3048 71.3 0.00266337 115.391
|
13 |
+
12500 0 0.3048 71.3 0.00266337 112.241
|
14 |
+
16000 0 0.3048 71.3 0.00266337 108.721
|
15 |
+
500 0 0.3048 55.5 0.00283081 126.416
|
16 |
+
630 0 0.3048 55.5 0.00283081 127.696
|
17 |
+
800 0 0.3048 55.5 0.00283081 128.086
|
18 |
+
1000 0 0.3048 55.5 0.00283081 126.966
|
19 |
+
1250 0 0.3048 55.5 0.00283081 126.086
|
20 |
+
1600 0 0.3048 55.5 0.00283081 126.986
|
21 |
+
2000 0 0.3048 55.5 0.00283081 126.616
|
22 |
+
2500 0 0.3048 55.5 0.00283081 124.106
|
23 |
+
3150 0 0.3048 55.5 0.00283081 123.236
|
24 |
+
4000 0 0.3048 55.5 0.00283081 121.106
|
25 |
+
5000 0 0.3048 55.5 0.00283081 119.606
|
26 |
+
6300 0 0.3048 55.5 0.00283081 117.976
|
27 |
+
8000 0 0.3048 55.5 0.00283081 116.476
|
28 |
+
10000 0 0.3048 55.5 0.00283081 113.076
|
29 |
+
12500 0 0.3048 55.5 0.00283081 111.076
|
30 |
+
200 0 0.3048 39.6 0.00310138 118.129
|
31 |
+
250 0 0.3048 39.6 0.00310138 119.319
|
32 |
+
315 0 0.3048 39.6 0.00310138 122.779
|
33 |
+
400 0 0.3048 39.6 0.00310138 124.809
|
34 |
+
500 0 0.3048 39.6 0.00310138 126.959
|
35 |
+
630 0 0.3048 39.6 0.00310138 128.629
|
36 |
+
800 0 0.3048 39.6 0.00310138 129.099
|
37 |
+
1000 0 0.3048 39.6 0.00310138 127.899
|
38 |
+
1250 0 0.3048 39.6 0.00310138 125.499
|
39 |
+
1600 0 0.3048 39.6 0.00310138 124.049
|
40 |
+
2000 0 0.3048 39.6 0.00310138 123.689
|
41 |
+
2500 0 0.3048 39.6 0.00310138 121.399
|
42 |
+
3150 0 0.3048 39.6 0.00310138 120.319
|
43 |
+
4000 0 0.3048 39.6 0.00310138 119.229
|
44 |
+
5000 0 0.3048 39.6 0.00310138 117.789
|
45 |
+
6300 0 0.3048 39.6 0.00310138 116.229
|
46 |
+
8000 0 0.3048 39.6 0.00310138 114.779
|
47 |
+
10000 0 0.3048 39.6 0.00310138 112.139
|
48 |
+
12500 0 0.3048 39.6 0.00310138 109.619
|
49 |
+
200 0 0.3048 31.7 0.00331266 117.195
|
50 |
+
250 0 0.3048 31.7 0.00331266 118.595
|
51 |
+
315 0 0.3048 31.7 0.00331266 122.765
|
52 |
+
400 0 0.3048 31.7 0.00331266 125.045
|
53 |
+
500 0 0.3048 31.7 0.00331266 127.315
|
54 |
+
630 0 0.3048 31.7 0.00331266 129.095
|
55 |
+
800 0 0.3048 31.7 0.00331266 129.235
|
56 |
+
1000 0 0.3048 31.7 0.00331266 127.365
|
57 |
+
1250 0 0.3048 31.7 0.00331266 124.355
|
58 |
+
1600 0 0.3048 31.7 0.00331266 122.365
|
59 |
+
2000 0 0.3048 31.7 0.00331266 122.375
|
60 |
+
2500 0 0.3048 31.7 0.00331266 120.755
|
61 |
+
3150 0 0.3048 31.7 0.00331266 119.135
|
62 |
+
4000 0 0.3048 31.7 0.00331266 118.145
|
63 |
+
5000 0 0.3048 31.7 0.00331266 115.645
|
64 |
+
6300 0 0.3048 31.7 0.00331266 113.775
|
65 |
+
8000 0 0.3048 31.7 0.00331266 110.515
|
66 |
+
10000 0 0.3048 31.7 0.00331266 108.265
|
67 |
+
800 1.5 0.3048 71.3 0.00336729 127.122
|
68 |
+
1000 1.5 0.3048 71.3 0.00336729 125.992
|
69 |
+
1250 1.5 0.3048 71.3 0.00336729 125.872
|
70 |
+
1600 1.5 0.3048 71.3 0.00336729 126.632
|
71 |
+
2000 1.5 0.3048 71.3 0.00336729 126.642
|
72 |
+
2500 1.5 0.3048 71.3 0.00336729 124.512
|
73 |
+
3150 1.5 0.3048 71.3 0.00336729 123.392
|
74 |
+
4000 1.5 0.3048 71.3 0.00336729 121.762
|
75 |
+
5000 1.5 0.3048 71.3 0.00336729 119.632
|
76 |
+
6300 1.5 0.3048 71.3 0.00336729 118.122
|
77 |
+
8000 1.5 0.3048 71.3 0.00336729 115.372
|
78 |
+
10000 1.5 0.3048 71.3 0.00336729 113.492
|
79 |
+
12500 1.5 0.3048 71.3 0.00336729 109.222
|
80 |
+
16000 1.5 0.3048 71.3 0.00336729 106.582
|
81 |
+
315 1.5 0.3048 39.6 0.00392107 121.851
|
82 |
+
400 1.5 0.3048 39.6 0.00392107 124.001
|
83 |
+
500 1.5 0.3048 39.6 0.00392107 126.661
|
84 |
+
630 1.5 0.3048 39.6 0.00392107 128.311
|
85 |
+
800 1.5 0.3048 39.6 0.00392107 128.831
|
86 |
+
1000 1.5 0.3048 39.6 0.00392107 127.581
|
87 |
+
1250 1.5 0.3048 39.6 0.00392107 125.211
|
88 |
+
1600 1.5 0.3048 39.6 0.00392107 122.211
|
89 |
+
2000 1.5 0.3048 39.6 0.00392107 122.101
|
90 |
+
2500 1.5 0.3048 39.6 0.00392107 120.981
|
91 |
+
3150 1.5 0.3048 39.6 0.00392107 119.111
|
92 |
+
4000 1.5 0.3048 39.6 0.00392107 117.741
|
93 |
+
5000 1.5 0.3048 39.6 0.00392107 116.241
|
94 |
+
6300 1.5 0.3048 39.6 0.00392107 114.751
|
95 |
+
8000 1.5 0.3048 39.6 0.00392107 112.251
|
96 |
+
10000 1.5 0.3048 39.6 0.00392107 108.991
|
97 |
+
12500 1.5 0.3048 39.6 0.00392107 106.111
|
98 |
+
400 3 0.3048 71.3 0.00425727 127.564
|
99 |
+
500 3 0.3048 71.3 0.00425727 128.454
|
100 |
+
630 3 0.3048 71.3 0.00425727 129.354
|
101 |
+
800 3 0.3048 71.3 0.00425727 129.494
|
102 |
+
1000 3 0.3048 71.3 0.00425727 129.004
|
103 |
+
1250 3 0.3048 71.3 0.00425727 127.634
|
104 |
+
1600 3 0.3048 71.3 0.00425727 126.514
|
105 |
+
2000 3 0.3048 71.3 0.00425727 125.524
|
106 |
+
2500 3 0.3048 71.3 0.00425727 124.024
|
107 |
+
3150 3 0.3048 71.3 0.00425727 121.514
|
108 |
+
4000 3 0.3048 71.3 0.00425727 120.264
|
109 |
+
5000 3 0.3048 71.3 0.00425727 118.134
|
110 |
+
6300 3 0.3048 71.3 0.00425727 116.134
|
111 |
+
8000 3 0.3048 71.3 0.00425727 114.634
|
112 |
+
10000 3 0.3048 71.3 0.00425727 110.224
|
113 |
+
400 3 0.3048 55.5 0.00452492 126.159
|
114 |
+
500 3 0.3048 55.5 0.00452492 128.179
|
115 |
+
630 3 0.3048 55.5 0.00452492 129.569
|
116 |
+
800 3 0.3048 55.5 0.00452492 129.949
|
117 |
+
1000 3 0.3048 55.5 0.00452492 129.329
|
118 |
+
1250 3 0.3048 55.5 0.00452492 127.329
|
119 |
+
1600 3 0.3048 55.5 0.00452492 124.439
|
120 |
+
2000 3 0.3048 55.5 0.00452492 123.069
|
121 |
+
2500 3 0.3048 55.5 0.00452492 122.439
|
122 |
+
3150 3 0.3048 55.5 0.00452492 120.189
|
123 |
+
4000 3 0.3048 55.5 0.00452492 118.689
|
124 |
+
5000 3 0.3048 55.5 0.00452492 117.309
|
125 |
+
6300 3 0.3048 55.5 0.00452492 115.679
|
126 |
+
8000 3 0.3048 55.5 0.00452492 113.799
|
127 |
+
10000 3 0.3048 55.5 0.00452492 112.169
|
128 |
+
315 3 0.3048 39.6 0.00495741 123.312
|
129 |
+
400 3 0.3048 39.6 0.00495741 125.472
|
130 |
+
500 3 0.3048 39.6 0.00495741 127.632
|
131 |
+
630 3 0.3048 39.6 0.00495741 129.292
|
132 |
+
800 3 0.3048 39.6 0.00495741 129.552
|
133 |
+
1000 3 0.3048 39.6 0.00495741 128.312
|
134 |
+
1250 3 0.3048 39.6 0.00495741 125.802
|
135 |
+
1600 3 0.3048 39.6 0.00495741 122.782
|
136 |
+
2000 3 0.3048 39.6 0.00495741 120.532
|
137 |
+
2500 3 0.3048 39.6 0.00495741 120.162
|
138 |
+
3150 3 0.3048 39.6 0.00495741 118.922
|
139 |
+
4000 3 0.3048 39.6 0.00495741 116.792
|
140 |
+
5000 3 0.3048 39.6 0.00495741 115.792
|
141 |
+
6300 3 0.3048 39.6 0.00495741 114.042
|
142 |
+
8000 3 0.3048 39.6 0.00495741 110.652
|
143 |
+
315 3 0.3048 31.7 0.00529514 123.118
|
144 |
+
400 3 0.3048 31.7 0.00529514 125.398
|
145 |
+
500 3 0.3048 31.7 0.00529514 127.548
|
146 |
+
630 3 0.3048 31.7 0.00529514 128.698
|
147 |
+
800 3 0.3048 31.7 0.00529514 128.708
|
148 |
+
1000 3 0.3048 31.7 0.00529514 126.838
|
149 |
+
1250 3 0.3048 31.7 0.00529514 124.838
|
150 |
+
1600 3 0.3048 31.7 0.00529514 122.088
|
151 |
+
2000 3 0.3048 31.7 0.00529514 120.088
|
152 |
+
2500 3 0.3048 31.7 0.00529514 119.598
|
153 |
+
3150 3 0.3048 31.7 0.00529514 118.108
|
154 |
+
4000 3 0.3048 31.7 0.00529514 115.608
|
155 |
+
5000 3 0.3048 31.7 0.00529514 113.858
|
156 |
+
6300 3 0.3048 31.7 0.00529514 109.718
|
157 |
+
250 4 0.3048 71.3 0.00497773 126.395
|
158 |
+
315 4 0.3048 71.3 0.00497773 128.175
|
159 |
+
400 4 0.3048 71.3 0.00497773 129.575
|
160 |
+
500 4 0.3048 71.3 0.00497773 130.715
|
161 |
+
630 4 0.3048 71.3 0.00497773 131.615
|
162 |
+
800 4 0.3048 71.3 0.00497773 131.755
|
163 |
+
1000 4 0.3048 71.3 0.00497773 131.015
|
164 |
+
1250 4 0.3048 71.3 0.00497773 129.395
|
165 |
+
1600 4 0.3048 71.3 0.00497773 126.645
|
166 |
+
2000 4 0.3048 71.3 0.00497773 124.395
|
167 |
+
2500 4 0.3048 71.3 0.00497773 123.775
|
168 |
+
3150 4 0.3048 71.3 0.00497773 121.775
|
169 |
+
4000 4 0.3048 71.3 0.00497773 119.535
|
170 |
+
5000 4 0.3048 71.3 0.00497773 117.785
|
171 |
+
6300 4 0.3048 71.3 0.00497773 116.165
|
172 |
+
8000 4 0.3048 71.3 0.00497773 113.665
|
173 |
+
10000 4 0.3048 71.3 0.00497773 110.905
|
174 |
+
12500 4 0.3048 71.3 0.00497773 107.405
|
175 |
+
250 4 0.3048 39.6 0.00579636 123.543
|
176 |
+
315 4 0.3048 39.6 0.00579636 126.843
|
177 |
+
400 4 0.3048 39.6 0.00579636 128.633
|
178 |
+
500 4 0.3048 39.6 0.00579636 130.173
|
179 |
+
630 4 0.3048 39.6 0.00579636 131.073
|
180 |
+
800 4 0.3048 39.6 0.00579636 130.723
|
181 |
+
1000 4 0.3048 39.6 0.00579636 128.723
|
182 |
+
1250 4 0.3048 39.6 0.00579636 126.343
|
183 |
+
1600 4 0.3048 39.6 0.00579636 123.213
|
184 |
+
2000 4 0.3048 39.6 0.00579636 120.963
|
185 |
+
2500 4 0.3048 39.6 0.00579636 120.233
|
186 |
+
3150 4 0.3048 39.6 0.00579636 118.743
|
187 |
+
4000 4 0.3048 39.6 0.00579636 115.863
|
188 |
+
5000 4 0.3048 39.6 0.00579636 113.733
|
189 |
+
1250 0 0.2286 71.3 0.00214345 128.144
|
190 |
+
1600 0 0.2286 71.3 0.00214345 129.134
|
191 |
+
2000 0 0.2286 71.3 0.00214345 128.244
|
192 |
+
2500 0 0.2286 71.3 0.00214345 128.354
|
193 |
+
3150 0 0.2286 71.3 0.00214345 127.834
|
194 |
+
4000 0 0.2286 71.3 0.00214345 125.824
|
195 |
+
5000 0 0.2286 71.3 0.00214345 124.304
|
196 |
+
6300 0 0.2286 71.3 0.00214345 122.044
|
197 |
+
8000 0 0.2286 71.3 0.00214345 118.024
|
198 |
+
10000 0 0.2286 71.3 0.00214345 118.134
|
199 |
+
12500 0 0.2286 71.3 0.00214345 117.624
|
200 |
+
16000 0 0.2286 71.3 0.00214345 114.984
|
201 |
+
20000 0 0.2286 71.3 0.00214345 114.474
|
202 |
+
315 0 0.2286 55.5 0.00229336 119.540
|
203 |
+
400 0 0.2286 55.5 0.00229336 121.660
|
204 |
+
500 0 0.2286 55.5 0.00229336 123.780
|
205 |
+
630 0 0.2286 55.5 0.00229336 126.160
|
206 |
+
800 0 0.2286 55.5 0.00229336 127.530
|
207 |
+
1000 0 0.2286 55.5 0.00229336 128.290
|
208 |
+
1250 0 0.2286 55.5 0.00229336 127.910
|
209 |
+
1600 0 0.2286 55.5 0.00229336 126.790
|
210 |
+
2000 0 0.2286 55.5 0.00229336 126.540
|
211 |
+
2500 0 0.2286 55.5 0.00229336 126.540
|
212 |
+
3150 0 0.2286 55.5 0.00229336 125.160
|
213 |
+
4000 0 0.2286 55.5 0.00229336 123.410
|
214 |
+
5000 0 0.2286 55.5 0.00229336 122.410
|
215 |
+
6300 0 0.2286 55.5 0.00229336 118.410
|
216 |
+
315 0 0.2286 39.6 0.00253511 121.055
|
217 |
+
400 0 0.2286 39.6 0.00253511 123.565
|
218 |
+
500 0 0.2286 39.6 0.00253511 126.195
|
219 |
+
630 0 0.2286 39.6 0.00253511 128.705
|
220 |
+
800 0 0.2286 39.6 0.00253511 130.205
|
221 |
+
1000 0 0.2286 39.6 0.00253511 130.435
|
222 |
+
1250 0 0.2286 39.6 0.00253511 129.395
|
223 |
+
1600 0 0.2286 39.6 0.00253511 127.095
|
224 |
+
2000 0 0.2286 39.6 0.00253511 125.305
|
225 |
+
2500 0 0.2286 39.6 0.00253511 125.025
|
226 |
+
3150 0 0.2286 39.6 0.00253511 124.625
|
227 |
+
4000 0 0.2286 39.6 0.00253511 123.465
|
228 |
+
5000 0 0.2286 39.6 0.00253511 122.175
|
229 |
+
6300 0 0.2286 39.6 0.00253511 117.465
|
230 |
+
315 0 0.2286 31.7 0.0027238 120.595
|
231 |
+
400 0 0.2286 31.7 0.0027238 123.635
|
232 |
+
500 0 0.2286 31.7 0.0027238 126.675
|
233 |
+
630 0 0.2286 31.7 0.0027238 129.465
|
234 |
+
800 0 0.2286 31.7 0.0027238 130.725
|
235 |
+
1000 0 0.2286 31.7 0.0027238 130.595
|
236 |
+
1250 0 0.2286 31.7 0.0027238 128.805
|
237 |
+
1600 0 0.2286 31.7 0.0027238 125.625
|
238 |
+
2000 0 0.2286 31.7 0.0027238 123.455
|
239 |
+
2500 0 0.2286 31.7 0.0027238 123.445
|
240 |
+
3150 0 0.2286 31.7 0.0027238 123.445
|
241 |
+
4000 0 0.2286 31.7 0.0027238 122.035
|
242 |
+
5000 0 0.2286 31.7 0.0027238 120.505
|
243 |
+
6300 0 0.2286 31.7 0.0027238 116.815
|
244 |
+
400 2 0.2286 71.3 0.00293031 125.116
|
245 |
+
500 2 0.2286 71.3 0.00293031 126.486
|
246 |
+
630 2 0.2286 71.3 0.00293031 127.356
|
247 |
+
800 2 0.2286 71.3 0.00293031 128.216
|
248 |
+
1000 2 0.2286 71.3 0.00293031 128.956
|
249 |
+
1250 2 0.2286 71.3 0.00293031 128.816
|
250 |
+
1600 2 0.2286 71.3 0.00293031 127.796
|
251 |
+
2000 2 0.2286 71.3 0.00293031 126.896
|
252 |
+
2500 2 0.2286 71.3 0.00293031 127.006
|
253 |
+
3150 2 0.2286 71.3 0.00293031 126.116
|
254 |
+
4000 2 0.2286 71.3 0.00293031 124.086
|
255 |
+
5000 2 0.2286 71.3 0.00293031 122.816
|
256 |
+
6300 2 0.2286 71.3 0.00293031 120.786
|
257 |
+
8000 2 0.2286 71.3 0.00293031 115.996
|
258 |
+
10000 2 0.2286 71.3 0.00293031 113.086
|
259 |
+
400 2 0.2286 55.5 0.00313525 122.292
|
260 |
+
500 2 0.2286 55.5 0.00313525 124.692
|
261 |
+
630 2 0.2286 55.5 0.00313525 126.842
|
262 |
+
800 2 0.2286 55.5 0.00313525 128.492
|
263 |
+
1000 2 0.2286 55.5 0.00313525 129.002
|
264 |
+
1250 2 0.2286 55.5 0.00313525 128.762
|
265 |
+
1600 2 0.2286 55.5 0.00313525 126.752
|
266 |
+
2000 2 0.2286 55.5 0.00313525 124.612
|
267 |
+
2500 2 0.2286 55.5 0.00313525 123.862
|
268 |
+
3150 2 0.2286 55.5 0.00313525 123.742
|
269 |
+
4000 2 0.2286 55.5 0.00313525 122.232
|
270 |
+
5000 2 0.2286 55.5 0.00313525 120.472
|
271 |
+
6300 2 0.2286 55.5 0.00313525 118.712
|
272 |
+
315 2 0.2286 39.6 0.00346574 120.137
|
273 |
+
400 2 0.2286 39.6 0.00346574 122.147
|
274 |
+
500 2 0.2286 39.6 0.00346574 125.157
|
275 |
+
630 2 0.2286 39.6 0.00346574 127.417
|
276 |
+
800 2 0.2286 39.6 0.00346574 129.037
|
277 |
+
1000 2 0.2286 39.6 0.00346574 129.147
|
278 |
+
1250 2 0.2286 39.6 0.00346574 128.257
|
279 |
+
1600 2 0.2286 39.6 0.00346574 125.837
|
280 |
+
2000 2 0.2286 39.6 0.00346574 122.797
|
281 |
+
2500 2 0.2286 39.6 0.00346574 121.397
|
282 |
+
3150 2 0.2286 39.6 0.00346574 121.627
|
283 |
+
4000 2 0.2286 39.6 0.00346574 120.227
|
284 |
+
5000 2 0.2286 39.6 0.00346574 118.827
|
285 |
+
6300 2 0.2286 39.6 0.00346574 116.417
|
286 |
+
315 2 0.2286 31.7 0.00372371 120.147
|
287 |
+
400 2 0.2286 31.7 0.00372371 123.417
|
288 |
+
500 2 0.2286 31.7 0.00372371 126.677
|
289 |
+
630 2 0.2286 31.7 0.00372371 129.057
|
290 |
+
800 2 0.2286 31.7 0.00372371 130.307
|
291 |
+
1000 2 0.2286 31.7 0.00372371 130.307
|
292 |
+
1250 2 0.2286 31.7 0.00372371 128.677
|
293 |
+
1600 2 0.2286 31.7 0.00372371 125.797
|
294 |
+
2000 2 0.2286 31.7 0.00372371 123.037
|
295 |
+
2500 2 0.2286 31.7 0.00372371 121.407
|
296 |
+
3150 2 0.2286 31.7 0.00372371 121.527
|
297 |
+
4000 2 0.2286 31.7 0.00372371 120.527
|
298 |
+
5000 2 0.2286 31.7 0.00372371 118.267
|
299 |
+
6300 2 0.2286 31.7 0.00372371 115.137
|
300 |
+
500 4 0.2286 71.3 0.00400603 126.758
|
301 |
+
630 4 0.2286 71.3 0.00400603 129.038
|
302 |
+
800 4 0.2286 71.3 0.00400603 130.688
|
303 |
+
1000 4 0.2286 71.3 0.00400603 131.708
|
304 |
+
1250 4 0.2286 71.3 0.00400603 131.718
|
305 |
+
1600 4 0.2286 71.3 0.00400603 129.468
|
306 |
+
2000 4 0.2286 71.3 0.00400603 126.218
|
307 |
+
2500 4 0.2286 71.3 0.00400603 124.338
|
308 |
+
3150 4 0.2286 71.3 0.00400603 124.108
|
309 |
+
4000 4 0.2286 71.3 0.00400603 121.728
|
310 |
+
5000 4 0.2286 71.3 0.00400603 121.118
|
311 |
+
6300 4 0.2286 71.3 0.00400603 118.618
|
312 |
+
8000 4 0.2286 71.3 0.00400603 112.848
|
313 |
+
10000 4 0.2286 71.3 0.00400603 113.108
|
314 |
+
12500 4 0.2286 71.3 0.00400603 114.258
|
315 |
+
16000 4 0.2286 71.3 0.00400603 112.768
|
316 |
+
20000 4 0.2286 71.3 0.00400603 109.638
|
317 |
+
400 4 0.2286 55.5 0.0042862 123.274
|
318 |
+
500 4 0.2286 55.5 0.0042862 127.314
|
319 |
+
630 4 0.2286 55.5 0.0042862 129.964
|
320 |
+
800 4 0.2286 55.5 0.0042862 131.864
|
321 |
+
1000 4 0.2286 55.5 0.0042862 132.134
|
322 |
+
1250 4 0.2286 55.5 0.0042862 131.264
|
323 |
+
1600 4 0.2286 55.5 0.0042862 128.264
|
324 |
+
2000 4 0.2286 55.5 0.0042862 124.254
|
325 |
+
2500 4 0.2286 55.5 0.0042862 122.384
|
326 |
+
3150 4 0.2286 55.5 0.0042862 122.394
|
327 |
+
4000 4 0.2286 55.5 0.0042862 120.654
|
328 |
+
5000 4 0.2286 55.5 0.0042862 120.034
|
329 |
+
6300 4 0.2286 55.5 0.0042862 117.154
|
330 |
+
8000 4 0.2286 55.5 0.0042862 112.524
|
331 |
+
315 4 0.2286 39.6 0.00473801 122.229
|
332 |
+
400 4 0.2286 39.6 0.00473801 123.879
|
333 |
+
500 4 0.2286 39.6 0.00473801 127.039
|
334 |
+
630 4 0.2286 39.6 0.00473801 129.579
|
335 |
+
800 4 0.2286 39.6 0.00473801 130.469
|
336 |
+
1000 4 0.2286 39.6 0.00473801 129.969
|
337 |
+
1250 4 0.2286 39.6 0.00473801 128.339
|
338 |
+
1600 4 0.2286 39.6 0.00473801 125.319
|
339 |
+
2000 4 0.2286 39.6 0.00473801 121.659
|
340 |
+
2500 4 0.2286 39.6 0.00473801 119.649
|
341 |
+
3150 4 0.2286 39.6 0.00473801 120.419
|
342 |
+
4000 4 0.2286 39.6 0.00473801 119.159
|
343 |
+
5000 4 0.2286 39.6 0.00473801 117.649
|
344 |
+
6300 4 0.2286 39.6 0.00473801 114.249
|
345 |
+
8000 4 0.2286 39.6 0.00473801 113.129
|
346 |
+
250 4 0.2286 31.7 0.00509068 120.189
|
347 |
+
315 4 0.2286 31.7 0.00509068 123.609
|
348 |
+
400 4 0.2286 31.7 0.00509068 126.149
|
349 |
+
500 4 0.2286 31.7 0.00509068 128.939
|
350 |
+
630 4 0.2286 31.7 0.00509068 130.349
|
351 |
+
800 4 0.2286 31.7 0.00509068 130.869
|
352 |
+
1000 4 0.2286 31.7 0.00509068 129.869
|
353 |
+
1250 4 0.2286 31.7 0.00509068 128.119
|
354 |
+
1600 4 0.2286 31.7 0.00509068 125.229
|
355 |
+
2000 4 0.2286 31.7 0.00509068 122.089
|
356 |
+
2500 4 0.2286 31.7 0.00509068 120.209
|
357 |
+
3150 4 0.2286 31.7 0.00509068 120.229
|
358 |
+
4000 4 0.2286 31.7 0.00509068 118.859
|
359 |
+
5000 4 0.2286 31.7 0.00509068 115.969
|
360 |
+
6300 4 0.2286 31.7 0.00509068 112.699
|
361 |
+
400 5.3 0.2286 71.3 0.0051942 127.700
|
362 |
+
500 5.3 0.2286 71.3 0.0051942 129.880
|
363 |
+
630 5.3 0.2286 71.3 0.0051942 131.800
|
364 |
+
800 5.3 0.2286 71.3 0.0051942 133.480
|
365 |
+
1000 5.3 0.2286 71.3 0.0051942 134.000
|
366 |
+
1250 5.3 0.2286 71.3 0.0051942 133.380
|
367 |
+
1600 5.3 0.2286 71.3 0.0051942 130.460
|
368 |
+
2000 5.3 0.2286 71.3 0.0051942 125.890
|
369 |
+
2500 5.3 0.2286 71.3 0.0051942 123.740
|
370 |
+
3150 5.3 0.2286 71.3 0.0051942 123.120
|
371 |
+
4000 5.3 0.2286 71.3 0.0051942 120.330
|
372 |
+
5000 5.3 0.2286 71.3 0.0051942 118.050
|
373 |
+
6300 5.3 0.2286 71.3 0.0051942 116.920
|
374 |
+
8000 5.3 0.2286 71.3 0.0051942 114.900
|
375 |
+
10000 5.3 0.2286 71.3 0.0051942 111.350
|
376 |
+
250 5.3 0.2286 39.6 0.00614329 127.011
|
377 |
+
315 5.3 0.2286 39.6 0.00614329 129.691
|
378 |
+
400 5.3 0.2286 39.6 0.00614329 131.221
|
379 |
+
500 5.3 0.2286 39.6 0.00614329 132.251
|
380 |
+
630 5.3 0.2286 39.6 0.00614329 132.011
|
381 |
+
800 5.3 0.2286 39.6 0.00614329 129.491
|
382 |
+
1000 5.3 0.2286 39.6 0.00614329 125.581
|
383 |
+
1250 5.3 0.2286 39.6 0.00614329 125.721
|
384 |
+
1600 5.3 0.2286 39.6 0.00614329 123.081
|
385 |
+
2000 5.3 0.2286 39.6 0.00614329 117.911
|
386 |
+
2500 5.3 0.2286 39.6 0.00614329 116.151
|
387 |
+
3150 5.3 0.2286 39.6 0.00614329 118.441
|
388 |
+
4000 5.3 0.2286 39.6 0.00614329 115.801
|
389 |
+
5000 5.3 0.2286 39.6 0.00614329 115.311
|
390 |
+
6300 5.3 0.2286 39.6 0.00614329 112.541
|
391 |
+
200 7.3 0.2286 71.3 0.0104404 138.758
|
392 |
+
250 7.3 0.2286 71.3 0.0104404 139.918
|
393 |
+
315 7.3 0.2286 71.3 0.0104404 139.808
|
394 |
+
400 7.3 0.2286 71.3 0.0104404 139.438
|
395 |
+
500 7.3 0.2286 71.3 0.0104404 136.798
|
396 |
+
630 7.3 0.2286 71.3 0.0104404 133.768
|
397 |
+
800 7.3 0.2286 71.3 0.0104404 130.748
|
398 |
+
1000 7.3 0.2286 71.3 0.0104404 126.838
|
399 |
+
1250 7.3 0.2286 71.3 0.0104404 127.358
|
400 |
+
1600 7.3 0.2286 71.3 0.0104404 125.728
|
401 |
+
2000 7.3 0.2286 71.3 0.0104404 122.708
|
402 |
+
2500 7.3 0.2286 71.3 0.0104404 122.088
|
403 |
+
3150 7.3 0.2286 71.3 0.0104404 120.458
|
404 |
+
4000 7.3 0.2286 71.3 0.0104404 119.208
|
405 |
+
5000 7.3 0.2286 71.3 0.0104404 115.298
|
406 |
+
6300 7.3 0.2286 71.3 0.0104404 115.818
|
407 |
+
200 7.3 0.2286 55.5 0.0111706 135.234
|
408 |
+
250 7.3 0.2286 55.5 0.0111706 136.384
|
409 |
+
315 7.3 0.2286 55.5 0.0111706 136.284
|
410 |
+
400 7.3 0.2286 55.5 0.0111706 135.924
|
411 |
+
500 7.3 0.2286 55.5 0.0111706 133.174
|
412 |
+
630 7.3 0.2286 55.5 0.0111706 130.934
|
413 |
+
800 7.3 0.2286 55.5 0.0111706 128.444
|
414 |
+
1000 7.3 0.2286 55.5 0.0111706 125.194
|
415 |
+
1250 7.3 0.2286 55.5 0.0111706 125.724
|
416 |
+
1600 7.3 0.2286 55.5 0.0111706 123.354
|
417 |
+
2000 7.3 0.2286 55.5 0.0111706 120.354
|
418 |
+
2500 7.3 0.2286 55.5 0.0111706 118.994
|
419 |
+
3150 7.3 0.2286 55.5 0.0111706 117.134
|
420 |
+
4000 7.3 0.2286 55.5 0.0111706 117.284
|
421 |
+
5000 7.3 0.2286 55.5 0.0111706 113.144
|
422 |
+
6300 7.3 0.2286 55.5 0.0111706 111.534
|
423 |
+
200 7.3 0.2286 39.6 0.0123481 130.989
|
424 |
+
250 7.3 0.2286 39.6 0.0123481 131.889
|
425 |
+
315 7.3 0.2286 39.6 0.0123481 132.149
|
426 |
+
400 7.3 0.2286 39.6 0.0123481 132.039
|
427 |
+
500 7.3 0.2286 39.6 0.0123481 130.299
|
428 |
+
630 7.3 0.2286 39.6 0.0123481 128.929
|
429 |
+
800 7.3 0.2286 39.6 0.0123481 126.299
|
430 |
+
1000 7.3 0.2286 39.6 0.0123481 122.539
|
431 |
+
1250 7.3 0.2286 39.6 0.0123481 123.189
|
432 |
+
1600 7.3 0.2286 39.6 0.0123481 121.059
|
433 |
+
2000 7.3 0.2286 39.6 0.0123481 117.809
|
434 |
+
2500 7.3 0.2286 39.6 0.0123481 116.559
|
435 |
+
3150 7.3 0.2286 39.6 0.0123481 114.309
|
436 |
+
4000 7.3 0.2286 39.6 0.0123481 114.079
|
437 |
+
5000 7.3 0.2286 39.6 0.0123481 111.959
|
438 |
+
6300 7.3 0.2286 39.6 0.0123481 110.839
|
439 |
+
200 7.3 0.2286 31.7 0.0132672 128.679
|
440 |
+
250 7.3 0.2286 31.7 0.0132672 130.089
|
441 |
+
315 7.3 0.2286 31.7 0.0132672 130.239
|
442 |
+
400 7.3 0.2286 31.7 0.0132672 130.269
|
443 |
+
500 7.3 0.2286 31.7 0.0132672 128.169
|
444 |
+
630 7.3 0.2286 31.7 0.0132672 126.189
|
445 |
+
800 7.3 0.2286 31.7 0.0132672 123.209
|
446 |
+
1000 7.3 0.2286 31.7 0.0132672 119.099
|
447 |
+
1250 7.3 0.2286 31.7 0.0132672 120.509
|
448 |
+
1600 7.3 0.2286 31.7 0.0132672 119.039
|
449 |
+
2000 7.3 0.2286 31.7 0.0132672 115.309
|
450 |
+
2500 7.3 0.2286 31.7 0.0132672 114.709
|
451 |
+
3150 7.3 0.2286 31.7 0.0132672 113.229
|
452 |
+
4000 7.3 0.2286 31.7 0.0132672 112.639
|
453 |
+
5000 7.3 0.2286 31.7 0.0132672 111.029
|
454 |
+
6300 7.3 0.2286 31.7 0.0132672 110.689
|
455 |
+
800 0 0.1524 71.3 0.0015988 125.817
|
456 |
+
1000 0 0.1524 71.3 0.0015988 127.307
|
457 |
+
1250 0 0.1524 71.3 0.0015988 128.927
|
458 |
+
1600 0 0.1524 71.3 0.0015988 129.667
|
459 |
+
2000 0 0.1524 71.3 0.0015988 128.647
|
460 |
+
2500 0 0.1524 71.3 0.0015988 128.127
|
461 |
+
3150 0 0.1524 71.3 0.0015988 129.377
|
462 |
+
4000 0 0.1524 71.3 0.0015988 128.857
|
463 |
+
5000 0 0.1524 71.3 0.0015988 126.457
|
464 |
+
6300 0 0.1524 71.3 0.0015988 125.427
|
465 |
+
8000 0 0.1524 71.3 0.0015988 122.527
|
466 |
+
10000 0 0.1524 71.3 0.0015988 120.247
|
467 |
+
12500 0 0.1524 71.3 0.0015988 117.087
|
468 |
+
16000 0 0.1524 71.3 0.0015988 113.297
|
469 |
+
500 0 0.1524 55.5 0.00172668 120.573
|
470 |
+
630 0 0.1524 55.5 0.00172668 123.583
|
471 |
+
800 0 0.1524 55.5 0.00172668 126.713
|
472 |
+
1000 0 0.1524 55.5 0.00172668 128.583
|
473 |
+
1250 0 0.1524 55.5 0.00172668 129.953
|
474 |
+
1600 0 0.1524 55.5 0.00172668 130.183
|
475 |
+
2000 0 0.1524 55.5 0.00172668 129.673
|
476 |
+
2500 0 0.1524 55.5 0.00172668 127.763
|
477 |
+
3150 0 0.1524 55.5 0.00172668 127.753
|
478 |
+
4000 0 0.1524 55.5 0.00172668 127.233
|
479 |
+
5000 0 0.1524 55.5 0.00172668 125.203
|
480 |
+
6300 0 0.1524 55.5 0.00172668 123.303
|
481 |
+
8000 0 0.1524 55.5 0.00172668 121.903
|
482 |
+
10000 0 0.1524 55.5 0.00172668 119.253
|
483 |
+
12500 0 0.1524 55.5 0.00172668 117.093
|
484 |
+
16000 0 0.1524 55.5 0.00172668 112.803
|
485 |
+
500 0 0.1524 39.6 0.00193287 119.513
|
486 |
+
630 0 0.1524 39.6 0.00193287 124.403
|
487 |
+
800 0 0.1524 39.6 0.00193287 127.903
|
488 |
+
1000 0 0.1524 39.6 0.00193287 130.033
|
489 |
+
1250 0 0.1524 39.6 0.00193287 131.023
|
490 |
+
1600 0 0.1524 39.6 0.00193287 131.013
|
491 |
+
2000 0 0.1524 39.6 0.00193287 129.633
|
492 |
+
2500 0 0.1524 39.6 0.00193287 126.863
|
493 |
+
3150 0 0.1524 39.6 0.00193287 125.603
|
494 |
+
4000 0 0.1524 39.6 0.00193287 125.343
|
495 |
+
5000 0 0.1524 39.6 0.00193287 123.453
|
496 |
+
6300 0 0.1524 39.6 0.00193287 121.313
|
497 |
+
8000 0 0.1524 39.6 0.00193287 120.553
|
498 |
+
10000 0 0.1524 39.6 0.00193287 115.413
|
499 |
+
500 0 0.1524 31.7 0.00209405 121.617
|
500 |
+
630 0 0.1524 31.7 0.00209405 125.997
|
501 |
+
800 0 0.1524 31.7 0.00209405 129.117
|
502 |
+
1000 0 0.1524 31.7 0.00209405 130.987
|
503 |
+
1250 0 0.1524 31.7 0.00209405 131.467
|
504 |
+
1600 0 0.1524 31.7 0.00209405 130.817
|
505 |
+
2000 0 0.1524 31.7 0.00209405 128.907
|
506 |
+
2500 0 0.1524 31.7 0.00209405 125.867
|
507 |
+
3150 0 0.1524 31.7 0.00209405 124.207
|
508 |
+
4000 0 0.1524 31.7 0.00209405 123.807
|
509 |
+
5000 0 0.1524 31.7 0.00209405 122.397
|
510 |
+
6300 0 0.1524 31.7 0.00209405 119.737
|
511 |
+
8000 0 0.1524 31.7 0.00209405 117.957
|
512 |
+
630 2.7 0.1524 71.3 0.00243851 127.404
|
513 |
+
800 2.7 0.1524 71.3 0.00243851 127.394
|
514 |
+
1000 2.7 0.1524 71.3 0.00243851 128.774
|
515 |
+
1250 2.7 0.1524 71.3 0.00243851 130.144
|
516 |
+
1600 2.7 0.1524 71.3 0.00243851 130.644
|
517 |
+
2000 2.7 0.1524 71.3 0.00243851 130.114
|
518 |
+
2500 2.7 0.1524 71.3 0.00243851 128.334
|
519 |
+
3150 2.7 0.1524 71.3 0.00243851 127.054
|
520 |
+
4000 2.7 0.1524 71.3 0.00243851 126.534
|
521 |
+
5000 2.7 0.1524 71.3 0.00243851 124.364
|
522 |
+
6300 2.7 0.1524 71.3 0.00243851 121.944
|
523 |
+
8000 2.7 0.1524 71.3 0.00243851 120.534
|
524 |
+
10000 2.7 0.1524 71.3 0.00243851 116.724
|
525 |
+
12500 2.7 0.1524 71.3 0.00243851 113.034
|
526 |
+
16000 2.7 0.1524 71.3 0.00243851 110.364
|
527 |
+
500 2.7 0.1524 39.6 0.00294804 121.009
|
528 |
+
630 2.7 0.1524 39.6 0.00294804 125.809
|
529 |
+
800 2.7 0.1524 39.6 0.00294804 128.829
|
530 |
+
1000 2.7 0.1524 39.6 0.00294804 130.589
|
531 |
+
1250 2.7 0.1524 39.6 0.00294804 130.829
|
532 |
+
1600 2.7 0.1524 39.6 0.00294804 130.049
|
533 |
+
2000 2.7 0.1524 39.6 0.00294804 128.139
|
534 |
+
2500 2.7 0.1524 39.6 0.00294804 125.589
|
535 |
+
3150 2.7 0.1524 39.6 0.00294804 122.919
|
536 |
+
4000 2.7 0.1524 39.6 0.00294804 121.889
|
537 |
+
5000 2.7 0.1524 39.6 0.00294804 121.499
|
538 |
+
6300 2.7 0.1524 39.6 0.00294804 119.209
|
539 |
+
8000 2.7 0.1524 39.6 0.00294804 116.659
|
540 |
+
10000 2.7 0.1524 39.6 0.00294804 112.589
|
541 |
+
12500 2.7 0.1524 39.6 0.00294804 108.649
|
542 |
+
400 5.4 0.1524 71.3 0.00401199 124.121
|
543 |
+
500 5.4 0.1524 71.3 0.00401199 126.291
|
544 |
+
630 5.4 0.1524 71.3 0.00401199 128.971
|
545 |
+
800 5.4 0.1524 71.3 0.00401199 131.281
|
546 |
+
1000 5.4 0.1524 71.3 0.00401199 133.201
|
547 |
+
1250 5.4 0.1524 71.3 0.00401199 134.111
|
548 |
+
1600 5.4 0.1524 71.3 0.00401199 133.241
|
549 |
+
2000 5.4 0.1524 71.3 0.00401199 131.111
|
550 |
+
2500 5.4 0.1524 71.3 0.00401199 127.591
|
551 |
+
3150 5.4 0.1524 71.3 0.00401199 123.311
|
552 |
+
4000 5.4 0.1524 71.3 0.00401199 121.431
|
553 |
+
5000 5.4 0.1524 71.3 0.00401199 120.061
|
554 |
+
6300 5.4 0.1524 71.3 0.00401199 116.411
|
555 |
+
400 5.4 0.1524 55.5 0.00433288 126.807
|
556 |
+
500 5.4 0.1524 55.5 0.00433288 129.367
|
557 |
+
630 5.4 0.1524 55.5 0.00433288 131.807
|
558 |
+
800 5.4 0.1524 55.5 0.00433288 133.097
|
559 |
+
1000 5.4 0.1524 55.5 0.00433288 132.127
|
560 |
+
1250 5.4 0.1524 55.5 0.00433288 130.777
|
561 |
+
1600 5.4 0.1524 55.5 0.00433288 130.567
|
562 |
+
2000 5.4 0.1524 55.5 0.00433288 128.707
|
563 |
+
2500 5.4 0.1524 55.5 0.00433288 124.077
|
564 |
+
3150 5.4 0.1524 55.5 0.00433288 121.587
|
565 |
+
4000 5.4 0.1524 55.5 0.00433288 119.737
|
566 |
+
5000 5.4 0.1524 55.5 0.00433288 118.757
|
567 |
+
6300 5.4 0.1524 55.5 0.00433288 117.287
|
568 |
+
8000 5.4 0.1524 55.5 0.00433288 114.927
|
569 |
+
315 5.4 0.1524 39.6 0.00485029 125.347
|
570 |
+
400 5.4 0.1524 39.6 0.00485029 127.637
|
571 |
+
500 5.4 0.1524 39.6 0.00485029 129.937
|
572 |
+
630 5.4 0.1524 39.6 0.00485029 132.357
|
573 |
+
800 5.4 0.1524 39.6 0.00485029 132.757
|
574 |
+
1000 5.4 0.1524 39.6 0.00485029 130.507
|
575 |
+
1250 5.4 0.1524 39.6 0.00485029 127.117
|
576 |
+
1600 5.4 0.1524 39.6 0.00485029 126.267
|
577 |
+
2000 5.4 0.1524 39.6 0.00485029 124.647
|
578 |
+
2500 5.4 0.1524 39.6 0.00485029 120.497
|
579 |
+
3150 5.4 0.1524 39.6 0.00485029 119.137
|
580 |
+
4000 5.4 0.1524 39.6 0.00485029 117.137
|
581 |
+
5000 5.4 0.1524 39.6 0.00485029 117.037
|
582 |
+
6300 5.4 0.1524 39.6 0.00485029 116.677
|
583 |
+
315 5.4 0.1524 31.7 0.00525474 125.741
|
584 |
+
400 5.4 0.1524 31.7 0.00525474 127.781
|
585 |
+
500 5.4 0.1524 31.7 0.00525474 129.681
|
586 |
+
630 5.4 0.1524 31.7 0.00525474 131.471
|
587 |
+
800 5.4 0.1524 31.7 0.00525474 131.491
|
588 |
+
1000 5.4 0.1524 31.7 0.00525474 128.241
|
589 |
+
1250 5.4 0.1524 31.7 0.00525474 123.991
|
590 |
+
1600 5.4 0.1524 31.7 0.00525474 123.761
|
591 |
+
2000 5.4 0.1524 31.7 0.00525474 122.771
|
592 |
+
2500 5.4 0.1524 31.7 0.00525474 119.151
|
593 |
+
3150 5.4 0.1524 31.7 0.00525474 118.291
|
594 |
+
4000 5.4 0.1524 31.7 0.00525474 116.181
|
595 |
+
5000 5.4 0.1524 31.7 0.00525474 115.691
|
596 |
+
6300 5.4 0.1524 31.7 0.00525474 115.591
|
597 |
+
315 7.2 0.1524 71.3 0.00752039 128.713
|
598 |
+
400 7.2 0.1524 71.3 0.00752039 130.123
|
599 |
+
500 7.2 0.1524 71.3 0.00752039 132.043
|
600 |
+
630 7.2 0.1524 71.3 0.00752039 134.853
|
601 |
+
800 7.2 0.1524 71.3 0.00752039 136.023
|
602 |
+
1000 7.2 0.1524 71.3 0.00752039 134.273
|
603 |
+
1250 7.2 0.1524 71.3 0.00752039 132.513
|
604 |
+
1600 7.2 0.1524 71.3 0.00752039 130.893
|
605 |
+
2000 7.2 0.1524 71.3 0.00752039 128.643
|
606 |
+
2500 7.2 0.1524 71.3 0.00752039 124.353
|
607 |
+
3150 7.2 0.1524 71.3 0.00752039 116.783
|
608 |
+
4000 7.2 0.1524 71.3 0.00752039 119.343
|
609 |
+
5000 7.2 0.1524 71.3 0.00752039 118.343
|
610 |
+
6300 7.2 0.1524 71.3 0.00752039 116.603
|
611 |
+
8000 7.2 0.1524 71.3 0.00752039 113.333
|
612 |
+
10000 7.2 0.1524 71.3 0.00752039 110.313
|
613 |
+
250 7.2 0.1524 39.6 0.00909175 127.488
|
614 |
+
315 7.2 0.1524 39.6 0.00909175 130.558
|
615 |
+
400 7.2 0.1524 39.6 0.00909175 132.118
|
616 |
+
500 7.2 0.1524 39.6 0.00909175 132.658
|
617 |
+
630 7.2 0.1524 39.6 0.00909175 133.198
|
618 |
+
800 7.2 0.1524 39.6 0.00909175 132.358
|
619 |
+
1000 7.2 0.1524 39.6 0.00909175 128.338
|
620 |
+
1250 7.2 0.1524 39.6 0.00909175 122.428
|
621 |
+
1600 7.2 0.1524 39.6 0.00909175 120.058
|
622 |
+
2000 7.2 0.1524 39.6 0.00909175 120.228
|
623 |
+
2500 7.2 0.1524 39.6 0.00909175 117.478
|
624 |
+
3150 7.2 0.1524 39.6 0.00909175 111.818
|
625 |
+
4000 7.2 0.1524 39.6 0.00909175 114.258
|
626 |
+
5000 7.2 0.1524 39.6 0.00909175 113.288
|
627 |
+
6300 7.2 0.1524 39.6 0.00909175 112.688
|
628 |
+
8000 7.2 0.1524 39.6 0.00909175 111.588
|
629 |
+
10000 7.2 0.1524 39.6 0.00909175 110.868
|
630 |
+
200 9.9 0.1524 71.3 0.0193001 134.319
|
631 |
+
250 9.9 0.1524 71.3 0.0193001 135.329
|
632 |
+
315 9.9 0.1524 71.3 0.0193001 135.459
|
633 |
+
400 9.9 0.1524 71.3 0.0193001 135.079
|
634 |
+
500 9.9 0.1524 71.3 0.0193001 131.279
|
635 |
+
630 9.9 0.1524 71.3 0.0193001 129.889
|
636 |
+
800 9.9 0.1524 71.3 0.0193001 128.879
|
637 |
+
1000 9.9 0.1524 71.3 0.0193001 126.349
|
638 |
+
1250 9.9 0.1524 71.3 0.0193001 122.679
|
639 |
+
1600 9.9 0.1524 71.3 0.0193001 121.789
|
640 |
+
2000 9.9 0.1524 71.3 0.0193001 120.779
|
641 |
+
2500 9.9 0.1524 71.3 0.0193001 119.639
|
642 |
+
3150 9.9 0.1524 71.3 0.0193001 116.849
|
643 |
+
4000 9.9 0.1524 71.3 0.0193001 115.079
|
644 |
+
5000 9.9 0.1524 71.3 0.0193001 114.569
|
645 |
+
6300 9.9 0.1524 71.3 0.0193001 112.039
|
646 |
+
200 9.9 0.1524 55.5 0.0208438 131.955
|
647 |
+
250 9.9 0.1524 55.5 0.0208438 133.235
|
648 |
+
315 9.9 0.1524 55.5 0.0208438 132.355
|
649 |
+
400 9.9 0.1524 55.5 0.0208438 131.605
|
650 |
+
500 9.9 0.1524 55.5 0.0208438 127.815
|
651 |
+
630 9.9 0.1524 55.5 0.0208438 127.315
|
652 |
+
800 9.9 0.1524 55.5 0.0208438 126.565
|
653 |
+
1000 9.9 0.1524 55.5 0.0208438 124.665
|
654 |
+
1250 9.9 0.1524 55.5 0.0208438 121.635
|
655 |
+
1600 9.9 0.1524 55.5 0.0208438 119.875
|
656 |
+
2000 9.9 0.1524 55.5 0.0208438 119.505
|
657 |
+
2500 9.9 0.1524 55.5 0.0208438 118.365
|
658 |
+
3150 9.9 0.1524 55.5 0.0208438 115.085
|
659 |
+
4000 9.9 0.1524 55.5 0.0208438 112.945
|
660 |
+
5000 9.9 0.1524 55.5 0.0208438 112.065
|
661 |
+
6300 9.9 0.1524 55.5 0.0208438 110.555
|
662 |
+
200 9.9 0.1524 39.6 0.0233328 127.315
|
663 |
+
250 9.9 0.1524 39.6 0.0233328 128.335
|
664 |
+
315 9.9 0.1524 39.6 0.0233328 128.595
|
665 |
+
400 9.9 0.1524 39.6 0.0233328 128.345
|
666 |
+
500 9.9 0.1524 39.6 0.0233328 126.835
|
667 |
+
630 9.9 0.1524 39.6 0.0233328 126.465
|
668 |
+
800 9.9 0.1524 39.6 0.0233328 126.345
|
669 |
+
1000 9.9 0.1524 39.6 0.0233328 123.835
|
670 |
+
1250 9.9 0.1524 39.6 0.0233328 120.555
|
671 |
+
1600 9.9 0.1524 39.6 0.0233328 118.545
|
672 |
+
2000 9.9 0.1524 39.6 0.0233328 117.925
|
673 |
+
2500 9.9 0.1524 39.6 0.0233328 116.295
|
674 |
+
3150 9.9 0.1524 39.6 0.0233328 113.525
|
675 |
+
4000 9.9 0.1524 39.6 0.0233328 112.265
|
676 |
+
5000 9.9 0.1524 39.6 0.0233328 111.135
|
677 |
+
6300 9.9 0.1524 39.6 0.0233328 109.885
|
678 |
+
200 9.9 0.1524 31.7 0.0252785 127.299
|
679 |
+
250 9.9 0.1524 31.7 0.0252785 128.559
|
680 |
+
315 9.9 0.1524 31.7 0.0252785 128.809
|
681 |
+
400 9.9 0.1524 31.7 0.0252785 128.939
|
682 |
+
500 9.9 0.1524 31.7 0.0252785 127.179
|
683 |
+
630 9.9 0.1524 31.7 0.0252785 126.049
|
684 |
+
800 9.9 0.1524 31.7 0.0252785 125.539
|
685 |
+
1000 9.9 0.1524 31.7 0.0252785 122.149
|
686 |
+
1250 9.9 0.1524 31.7 0.0252785 118.619
|
687 |
+
1600 9.9 0.1524 31.7 0.0252785 117.119
|
688 |
+
2000 9.9 0.1524 31.7 0.0252785 116.859
|
689 |
+
2500 9.9 0.1524 31.7 0.0252785 114.729
|
690 |
+
3150 9.9 0.1524 31.7 0.0252785 112.209
|
691 |
+
4000 9.9 0.1524 31.7 0.0252785 111.459
|
692 |
+
5000 9.9 0.1524 31.7 0.0252785 109.949
|
693 |
+
6300 9.9 0.1524 31.7 0.0252785 108.689
|
694 |
+
200 12.6 0.1524 71.3 0.0483159 128.354
|
695 |
+
250 12.6 0.1524 71.3 0.0483159 129.744
|
696 |
+
315 12.6 0.1524 71.3 0.0483159 128.484
|
697 |
+
400 12.6 0.1524 71.3 0.0483159 127.094
|
698 |
+
500 12.6 0.1524 71.3 0.0483159 121.664
|
699 |
+
630 12.6 0.1524 71.3 0.0483159 123.304
|
700 |
+
800 12.6 0.1524 71.3 0.0483159 123.054
|
701 |
+
1000 12.6 0.1524 71.3 0.0483159 122.044
|
702 |
+
1250 12.6 0.1524 71.3 0.0483159 120.154
|
703 |
+
1600 12.6 0.1524 71.3 0.0483159 120.534
|
704 |
+
2000 12.6 0.1524 71.3 0.0483159 117.504
|
705 |
+
2500 12.6 0.1524 71.3 0.0483159 115.234
|
706 |
+
3150 12.6 0.1524 71.3 0.0483159 113.334
|
707 |
+
4000 12.6 0.1524 71.3 0.0483159 108.034
|
708 |
+
5000 12.6 0.1524 71.3 0.0483159 108.034
|
709 |
+
6300 12.6 0.1524 71.3 0.0483159 107.284
|
710 |
+
200 12.6 0.1524 39.6 0.0584113 114.750
|
711 |
+
250 12.6 0.1524 39.6 0.0584113 115.890
|
712 |
+
315 12.6 0.1524 39.6 0.0584113 116.020
|
713 |
+
400 12.6 0.1524 39.6 0.0584113 115.910
|
714 |
+
500 12.6 0.1524 39.6 0.0584113 114.900
|
715 |
+
630 12.6 0.1524 39.6 0.0584113 116.550
|
716 |
+
800 12.6 0.1524 39.6 0.0584113 116.560
|
717 |
+
1000 12.6 0.1524 39.6 0.0584113 114.670
|
718 |
+
1250 12.6 0.1524 39.6 0.0584113 112.160
|
719 |
+
1600 12.6 0.1524 39.6 0.0584113 110.780
|
720 |
+
2000 12.6 0.1524 39.6 0.0584113 109.520
|
721 |
+
2500 12.6 0.1524 39.6 0.0584113 106.880
|
722 |
+
3150 12.6 0.1524 39.6 0.0584113 106.260
|
723 |
+
4000 12.6 0.1524 39.6 0.0584113 104.500
|
724 |
+
5000 12.6 0.1524 39.6 0.0584113 104.130
|
725 |
+
6300 12.6 0.1524 39.6 0.0584113 103.380
|
726 |
+
800 0 0.0508 71.3 0.000740478 130.960
|
727 |
+
1000 0 0.0508 71.3 0.000740478 129.450
|
728 |
+
1250 0 0.0508 71.3 0.000740478 128.560
|
729 |
+
1600 0 0.0508 71.3 0.000740478 129.680
|
730 |
+
2000 0 0.0508 71.3 0.000740478 131.060
|
731 |
+
2500 0 0.0508 71.3 0.000740478 131.310
|
732 |
+
3150 0 0.0508 71.3 0.000740478 135.070
|
733 |
+
4000 0 0.0508 71.3 0.000740478 134.430
|
734 |
+
5000 0 0.0508 71.3 0.000740478 134.430
|
735 |
+
6300 0 0.0508 71.3 0.000740478 133.040
|
736 |
+
8000 0 0.0508 71.3 0.000740478 130.890
|
737 |
+
10000 0 0.0508 71.3 0.000740478 128.740
|
738 |
+
12500 0 0.0508 71.3 0.000740478 125.220
|
739 |
+
800 0 0.0508 55.5 0.00076193 124.336
|
740 |
+
1000 0 0.0508 55.5 0.00076193 125.586
|
741 |
+
1250 0 0.0508 55.5 0.00076193 127.076
|
742 |
+
1600 0 0.0508 55.5 0.00076193 128.576
|
743 |
+
2000 0 0.0508 55.5 0.00076193 131.456
|
744 |
+
2500 0 0.0508 55.5 0.00076193 133.956
|
745 |
+
3150 0 0.0508 55.5 0.00076193 134.826
|
746 |
+
4000 0 0.0508 55.5 0.00076193 134.946
|
747 |
+
5000 0 0.0508 55.5 0.00076193 134.556
|
748 |
+
6300 0 0.0508 55.5 0.00076193 132.796
|
749 |
+
8000 0 0.0508 55.5 0.00076193 130.156
|
750 |
+
10000 0 0.0508 55.5 0.00076193 127.636
|
751 |
+
12500 0 0.0508 55.5 0.00076193 125.376
|
752 |
+
800 0 0.0508 39.6 0.000791822 126.508
|
753 |
+
1000 0 0.0508 39.6 0.000791822 127.638
|
754 |
+
1250 0 0.0508 39.6 0.000791822 129.148
|
755 |
+
1600 0 0.0508 39.6 0.000791822 130.908
|
756 |
+
2000 0 0.0508 39.6 0.000791822 132.918
|
757 |
+
2500 0 0.0508 39.6 0.000791822 134.938
|
758 |
+
3150 0 0.0508 39.6 0.000791822 135.938
|
759 |
+
4000 0 0.0508 39.6 0.000791822 135.308
|
760 |
+
5000 0 0.0508 39.6 0.000791822 134.308
|
761 |
+
6300 0 0.0508 39.6 0.000791822 131.918
|
762 |
+
8000 0 0.0508 39.6 0.000791822 128.518
|
763 |
+
10000 0 0.0508 39.6 0.000791822 125.998
|
764 |
+
12500 0 0.0508 39.6 0.000791822 123.988
|
765 |
+
800 0 0.0508 31.7 0.000812164 122.790
|
766 |
+
1000 0 0.0508 31.7 0.000812164 126.780
|
767 |
+
1250 0 0.0508 31.7 0.000812164 129.270
|
768 |
+
1600 0 0.0508 31.7 0.000812164 131.010
|
769 |
+
2000 0 0.0508 31.7 0.000812164 133.010
|
770 |
+
2500 0 0.0508 31.7 0.000812164 134.870
|
771 |
+
3150 0 0.0508 31.7 0.000812164 135.490
|
772 |
+
4000 0 0.0508 31.7 0.000812164 134.110
|
773 |
+
5000 0 0.0508 31.7 0.000812164 133.230
|
774 |
+
6300 0 0.0508 31.7 0.000812164 130.340
|
775 |
+
8000 0 0.0508 31.7 0.000812164 126.590
|
776 |
+
10000 0 0.0508 31.7 0.000812164 122.450
|
777 |
+
12500 0 0.0508 31.7 0.000812164 119.070
|
778 |
+
1600 4.2 0.0508 71.3 0.00142788 124.318
|
779 |
+
2000 4.2 0.0508 71.3 0.00142788 129.848
|
780 |
+
2500 4.2 0.0508 71.3 0.00142788 131.978
|
781 |
+
3150 4.2 0.0508 71.3 0.00142788 133.728
|
782 |
+
4000 4.2 0.0508 71.3 0.00142788 133.598
|
783 |
+
5000 4.2 0.0508 71.3 0.00142788 132.828
|
784 |
+
6300 4.2 0.0508 71.3 0.00142788 129.308
|
785 |
+
8000 4.2 0.0508 71.3 0.00142788 125.268
|
786 |
+
10000 4.2 0.0508 71.3 0.00142788 121.238
|
787 |
+
12500 4.2 0.0508 71.3 0.00142788 117.328
|
788 |
+
1000 4.2 0.0508 39.6 0.00152689 125.647
|
789 |
+
1250 4.2 0.0508 39.6 0.00152689 128.427
|
790 |
+
1600 4.2 0.0508 39.6 0.00152689 130.197
|
791 |
+
2000 4.2 0.0508 39.6 0.00152689 132.587
|
792 |
+
2500 4.2 0.0508 39.6 0.00152689 133.847
|
793 |
+
3150 4.2 0.0508 39.6 0.00152689 133.587
|
794 |
+
4000 4.2 0.0508 39.6 0.00152689 131.807
|
795 |
+
5000 4.2 0.0508 39.6 0.00152689 129.777
|
796 |
+
6300 4.2 0.0508 39.6 0.00152689 125.717
|
797 |
+
8000 4.2 0.0508 39.6 0.00152689 120.397
|
798 |
+
10000 4.2 0.0508 39.6 0.00152689 116.967
|
799 |
+
800 8.4 0.0508 71.3 0.00529514 127.556
|
800 |
+
1000 8.4 0.0508 71.3 0.00529514 129.946
|
801 |
+
1250 8.4 0.0508 71.3 0.00529514 132.086
|
802 |
+
1600 8.4 0.0508 71.3 0.00529514 133.846
|
803 |
+
2000 8.4 0.0508 71.3 0.00529514 134.476
|
804 |
+
2500 8.4 0.0508 71.3 0.00529514 134.226
|
805 |
+
3150 8.4 0.0508 71.3 0.00529514 131.966
|
806 |
+
4000 8.4 0.0508 71.3 0.00529514 126.926
|
807 |
+
5000 8.4 0.0508 71.3 0.00529514 121.146
|
808 |
+
400 8.4 0.0508 55.5 0.00544854 121.582
|
809 |
+
500 8.4 0.0508 55.5 0.00544854 123.742
|
810 |
+
630 8.4 0.0508 55.5 0.00544854 126.152
|
811 |
+
800 8.4 0.0508 55.5 0.00544854 128.562
|
812 |
+
1000 8.4 0.0508 55.5 0.00544854 130.722
|
813 |
+
1250 8.4 0.0508 55.5 0.00544854 132.252
|
814 |
+
1600 8.4 0.0508 55.5 0.00544854 133.032
|
815 |
+
2000 8.4 0.0508 55.5 0.00544854 133.042
|
816 |
+
2500 8.4 0.0508 55.5 0.00544854 131.542
|
817 |
+
3150 8.4 0.0508 55.5 0.00544854 128.402
|
818 |
+
4000 8.4 0.0508 55.5 0.00544854 122.612
|
819 |
+
5000 8.4 0.0508 55.5 0.00544854 115.812
|
820 |
+
400 8.4 0.0508 39.6 0.00566229 120.015
|
821 |
+
500 8.4 0.0508 39.6 0.00566229 122.905
|
822 |
+
630 8.4 0.0508 39.6 0.00566229 126.045
|
823 |
+
800 8.4 0.0508 39.6 0.00566229 128.435
|
824 |
+
1000 8.4 0.0508 39.6 0.00566229 130.195
|
825 |
+
1250 8.4 0.0508 39.6 0.00566229 131.205
|
826 |
+
1600 8.4 0.0508 39.6 0.00566229 130.965
|
827 |
+
2000 8.4 0.0508 39.6 0.00566229 129.965
|
828 |
+
2500 8.4 0.0508 39.6 0.00566229 127.465
|
829 |
+
3150 8.4 0.0508 39.6 0.00566229 123.965
|
830 |
+
4000 8.4 0.0508 39.6 0.00566229 118.955
|
831 |
+
400 8.4 0.0508 31.7 0.00580776 120.076
|
832 |
+
500 8.4 0.0508 31.7 0.00580776 122.966
|
833 |
+
630 8.4 0.0508 31.7 0.00580776 125.856
|
834 |
+
800 8.4 0.0508 31.7 0.00580776 128.246
|
835 |
+
1000 8.4 0.0508 31.7 0.00580776 129.516
|
836 |
+
1250 8.4 0.0508 31.7 0.00580776 130.156
|
837 |
+
1600 8.4 0.0508 31.7 0.00580776 129.296
|
838 |
+
2000 8.4 0.0508 31.7 0.00580776 127.686
|
839 |
+
2500 8.4 0.0508 31.7 0.00580776 125.576
|
840 |
+
3150 8.4 0.0508 31.7 0.00580776 122.086
|
841 |
+
4000 8.4 0.0508 31.7 0.00580776 118.106
|
842 |
+
200 11.2 0.0508 71.3 0.014072 125.941
|
843 |
+
250 11.2 0.0508 71.3 0.014072 127.101
|
844 |
+
315 11.2 0.0508 71.3 0.014072 128.381
|
845 |
+
400 11.2 0.0508 71.3 0.014072 129.281
|
846 |
+
500 11.2 0.0508 71.3 0.014072 130.311
|
847 |
+
630 11.2 0.0508 71.3 0.014072 133.611
|
848 |
+
800 11.2 0.0508 71.3 0.014072 136.031
|
849 |
+
1000 11.2 0.0508 71.3 0.014072 136.941
|
850 |
+
1250 11.2 0.0508 71.3 0.014072 136.191
|
851 |
+
1600 11.2 0.0508 71.3 0.014072 135.191
|
852 |
+
2000 11.2 0.0508 71.3 0.014072 133.311
|
853 |
+
2500 11.2 0.0508 71.3 0.014072 130.541
|
854 |
+
3150 11.2 0.0508 71.3 0.014072 127.141
|
855 |
+
4000 11.2 0.0508 71.3 0.014072 122.471
|
856 |
+
200 11.2 0.0508 39.6 0.0150478 125.010
|
857 |
+
250 11.2 0.0508 39.6 0.0150478 126.430
|
858 |
+
315 11.2 0.0508 39.6 0.0150478 128.990
|
859 |
+
400 11.2 0.0508 39.6 0.0150478 130.670
|
860 |
+
500 11.2 0.0508 39.6 0.0150478 131.960
|
861 |
+
630 11.2 0.0508 39.6 0.0150478 133.130
|
862 |
+
800 11.2 0.0508 39.6 0.0150478 133.790
|
863 |
+
1000 11.2 0.0508 39.6 0.0150478 132.430
|
864 |
+
1250 11.2 0.0508 39.6 0.0150478 130.050
|
865 |
+
1600 11.2 0.0508 39.6 0.0150478 126.540
|
866 |
+
2000 11.2 0.0508 39.6 0.0150478 124.420
|
867 |
+
2500 11.2 0.0508 39.6 0.0150478 122.170
|
868 |
+
3150 11.2 0.0508 39.6 0.0150478 119.670
|
869 |
+
4000 11.2 0.0508 39.6 0.0150478 115.520
|
870 |
+
200 15.4 0.0508 71.3 0.0264269 123.595
|
871 |
+
250 15.4 0.0508 71.3 0.0264269 124.835
|
872 |
+
315 15.4 0.0508 71.3 0.0264269 126.195
|
873 |
+
400 15.4 0.0508 71.3 0.0264269 126.805
|
874 |
+
500 15.4 0.0508 71.3 0.0264269 127.285
|
875 |
+
630 15.4 0.0508 71.3 0.0264269 129.645
|
876 |
+
800 15.4 0.0508 71.3 0.0264269 131.515
|
877 |
+
1000 15.4 0.0508 71.3 0.0264269 131.865
|
878 |
+
1250 15.4 0.0508 71.3 0.0264269 130.845
|
879 |
+
1600 15.4 0.0508 71.3 0.0264269 130.065
|
880 |
+
2000 15.4 0.0508 71.3 0.0264269 129.285
|
881 |
+
2500 15.4 0.0508 71.3 0.0264269 127.625
|
882 |
+
3150 15.4 0.0508 71.3 0.0264269 125.715
|
883 |
+
4000 15.4 0.0508 71.3 0.0264269 122.675
|
884 |
+
5000 15.4 0.0508 71.3 0.0264269 119.135
|
885 |
+
6300 15.4 0.0508 71.3 0.0264269 115.215
|
886 |
+
8000 15.4 0.0508 71.3 0.0264269 112.675
|
887 |
+
200 15.4 0.0508 55.5 0.0271925 122.940
|
888 |
+
250 15.4 0.0508 55.5 0.0271925 124.170
|
889 |
+
315 15.4 0.0508 55.5 0.0271925 125.390
|
890 |
+
400 15.4 0.0508 55.5 0.0271925 126.500
|
891 |
+
500 15.4 0.0508 55.5 0.0271925 127.220
|
892 |
+
630 15.4 0.0508 55.5 0.0271925 129.330
|
893 |
+
800 15.4 0.0508 55.5 0.0271925 130.430
|
894 |
+
1000 15.4 0.0508 55.5 0.0271925 130.400
|
895 |
+
1250 15.4 0.0508 55.5 0.0271925 130.000
|
896 |
+
1600 15.4 0.0508 55.5 0.0271925 128.200
|
897 |
+
2000 15.4 0.0508 55.5 0.0271925 127.040
|
898 |
+
2500 15.4 0.0508 55.5 0.0271925 125.630
|
899 |
+
3150 15.4 0.0508 55.5 0.0271925 123.460
|
900 |
+
4000 15.4 0.0508 55.5 0.0271925 120.920
|
901 |
+
5000 15.4 0.0508 55.5 0.0271925 117.110
|
902 |
+
6300 15.4 0.0508 55.5 0.0271925 112.930
|
903 |
+
200 15.4 0.0508 39.6 0.0282593 121.783
|
904 |
+
250 15.4 0.0508 39.6 0.0282593 122.893
|
905 |
+
315 15.4 0.0508 39.6 0.0282593 124.493
|
906 |
+
400 15.4 0.0508 39.6 0.0282593 125.353
|
907 |
+
500 15.4 0.0508 39.6 0.0282593 125.963
|
908 |
+
630 15.4 0.0508 39.6 0.0282593 127.443
|
909 |
+
800 15.4 0.0508 39.6 0.0282593 128.423
|
910 |
+
1000 15.4 0.0508 39.6 0.0282593 127.893
|
911 |
+
1250 15.4 0.0508 39.6 0.0282593 126.743
|
912 |
+
1600 15.4 0.0508 39.6 0.0282593 124.843
|
913 |
+
2000 15.4 0.0508 39.6 0.0282593 123.443
|
914 |
+
2500 15.4 0.0508 39.6 0.0282593 122.413
|
915 |
+
3150 15.4 0.0508 39.6 0.0282593 120.513
|
916 |
+
4000 15.4 0.0508 39.6 0.0282593 118.113
|
917 |
+
5000 15.4 0.0508 39.6 0.0282593 114.453
|
918 |
+
6300 15.4 0.0508 39.6 0.0282593 109.663
|
919 |
+
200 15.4 0.0508 31.7 0.0289853 119.975
|
920 |
+
250 15.4 0.0508 31.7 0.0289853 121.225
|
921 |
+
315 15.4 0.0508 31.7 0.0289853 122.845
|
922 |
+
400 15.4 0.0508 31.7 0.0289853 123.705
|
923 |
+
500 15.4 0.0508 31.7 0.0289853 123.695
|
924 |
+
630 15.4 0.0508 31.7 0.0289853 124.685
|
925 |
+
800 15.4 0.0508 31.7 0.0289853 125.555
|
926 |
+
1000 15.4 0.0508 31.7 0.0289853 124.525
|
927 |
+
1250 15.4 0.0508 31.7 0.0289853 123.255
|
928 |
+
1600 15.4 0.0508 31.7 0.0289853 121.485
|
929 |
+
2000 15.4 0.0508 31.7 0.0289853 120.835
|
930 |
+
2500 15.4 0.0508 31.7 0.0289853 119.945
|
931 |
+
3150 15.4 0.0508 31.7 0.0289853 118.045
|
932 |
+
4000 15.4 0.0508 31.7 0.0289853 115.635
|
933 |
+
5000 15.4 0.0508 31.7 0.0289853 112.355
|
934 |
+
6300 15.4 0.0508 31.7 0.0289853 108.185
|
935 |
+
200 19.7 0.0508 71.3 0.0341183 118.005
|
936 |
+
250 19.7 0.0508 71.3 0.0341183 119.115
|
937 |
+
315 19.7 0.0508 71.3 0.0341183 121.235
|
938 |
+
400 19.7 0.0508 71.3 0.0341183 123.865
|
939 |
+
500 19.7 0.0508 71.3 0.0341183 126.995
|
940 |
+
630 19.7 0.0508 71.3 0.0341183 128.365
|
941 |
+
800 19.7 0.0508 71.3 0.0341183 124.555
|
942 |
+
1000 19.7 0.0508 71.3 0.0341183 121.885
|
943 |
+
1250 19.7 0.0508 71.3 0.0341183 121.485
|
944 |
+
1600 19.7 0.0508 71.3 0.0341183 120.575
|
945 |
+
2000 19.7 0.0508 71.3 0.0341183 120.055
|
946 |
+
2500 19.7 0.0508 71.3 0.0341183 118.385
|
947 |
+
3150 19.7 0.0508 71.3 0.0341183 116.225
|
948 |
+
4000 19.7 0.0508 71.3 0.0341183 113.045
|
949 |
+
200 19.7 0.0508 39.6 0.036484 125.974
|
950 |
+
250 19.7 0.0508 39.6 0.036484 127.224
|
951 |
+
315 19.7 0.0508 39.6 0.036484 129.864
|
952 |
+
400 19.7 0.0508 39.6 0.036484 130.614
|
953 |
+
500 19.7 0.0508 39.6 0.036484 128.444
|
954 |
+
630 19.7 0.0508 39.6 0.036484 120.324
|
955 |
+
800 19.7 0.0508 39.6 0.036484 119.174
|
956 |
+
1000 19.7 0.0508 39.6 0.036484 118.904
|
957 |
+
1250 19.7 0.0508 39.6 0.036484 118.634
|
958 |
+
1600 19.7 0.0508 39.6 0.036484 117.604
|
959 |
+
2000 19.7 0.0508 39.6 0.036484 117.724
|
960 |
+
2500 19.7 0.0508 39.6 0.036484 116.184
|
961 |
+
3150 19.7 0.0508 39.6 0.036484 113.004
|
962 |
+
4000 19.7 0.0508 39.6 0.036484 108.684
|
963 |
+
2500 0 0.0254 71.3 0.000400682 133.707
|
964 |
+
3150 0 0.0254 71.3 0.000400682 137.007
|
965 |
+
4000 0 0.0254 71.3 0.000400682 138.557
|
966 |
+
5000 0 0.0254 71.3 0.000400682 136.837
|
967 |
+
6300 0 0.0254 71.3 0.000400682 134.987
|
968 |
+
8000 0 0.0254 71.3 0.000400682 129.867
|
969 |
+
10000 0 0.0254 71.3 0.000400682 130.787
|
970 |
+
12500 0 0.0254 71.3 0.000400682 133.207
|
971 |
+
16000 0 0.0254 71.3 0.000400682 130.477
|
972 |
+
20000 0 0.0254 71.3 0.000400682 123.217
|
973 |
+
2000 0 0.0254 55.5 0.00041229 127.623
|
974 |
+
2500 0 0.0254 55.5 0.00041229 130.073
|
975 |
+
3150 0 0.0254 55.5 0.00041229 130.503
|
976 |
+
4000 0 0.0254 55.5 0.00041229 133.223
|
977 |
+
5000 0 0.0254 55.5 0.00041229 135.803
|
978 |
+
6300 0 0.0254 55.5 0.00041229 136.103
|
979 |
+
8000 0 0.0254 55.5 0.00041229 136.163
|
980 |
+
10000 0 0.0254 55.5 0.00041229 134.563
|
981 |
+
12500 0 0.0254 55.5 0.00041229 131.453
|
982 |
+
16000 0 0.0254 55.5 0.00041229 125.683
|
983 |
+
20000 0 0.0254 55.5 0.00041229 121.933
|
984 |
+
1600 0 0.0254 39.6 0.000428464 124.156
|
985 |
+
2000 0 0.0254 39.6 0.000428464 130.026
|
986 |
+
2500 0 0.0254 39.6 0.000428464 131.836
|
987 |
+
3150 0 0.0254 39.6 0.000428464 133.276
|
988 |
+
4000 0 0.0254 39.6 0.000428464 135.346
|
989 |
+
5000 0 0.0254 39.6 0.000428464 136.536
|
990 |
+
6300 0 0.0254 39.6 0.000428464 136.826
|
991 |
+
8000 0 0.0254 39.6 0.000428464 135.866
|
992 |
+
10000 0 0.0254 39.6 0.000428464 133.376
|
993 |
+
12500 0 0.0254 39.6 0.000428464 129.116
|
994 |
+
16000 0 0.0254 39.6 0.000428464 124.986
|
995 |
+
1000 0 0.0254 31.7 0.000439472 125.127
|
996 |
+
1250 0 0.0254 31.7 0.000439472 127.947
|
997 |
+
1600 0 0.0254 31.7 0.000439472 129.267
|
998 |
+
2000 0 0.0254 31.7 0.000439472 130.697
|
999 |
+
2500 0 0.0254 31.7 0.000439472 132.897
|
1000 |
+
3150 0 0.0254 31.7 0.000439472 135.227
|
1001 |
+
4000 0 0.0254 31.7 0.000439472 137.047
|
1002 |
+
5000 0 0.0254 31.7 0.000439472 138.607
|
1003 |
+
6300 0 0.0254 31.7 0.000439472 138.537
|
1004 |
+
8000 0 0.0254 31.7 0.000439472 137.207
|
1005 |
+
10000 0 0.0254 31.7 0.000439472 134.227
|
1006 |
+
12500 0 0.0254 31.7 0.000439472 128.977
|
1007 |
+
16000 0 0.0254 31.7 0.000439472 125.627
|
1008 |
+
2000 4.8 0.0254 71.3 0.000848633 128.398
|
1009 |
+
2500 4.8 0.0254 71.3 0.000848633 130.828
|
1010 |
+
3150 4.8 0.0254 71.3 0.000848633 133.378
|
1011 |
+
4000 4.8 0.0254 71.3 0.000848633 134.928
|
1012 |
+
5000 4.8 0.0254 71.3 0.000848633 135.468
|
1013 |
+
6300 4.8 0.0254 71.3 0.000848633 134.498
|
1014 |
+
8000 4.8 0.0254 71.3 0.000848633 131.518
|
1015 |
+
10000 4.8 0.0254 71.3 0.000848633 127.398
|
1016 |
+
12500 4.8 0.0254 71.3 0.000848633 127.688
|
1017 |
+
16000 4.8 0.0254 71.3 0.000848633 124.208
|
1018 |
+
20000 4.8 0.0254 71.3 0.000848633 119.708
|
1019 |
+
1600 4.8 0.0254 55.5 0.000873218 121.474
|
1020 |
+
2000 4.8 0.0254 55.5 0.000873218 125.054
|
1021 |
+
2500 4.8 0.0254 55.5 0.000873218 129.144
|
1022 |
+
3150 4.8 0.0254 55.5 0.000873218 132.354
|
1023 |
+
4000 4.8 0.0254 55.5 0.000873218 133.924
|
1024 |
+
5000 4.8 0.0254 55.5 0.000873218 135.484
|
1025 |
+
6300 4.8 0.0254 55.5 0.000873218 135.164
|
1026 |
+
8000 4.8 0.0254 55.5 0.000873218 132.184
|
1027 |
+
10000 4.8 0.0254 55.5 0.000873218 126.944
|
1028 |
+
12500 4.8 0.0254 55.5 0.000873218 125.094
|
1029 |
+
16000 4.8 0.0254 55.5 0.000873218 124.394
|
1030 |
+
20000 4.8 0.0254 55.5 0.000873218 121.284
|
1031 |
+
500 4.8 0.0254 39.6 0.000907475 116.366
|
1032 |
+
630 4.8 0.0254 39.6 0.000907475 118.696
|
1033 |
+
800 4.8 0.0254 39.6 0.000907475 120.766
|
1034 |
+
1000 4.8 0.0254 39.6 0.000907475 122.956
|
1035 |
+
1250 4.8 0.0254 39.6 0.000907475 125.026
|
1036 |
+
1600 4.8 0.0254 39.6 0.000907475 125.966
|
1037 |
+
2000 4.8 0.0254 39.6 0.000907475 128.916
|
1038 |
+
2500 4.8 0.0254 39.6 0.000907475 131.236
|
1039 |
+
3150 4.8 0.0254 39.6 0.000907475 133.436
|
1040 |
+
4000 4.8 0.0254 39.6 0.000907475 134.996
|
1041 |
+
5000 4.8 0.0254 39.6 0.000907475 135.426
|
1042 |
+
6300 4.8 0.0254 39.6 0.000907475 134.336
|
1043 |
+
8000 4.8 0.0254 39.6 0.000907475 131.346
|
1044 |
+
10000 4.8 0.0254 39.6 0.000907475 126.066
|
1045 |
+
500 4.8 0.0254 31.7 0.000930789 116.128
|
1046 |
+
630 4.8 0.0254 31.7 0.000930789 120.078
|
1047 |
+
800 4.8 0.0254 31.7 0.000930789 122.648
|
1048 |
+
1000 4.8 0.0254 31.7 0.000930789 125.348
|
1049 |
+
1250 4.8 0.0254 31.7 0.000930789 127.408
|
1050 |
+
1600 4.8 0.0254 31.7 0.000930789 128.718
|
1051 |
+
2000 4.8 0.0254 31.7 0.000930789 130.148
|
1052 |
+
2500 4.8 0.0254 31.7 0.000930789 132.588
|
1053 |
+
3150 4.8 0.0254 31.7 0.000930789 134.268
|
1054 |
+
4000 4.8 0.0254 31.7 0.000930789 135.328
|
1055 |
+
5000 4.8 0.0254 31.7 0.000930789 135.248
|
1056 |
+
6300 4.8 0.0254 31.7 0.000930789 132.898
|
1057 |
+
8000 4.8 0.0254 31.7 0.000930789 127.008
|
1058 |
+
630 9.5 0.0254 71.3 0.00420654 125.726
|
1059 |
+
800 9.5 0.0254 71.3 0.00420654 127.206
|
1060 |
+
1000 9.5 0.0254 71.3 0.00420654 129.556
|
1061 |
+
1250 9.5 0.0254 71.3 0.00420654 131.656
|
1062 |
+
1600 9.5 0.0254 71.3 0.00420654 133.756
|
1063 |
+
2000 9.5 0.0254 71.3 0.00420654 134.976
|
1064 |
+
2500 9.5 0.0254 71.3 0.00420654 135.956
|
1065 |
+
3150 9.5 0.0254 71.3 0.00420654 136.166
|
1066 |
+
4000 9.5 0.0254 71.3 0.00420654 134.236
|
1067 |
+
5000 9.5 0.0254 71.3 0.00420654 131.186
|
1068 |
+
6300 9.5 0.0254 71.3 0.00420654 127.246
|
1069 |
+
400 9.5 0.0254 55.5 0.0043284 120.952
|
1070 |
+
500 9.5 0.0254 55.5 0.0043284 123.082
|
1071 |
+
630 9.5 0.0254 55.5 0.0043284 125.452
|
1072 |
+
800 9.5 0.0254 55.5 0.0043284 128.082
|
1073 |
+
1000 9.5 0.0254 55.5 0.0043284 130.332
|
1074 |
+
1250 9.5 0.0254 55.5 0.0043284 132.202
|
1075 |
+
1600 9.5 0.0254 55.5 0.0043284 133.062
|
1076 |
+
2000 9.5 0.0254 55.5 0.0043284 134.052
|
1077 |
+
2500 9.5 0.0254 55.5 0.0043284 134.152
|
1078 |
+
3150 9.5 0.0254 55.5 0.0043284 133.252
|
1079 |
+
4000 9.5 0.0254 55.5 0.0043284 131.582
|
1080 |
+
5000 9.5 0.0254 55.5 0.0043284 128.412
|
1081 |
+
6300 9.5 0.0254 55.5 0.0043284 124.222
|
1082 |
+
200 9.5 0.0254 39.6 0.00449821 116.074
|
1083 |
+
250 9.5 0.0254 39.6 0.00449821 116.924
|
1084 |
+
315 9.5 0.0254 39.6 0.00449821 119.294
|
1085 |
+
400 9.5 0.0254 39.6 0.00449821 121.154
|
1086 |
+
500 9.5 0.0254 39.6 0.00449821 123.894
|
1087 |
+
630 9.5 0.0254 39.6 0.00449821 126.514
|
1088 |
+
800 9.5 0.0254 39.6 0.00449821 129.014
|
1089 |
+
1000 9.5 0.0254 39.6 0.00449821 130.374
|
1090 |
+
1250 9.5 0.0254 39.6 0.00449821 130.964
|
1091 |
+
1600 9.5 0.0254 39.6 0.00449821 131.184
|
1092 |
+
2000 9.5 0.0254 39.6 0.00449821 131.274
|
1093 |
+
2500 9.5 0.0254 39.6 0.00449821 131.234
|
1094 |
+
3150 9.5 0.0254 39.6 0.00449821 129.934
|
1095 |
+
4000 9.5 0.0254 39.6 0.00449821 127.864
|
1096 |
+
5000 9.5 0.0254 39.6 0.00449821 125.044
|
1097 |
+
6300 9.5 0.0254 39.6 0.00449821 120.324
|
1098 |
+
200 9.5 0.0254 31.7 0.00461377 119.146
|
1099 |
+
250 9.5 0.0254 31.7 0.00461377 120.136
|
1100 |
+
315 9.5 0.0254 31.7 0.00461377 122.766
|
1101 |
+
400 9.5 0.0254 31.7 0.00461377 124.756
|
1102 |
+
500 9.5 0.0254 31.7 0.00461377 126.886
|
1103 |
+
630 9.5 0.0254 31.7 0.00461377 129.006
|
1104 |
+
800 9.5 0.0254 31.7 0.00461377 130.746
|
1105 |
+
1000 9.5 0.0254 31.7 0.00461377 131.346
|
1106 |
+
1250 9.5 0.0254 31.7 0.00461377 131.446
|
1107 |
+
1600 9.5 0.0254 31.7 0.00461377 131.036
|
1108 |
+
2000 9.5 0.0254 31.7 0.00461377 130.496
|
1109 |
+
2500 9.5 0.0254 31.7 0.00461377 130.086
|
1110 |
+
3150 9.5 0.0254 31.7 0.00461377 128.536
|
1111 |
+
4000 9.5 0.0254 31.7 0.00461377 126.736
|
1112 |
+
5000 9.5 0.0254 31.7 0.00461377 124.426
|
1113 |
+
6300 9.5 0.0254 31.7 0.00461377 120.726
|
1114 |
+
250 12.7 0.0254 71.3 0.0121808 119.698
|
1115 |
+
315 12.7 0.0254 71.3 0.0121808 122.938
|
1116 |
+
400 12.7 0.0254 71.3 0.0121808 125.048
|
1117 |
+
500 12.7 0.0254 71.3 0.0121808 126.898
|
1118 |
+
630 12.7 0.0254 71.3 0.0121808 128.878
|
1119 |
+
800 12.7 0.0254 71.3 0.0121808 130.348
|
1120 |
+
1000 12.7 0.0254 71.3 0.0121808 131.698
|
1121 |
+
1250 12.7 0.0254 71.3 0.0121808 133.048
|
1122 |
+
1600 12.7 0.0254 71.3 0.0121808 134.528
|
1123 |
+
2000 12.7 0.0254 71.3 0.0121808 134.228
|
1124 |
+
2500 12.7 0.0254 71.3 0.0121808 134.058
|
1125 |
+
3150 12.7 0.0254 71.3 0.0121808 133.758
|
1126 |
+
4000 12.7 0.0254 71.3 0.0121808 131.808
|
1127 |
+
5000 12.7 0.0254 71.3 0.0121808 128.978
|
1128 |
+
6300 12.7 0.0254 71.3 0.0121808 125.398
|
1129 |
+
8000 12.7 0.0254 71.3 0.0121808 120.538
|
1130 |
+
10000 12.7 0.0254 71.3 0.0121808 114.418
|
1131 |
+
250 12.7 0.0254 39.6 0.0130253 121.547
|
1132 |
+
315 12.7 0.0254 39.6 0.0130253 123.537
|
1133 |
+
400 12.7 0.0254 39.6 0.0130253 125.527
|
1134 |
+
500 12.7 0.0254 39.6 0.0130253 127.127
|
1135 |
+
630 12.7 0.0254 39.6 0.0130253 128.867
|
1136 |
+
800 12.7 0.0254 39.6 0.0130253 130.217
|
1137 |
+
1000 12.7 0.0254 39.6 0.0130253 130.947
|
1138 |
+
1250 12.7 0.0254 39.6 0.0130253 130.777
|
1139 |
+
1600 12.7 0.0254 39.6 0.0130253 129.977
|
1140 |
+
2000 12.7 0.0254 39.6 0.0130253 129.567
|
1141 |
+
2500 12.7 0.0254 39.6 0.0130253 129.027
|
1142 |
+
3150 12.7 0.0254 39.6 0.0130253 127.847
|
1143 |
+
4000 12.7 0.0254 39.6 0.0130253 126.537
|
1144 |
+
5000 12.7 0.0254 39.6 0.0130253 125.107
|
1145 |
+
6300 12.7 0.0254 39.6 0.0130253 123.177
|
1146 |
+
8000 12.7 0.0254 39.6 0.0130253 120.607
|
1147 |
+
10000 12.7 0.0254 39.6 0.0130253 116.017
|
1148 |
+
200 17.4 0.0254 71.3 0.016104 112.506
|
1149 |
+
250 17.4 0.0254 71.3 0.016104 113.796
|
1150 |
+
315 17.4 0.0254 71.3 0.016104 115.846
|
1151 |
+
400 17.4 0.0254 71.3 0.016104 117.396
|
1152 |
+
500 17.4 0.0254 71.3 0.016104 119.806
|
1153 |
+
630 17.4 0.0254 71.3 0.016104 122.606
|
1154 |
+
800 17.4 0.0254 71.3 0.016104 124.276
|
1155 |
+
1000 17.4 0.0254 71.3 0.016104 125.816
|
1156 |
+
1250 17.4 0.0254 71.3 0.016104 126.356
|
1157 |
+
1600 17.4 0.0254 71.3 0.016104 126.406
|
1158 |
+
2000 17.4 0.0254 71.3 0.016104 126.826
|
1159 |
+
2500 17.4 0.0254 71.3 0.016104 126.746
|
1160 |
+
3150 17.4 0.0254 71.3 0.016104 126.536
|
1161 |
+
4000 17.4 0.0254 71.3 0.016104 125.586
|
1162 |
+
5000 17.4 0.0254 71.3 0.016104 123.126
|
1163 |
+
6300 17.4 0.0254 71.3 0.016104 119.916
|
1164 |
+
8000 17.4 0.0254 71.3 0.016104 115.466
|
1165 |
+
200 17.4 0.0254 55.5 0.0165706 109.951
|
1166 |
+
250 17.4 0.0254 55.5 0.0165706 110.491
|
1167 |
+
315 17.4 0.0254 55.5 0.0165706 111.911
|
1168 |
+
400 17.4 0.0254 55.5 0.0165706 115.461
|
1169 |
+
500 17.4 0.0254 55.5 0.0165706 119.621
|
1170 |
+
630 17.4 0.0254 55.5 0.0165706 122.411
|
1171 |
+
800 17.4 0.0254 55.5 0.0165706 123.091
|
1172 |
+
1000 17.4 0.0254 55.5 0.0165706 126.001
|
1173 |
+
1250 17.4 0.0254 55.5 0.0165706 129.301
|
1174 |
+
1600 17.4 0.0254 55.5 0.0165706 126.471
|
1175 |
+
2000 17.4 0.0254 55.5 0.0165706 125.261
|
1176 |
+
2500 17.4 0.0254 55.5 0.0165706 124.931
|
1177 |
+
3150 17.4 0.0254 55.5 0.0165706 124.101
|
1178 |
+
4000 17.4 0.0254 55.5 0.0165706 121.771
|
1179 |
+
5000 17.4 0.0254 55.5 0.0165706 118.941
|
1180 |
+
6300 17.4 0.0254 55.5 0.0165706 114.861
|
1181 |
+
200 17.4 0.0254 39.6 0.0172206 114.044
|
1182 |
+
250 17.4 0.0254 39.6 0.0172206 114.714
|
1183 |
+
315 17.4 0.0254 39.6 0.0172206 115.144
|
1184 |
+
400 17.4 0.0254 39.6 0.0172206 115.444
|
1185 |
+
500 17.4 0.0254 39.6 0.0172206 117.514
|
1186 |
+
630 17.4 0.0254 39.6 0.0172206 124.514
|
1187 |
+
800 17.4 0.0254 39.6 0.0172206 135.324
|
1188 |
+
1000 17.4 0.0254 39.6 0.0172206 138.274
|
1189 |
+
1250 17.4 0.0254 39.6 0.0172206 131.364
|
1190 |
+
1600 17.4 0.0254 39.6 0.0172206 127.614
|
1191 |
+
2000 17.4 0.0254 39.6 0.0172206 126.644
|
1192 |
+
2500 17.4 0.0254 39.6 0.0172206 124.154
|
1193 |
+
3150 17.4 0.0254 39.6 0.0172206 123.564
|
1194 |
+
4000 17.4 0.0254 39.6 0.0172206 122.724
|
1195 |
+
5000 17.4 0.0254 39.6 0.0172206 119.854
|
1196 |
+
200 17.4 0.0254 31.7 0.0176631 116.146
|
1197 |
+
250 17.4 0.0254 31.7 0.0176631 116.956
|
1198 |
+
315 17.4 0.0254 31.7 0.0176631 118.416
|
1199 |
+
400 17.4 0.0254 31.7 0.0176631 120.766
|
1200 |
+
500 17.4 0.0254 31.7 0.0176631 127.676
|
1201 |
+
630 17.4 0.0254 31.7 0.0176631 136.886
|
1202 |
+
800 17.4 0.0254 31.7 0.0176631 139.226
|
1203 |
+
1000 17.4 0.0254 31.7 0.0176631 131.796
|
1204 |
+
1250 17.4 0.0254 31.7 0.0176631 128.306
|
1205 |
+
1600 17.4 0.0254 31.7 0.0176631 126.846
|
1206 |
+
2000 17.4 0.0254 31.7 0.0176631 124.356
|
1207 |
+
2500 17.4 0.0254 31.7 0.0176631 124.166
|
1208 |
+
3150 17.4 0.0254 31.7 0.0176631 123.466
|
1209 |
+
4000 17.4 0.0254 31.7 0.0176631 121.996
|
1210 |
+
5000 17.4 0.0254 31.7 0.0176631 117.996
|
1211 |
+
315 22.2 0.0254 71.3 0.0214178 115.857
|
1212 |
+
400 22.2 0.0254 71.3 0.0214178 117.927
|
1213 |
+
500 22.2 0.0254 71.3 0.0214178 117.967
|
1214 |
+
630 22.2 0.0254 71.3 0.0214178 120.657
|
1215 |
+
800 22.2 0.0254 71.3 0.0214178 123.227
|
1216 |
+
1000 22.2 0.0254 71.3 0.0214178 134.247
|
1217 |
+
1250 22.2 0.0254 71.3 0.0214178 140.987
|
1218 |
+
1600 22.2 0.0254 71.3 0.0214178 131.817
|
1219 |
+
2000 22.2 0.0254 71.3 0.0214178 127.197
|
1220 |
+
2500 22.2 0.0254 71.3 0.0214178 126.097
|
1221 |
+
3150 22.2 0.0254 71.3 0.0214178 124.127
|
1222 |
+
4000 22.2 0.0254 71.3 0.0214178 123.917
|
1223 |
+
5000 22.2 0.0254 71.3 0.0214178 125.727
|
1224 |
+
6300 22.2 0.0254 71.3 0.0214178 123.127
|
1225 |
+
8000 22.2 0.0254 71.3 0.0214178 121.657
|
1226 |
+
200 22.2 0.0254 39.6 0.0229028 116.066
|
1227 |
+
250 22.2 0.0254 39.6 0.0229028 117.386
|
1228 |
+
315 22.2 0.0254 39.6 0.0229028 120.716
|
1229 |
+
400 22.2 0.0254 39.6 0.0229028 123.416
|
1230 |
+
500 22.2 0.0254 39.6 0.0229028 129.776
|
1231 |
+
630 22.2 0.0254 39.6 0.0229028 137.026
|
1232 |
+
800 22.2 0.0254 39.6 0.0229028 137.076
|
1233 |
+
1000 22.2 0.0254 39.6 0.0229028 128.416
|
1234 |
+
1250 22.2 0.0254 39.6 0.0229028 126.446
|
1235 |
+
1600 22.2 0.0254 39.6 0.0229028 122.216
|
1236 |
+
2000 22.2 0.0254 39.6 0.0229028 121.256
|
1237 |
+
2500 22.2 0.0254 39.6 0.0229028 121.306
|
1238 |
+
3150 22.2 0.0254 39.6 0.0229028 120.856
|
1239 |
+
4000 22.2 0.0254 39.6 0.0229028 119.646
|
1240 |
+
5000 22.2 0.0254 39.6 0.0229028 118.816
|
1241 |
+
630 0 0.1016 71.3 0.00121072 124.155
|
1242 |
+
800 0 0.1016 71.3 0.00121072 126.805
|
1243 |
+
1000 0 0.1016 71.3 0.00121072 128.825
|
1244 |
+
1250 0 0.1016 71.3 0.00121072 130.335
|
1245 |
+
1600 0 0.1016 71.3 0.00121072 131.725
|
1246 |
+
2000 0 0.1016 71.3 0.00121072 132.095
|
1247 |
+
2500 0 0.1016 71.3 0.00121072 132.595
|
1248 |
+
3150 0 0.1016 71.3 0.00121072 131.955
|
1249 |
+
4000 0 0.1016 71.3 0.00121072 130.935
|
1250 |
+
5000 0 0.1016 71.3 0.00121072 130.795
|
1251 |
+
6300 0 0.1016 71.3 0.00121072 129.395
|
1252 |
+
8000 0 0.1016 71.3 0.00121072 125.465
|
1253 |
+
10000 0 0.1016 71.3 0.00121072 123.305
|
1254 |
+
12500 0 0.1016 71.3 0.00121072 119.375
|
1255 |
+
630 0 0.1016 55.5 0.00131983 126.170
|
1256 |
+
800 0 0.1016 55.5 0.00131983 127.920
|
1257 |
+
1000 0 0.1016 55.5 0.00131983 129.800
|
1258 |
+
1250 0 0.1016 55.5 0.00131983 131.430
|
1259 |
+
1600 0 0.1016 55.5 0.00131983 132.050
|
1260 |
+
2000 0 0.1016 55.5 0.00131983 132.540
|
1261 |
+
2500 0 0.1016 55.5 0.00131983 133.040
|
1262 |
+
3150 0 0.1016 55.5 0.00131983 131.780
|
1263 |
+
4000 0 0.1016 55.5 0.00131983 129.500
|
1264 |
+
5000 0 0.1016 55.5 0.00131983 128.360
|
1265 |
+
6300 0 0.1016 55.5 0.00131983 127.730
|
1266 |
+
8000 0 0.1016 55.5 0.00131983 124.450
|
1267 |
+
10000 0 0.1016 55.5 0.00131983 121.930
|
1268 |
+
12500 0 0.1016 55.5 0.00131983 119.910
|
1269 |
+
630 0 0.1016 39.6 0.00146332 125.401
|
1270 |
+
800 0 0.1016 39.6 0.00146332 128.401
|
1271 |
+
1000 0 0.1016 39.6 0.00146332 130.781
|
1272 |
+
1250 0 0.1016 39.6 0.00146332 132.271
|
1273 |
+
1600 0 0.1016 39.6 0.00146332 133.261
|
1274 |
+
2000 0 0.1016 39.6 0.00146332 133.251
|
1275 |
+
2500 0 0.1016 39.6 0.00146332 132.611
|
1276 |
+
3150 0 0.1016 39.6 0.00146332 130.961
|
1277 |
+
4000 0 0.1016 39.6 0.00146332 127.801
|
1278 |
+
5000 0 0.1016 39.6 0.00146332 126.021
|
1279 |
+
6300 0 0.1016 39.6 0.00146332 125.631
|
1280 |
+
8000 0 0.1016 39.6 0.00146332 122.341
|
1281 |
+
10000 0 0.1016 39.6 0.00146332 119.561
|
1282 |
+
630 0 0.1016 31.7 0.00150092 126.413
|
1283 |
+
800 0 0.1016 31.7 0.00150092 129.053
|
1284 |
+
1000 0 0.1016 31.7 0.00150092 131.313
|
1285 |
+
1250 0 0.1016 31.7 0.00150092 133.063
|
1286 |
+
1600 0 0.1016 31.7 0.00150092 133.553
|
1287 |
+
2000 0 0.1016 31.7 0.00150092 133.153
|
1288 |
+
2500 0 0.1016 31.7 0.00150092 132.003
|
1289 |
+
3150 0 0.1016 31.7 0.00150092 129.973
|
1290 |
+
4000 0 0.1016 31.7 0.00150092 126.933
|
1291 |
+
5000 0 0.1016 31.7 0.00150092 124.393
|
1292 |
+
6300 0 0.1016 31.7 0.00150092 124.253
|
1293 |
+
8000 0 0.1016 31.7 0.00150092 120.193
|
1294 |
+
10000 0 0.1016 31.7 0.00150092 115.893
|
1295 |
+
800 3.3 0.1016 71.3 0.00202822 131.074
|
1296 |
+
1000 3.3 0.1016 71.3 0.00202822 131.434
|
1297 |
+
1250 3.3 0.1016 71.3 0.00202822 132.304
|
1298 |
+
1600 3.3 0.1016 71.3 0.00202822 133.664
|
1299 |
+
2000 3.3 0.1016 71.3 0.00202822 134.034
|
1300 |
+
2500 3.3 0.1016 71.3 0.00202822 133.894
|
1301 |
+
3150 3.3 0.1016 71.3 0.00202822 132.114
|
1302 |
+
4000 3.3 0.1016 71.3 0.00202822 128.704
|
1303 |
+
5000 3.3 0.1016 71.3 0.00202822 127.054
|
1304 |
+
6300 3.3 0.1016 71.3 0.00202822 124.904
|
1305 |
+
8000 3.3 0.1016 71.3 0.00202822 121.234
|
1306 |
+
10000 3.3 0.1016 71.3 0.00202822 116.694
|
1307 |
+
630 3.3 0.1016 55.5 0.002211 126.599
|
1308 |
+
800 3.3 0.1016 55.5 0.002211 129.119
|
1309 |
+
1000 3.3 0.1016 55.5 0.002211 131.129
|
1310 |
+
1250 3.3 0.1016 55.5 0.002211 132.769
|
1311 |
+
1600 3.3 0.1016 55.5 0.002211 133.649
|
1312 |
+
2000 3.3 0.1016 55.5 0.002211 133.649
|
1313 |
+
2500 3.3 0.1016 55.5 0.002211 132.889
|
1314 |
+
3150 3.3 0.1016 55.5 0.002211 130.629
|
1315 |
+
4000 3.3 0.1016 55.5 0.002211 127.229
|
1316 |
+
5000 3.3 0.1016 55.5 0.002211 124.839
|
1317 |
+
6300 3.3 0.1016 55.5 0.002211 123.839
|
1318 |
+
8000 3.3 0.1016 55.5 0.002211 120.569
|
1319 |
+
10000 3.3 0.1016 55.5 0.002211 115.659
|
1320 |
+
630 3.3 0.1016 39.6 0.00245138 127.251
|
1321 |
+
800 3.3 0.1016 39.6 0.00245138 129.991
|
1322 |
+
1000 3.3 0.1016 39.6 0.00245138 131.971
|
1323 |
+
1250 3.3 0.1016 39.6 0.00245138 133.211
|
1324 |
+
1600 3.3 0.1016 39.6 0.00245138 133.071
|
1325 |
+
2000 3.3 0.1016 39.6 0.00245138 132.301
|
1326 |
+
2500 3.3 0.1016 39.6 0.00245138 130.791
|
1327 |
+
3150 3.3 0.1016 39.6 0.00245138 128.401
|
1328 |
+
4000 3.3 0.1016 39.6 0.00245138 124.881
|
1329 |
+
5000 3.3 0.1016 39.6 0.00245138 122.371
|
1330 |
+
6300 3.3 0.1016 39.6 0.00245138 120.851
|
1331 |
+
8000 3.3 0.1016 39.6 0.00245138 118.091
|
1332 |
+
10000 3.3 0.1016 39.6 0.00245138 115.321
|
1333 |
+
630 3.3 0.1016 31.7 0.00251435 128.952
|
1334 |
+
800 3.3 0.1016 31.7 0.00251435 131.362
|
1335 |
+
1000 3.3 0.1016 31.7 0.00251435 133.012
|
1336 |
+
1250 3.3 0.1016 31.7 0.00251435 134.022
|
1337 |
+
1600 3.3 0.1016 31.7 0.00251435 133.402
|
1338 |
+
2000 3.3 0.1016 31.7 0.00251435 131.642
|
1339 |
+
2500 3.3 0.1016 31.7 0.00251435 130.392
|
1340 |
+
3150 3.3 0.1016 31.7 0.00251435 128.252
|
1341 |
+
4000 3.3 0.1016 31.7 0.00251435 124.852
|
1342 |
+
5000 3.3 0.1016 31.7 0.00251435 122.082
|
1343 |
+
6300 3.3 0.1016 31.7 0.00251435 120.702
|
1344 |
+
8000 3.3 0.1016 31.7 0.00251435 117.432
|
1345 |
+
630 6.7 0.1016 71.3 0.00478288 131.448
|
1346 |
+
800 6.7 0.1016 71.3 0.00478288 134.478
|
1347 |
+
1000 6.7 0.1016 71.3 0.00478288 136.758
|
1348 |
+
1250 6.7 0.1016 71.3 0.00478288 137.658
|
1349 |
+
1600 6.7 0.1016 71.3 0.00478288 136.678
|
1350 |
+
2000 6.7 0.1016 71.3 0.00478288 134.568
|
1351 |
+
2500 6.7 0.1016 71.3 0.00478288 131.458
|
1352 |
+
3150 6.7 0.1016 71.3 0.00478288 124.458
|
1353 |
+
500 6.7 0.1016 55.5 0.0052139 129.343
|
1354 |
+
630 6.7 0.1016 55.5 0.0052139 133.023
|
1355 |
+
800 6.7 0.1016 55.5 0.0052139 135.953
|
1356 |
+
1000 6.7 0.1016 55.5 0.0052139 137.233
|
1357 |
+
1250 6.7 0.1016 55.5 0.0052139 136.883
|
1358 |
+
1600 6.7 0.1016 55.5 0.0052139 133.653
|
1359 |
+
2000 6.7 0.1016 55.5 0.0052139 129.653
|
1360 |
+
2500 6.7 0.1016 55.5 0.0052139 124.273
|
1361 |
+
400 6.7 0.1016 39.6 0.00578076 128.295
|
1362 |
+
500 6.7 0.1016 39.6 0.00578076 130.955
|
1363 |
+
630 6.7 0.1016 39.6 0.00578076 133.355
|
1364 |
+
800 6.7 0.1016 39.6 0.00578076 134.625
|
1365 |
+
1000 6.7 0.1016 39.6 0.00578076 134.515
|
1366 |
+
1250 6.7 0.1016 39.6 0.00578076 132.395
|
1367 |
+
1600 6.7 0.1016 39.6 0.00578076 127.375
|
1368 |
+
2000 6.7 0.1016 39.6 0.00578076 122.235
|
1369 |
+
315 6.7 0.1016 31.7 0.00592927 126.266
|
1370 |
+
400 6.7 0.1016 31.7 0.00592927 128.296
|
1371 |
+
500 6.7 0.1016 31.7 0.00592927 130.206
|
1372 |
+
630 6.7 0.1016 31.7 0.00592927 132.116
|
1373 |
+
800 6.7 0.1016 31.7 0.00592927 132.886
|
1374 |
+
1000 6.7 0.1016 31.7 0.00592927 131.636
|
1375 |
+
1250 6.7 0.1016 31.7 0.00592927 129.256
|
1376 |
+
1600 6.7 0.1016 31.7 0.00592927 124.346
|
1377 |
+
2000 6.7 0.1016 31.7 0.00592927 120.446
|
1378 |
+
200 8.9 0.1016 71.3 0.0103088 133.503
|
1379 |
+
250 8.9 0.1016 71.3 0.0103088 134.533
|
1380 |
+
315 8.9 0.1016 71.3 0.0103088 136.583
|
1381 |
+
400 8.9 0.1016 71.3 0.0103088 138.123
|
1382 |
+
500 8.9 0.1016 71.3 0.0103088 138.523
|
1383 |
+
630 8.9 0.1016 71.3 0.0103088 138.423
|
1384 |
+
800 8.9 0.1016 71.3 0.0103088 137.813
|
1385 |
+
1000 8.9 0.1016 71.3 0.0103088 135.433
|
1386 |
+
1250 8.9 0.1016 71.3 0.0103088 132.793
|
1387 |
+
1600 8.9 0.1016 71.3 0.0103088 128.763
|
1388 |
+
2000 8.9 0.1016 71.3 0.0103088 124.233
|
1389 |
+
2500 8.9 0.1016 71.3 0.0103088 123.623
|
1390 |
+
3150 8.9 0.1016 71.3 0.0103088 123.263
|
1391 |
+
4000 8.9 0.1016 71.3 0.0103088 120.243
|
1392 |
+
5000 8.9 0.1016 71.3 0.0103088 116.723
|
1393 |
+
6300 8.9 0.1016 71.3 0.0103088 117.253
|
1394 |
+
200 8.9 0.1016 39.6 0.0124596 133.420
|
1395 |
+
250 8.9 0.1016 39.6 0.0124596 134.340
|
1396 |
+
315 8.9 0.1016 39.6 0.0124596 135.380
|
1397 |
+
400 8.9 0.1016 39.6 0.0124596 135.540
|
1398 |
+
500 8.9 0.1016 39.6 0.0124596 133.790
|
1399 |
+
630 8.9 0.1016 39.6 0.0124596 131.920
|
1400 |
+
800 8.9 0.1016 39.6 0.0124596 130.940
|
1401 |
+
1000 8.9 0.1016 39.6 0.0124596 129.580
|
1402 |
+
1250 8.9 0.1016 39.6 0.0124596 127.710
|
1403 |
+
1600 8.9 0.1016 39.6 0.0124596 123.820
|
1404 |
+
2000 8.9 0.1016 39.6 0.0124596 119.040
|
1405 |
+
2500 8.9 0.1016 39.6 0.0124596 119.190
|
1406 |
+
3150 8.9 0.1016 39.6 0.0124596 119.350
|
1407 |
+
4000 8.9 0.1016 39.6 0.0124596 116.220
|
1408 |
+
5000 8.9 0.1016 39.6 0.0124596 113.080
|
1409 |
+
6300 8.9 0.1016 39.6 0.0124596 113.110
|
1410 |
+
200 12.3 0.1016 71.3 0.0337792 130.588
|
1411 |
+
250 12.3 0.1016 71.3 0.0337792 131.568
|
1412 |
+
315 12.3 0.1016 71.3 0.0337792 137.068
|
1413 |
+
400 12.3 0.1016 71.3 0.0337792 139.428
|
1414 |
+
500 12.3 0.1016 71.3 0.0337792 140.158
|
1415 |
+
630 12.3 0.1016 71.3 0.0337792 135.368
|
1416 |
+
800 12.3 0.1016 71.3 0.0337792 127.318
|
1417 |
+
1000 12.3 0.1016 71.3 0.0337792 127.928
|
1418 |
+
1250 12.3 0.1016 71.3 0.0337792 126.648
|
1419 |
+
1600 12.3 0.1016 71.3 0.0337792 124.748
|
1420 |
+
2000 12.3 0.1016 71.3 0.0337792 122.218
|
1421 |
+
2500 12.3 0.1016 71.3 0.0337792 121.318
|
1422 |
+
3150 12.3 0.1016 71.3 0.0337792 120.798
|
1423 |
+
4000 12.3 0.1016 71.3 0.0337792 118.018
|
1424 |
+
5000 12.3 0.1016 71.3 0.0337792 116.108
|
1425 |
+
6300 12.3 0.1016 71.3 0.0337792 113.958
|
1426 |
+
200 12.3 0.1016 55.5 0.0368233 132.304
|
1427 |
+
250 12.3 0.1016 55.5 0.0368233 133.294
|
1428 |
+
315 12.3 0.1016 55.5 0.0368233 135.674
|
1429 |
+
400 12.3 0.1016 55.5 0.0368233 136.414
|
1430 |
+
500 12.3 0.1016 55.5 0.0368233 133.774
|
1431 |
+
630 12.3 0.1016 55.5 0.0368233 124.244
|
1432 |
+
800 12.3 0.1016 55.5 0.0368233 125.114
|
1433 |
+
1000 12.3 0.1016 55.5 0.0368233 125.484
|
1434 |
+
1250 12.3 0.1016 55.5 0.0368233 124.214
|
1435 |
+
1600 12.3 0.1016 55.5 0.0368233 121.824
|
1436 |
+
2000 12.3 0.1016 55.5 0.0368233 118.564
|
1437 |
+
2500 12.3 0.1016 55.5 0.0368233 117.054
|
1438 |
+
3150 12.3 0.1016 55.5 0.0368233 116.914
|
1439 |
+
4000 12.3 0.1016 55.5 0.0368233 114.404
|
1440 |
+
5000 12.3 0.1016 55.5 0.0368233 112.014
|
1441 |
+
6300 12.3 0.1016 55.5 0.0368233 110.124
|
1442 |
+
200 12.3 0.1016 39.6 0.0408268 128.545
|
1443 |
+
250 12.3 0.1016 39.6 0.0408268 129.675
|
1444 |
+
315 12.3 0.1016 39.6 0.0408268 129.415
|
1445 |
+
400 12.3 0.1016 39.6 0.0408268 128.265
|
1446 |
+
500 12.3 0.1016 39.6 0.0408268 122.205
|
1447 |
+
630 12.3 0.1016 39.6 0.0408268 121.315
|
1448 |
+
800 12.3 0.1016 39.6 0.0408268 122.315
|
1449 |
+
1000 12.3 0.1016 39.6 0.0408268 122.435
|
1450 |
+
1250 12.3 0.1016 39.6 0.0408268 121.165
|
1451 |
+
1600 12.3 0.1016 39.6 0.0408268 117.875
|
1452 |
+
2000 12.3 0.1016 39.6 0.0408268 114.085
|
1453 |
+
2500 12.3 0.1016 39.6 0.0408268 113.315
|
1454 |
+
3150 12.3 0.1016 39.6 0.0408268 113.055
|
1455 |
+
4000 12.3 0.1016 39.6 0.0408268 110.905
|
1456 |
+
5000 12.3 0.1016 39.6 0.0408268 108.625
|
1457 |
+
6300 12.3 0.1016 39.6 0.0408268 107.985
|
1458 |
+
200 12.3 0.1016 31.7 0.0418756 124.987
|
1459 |
+
250 12.3 0.1016 31.7 0.0418756 125.857
|
1460 |
+
315 12.3 0.1016 31.7 0.0418756 124.717
|
1461 |
+
400 12.3 0.1016 31.7 0.0418756 123.207
|
1462 |
+
500 12.3 0.1016 31.7 0.0418756 118.667
|
1463 |
+
630 12.3 0.1016 31.7 0.0418756 119.287
|
1464 |
+
800 12.3 0.1016 31.7 0.0418756 120.037
|
1465 |
+
1000 12.3 0.1016 31.7 0.0418756 119.777
|
1466 |
+
1250 12.3 0.1016 31.7 0.0418756 118.767
|
1467 |
+
1600 12.3 0.1016 31.7 0.0418756 114.477
|
1468 |
+
2000 12.3 0.1016 31.7 0.0418756 110.447
|
1469 |
+
2500 12.3 0.1016 31.7 0.0418756 110.317
|
1470 |
+
3150 12.3 0.1016 31.7 0.0418756 110.307
|
1471 |
+
4000 12.3 0.1016 31.7 0.0418756 108.407
|
1472 |
+
5000 12.3 0.1016 31.7 0.0418756 107.147
|
1473 |
+
6300 12.3 0.1016 31.7 0.0418756 107.267
|
1474 |
+
200 15.6 0.1016 71.3 0.0437259 130.898
|
1475 |
+
250 15.6 0.1016 71.3 0.0437259 132.158
|
1476 |
+
315 15.6 0.1016 71.3 0.0437259 133.808
|
1477 |
+
400 15.6 0.1016 71.3 0.0437259 134.058
|
1478 |
+
500 15.6 0.1016 71.3 0.0437259 130.638
|
1479 |
+
630 15.6 0.1016 71.3 0.0437259 122.288
|
1480 |
+
800 15.6 0.1016 71.3 0.0437259 124.188
|
1481 |
+
1000 15.6 0.1016 71.3 0.0437259 124.438
|
1482 |
+
1250 15.6 0.1016 71.3 0.0437259 123.178
|
1483 |
+
1600 15.6 0.1016 71.3 0.0437259 121.528
|
1484 |
+
2000 15.6 0.1016 71.3 0.0437259 119.888
|
1485 |
+
2500 15.6 0.1016 71.3 0.0437259 118.998
|
1486 |
+
3150 15.6 0.1016 71.3 0.0437259 116.468
|
1487 |
+
4000 15.6 0.1016 71.3 0.0437259 113.298
|
1488 |
+
200 15.6 0.1016 39.6 0.0528487 123.514
|
1489 |
+
250 15.6 0.1016 39.6 0.0528487 124.644
|
1490 |
+
315 15.6 0.1016 39.6 0.0528487 122.754
|
1491 |
+
400 15.6 0.1016 39.6 0.0528487 120.484
|
1492 |
+
500 15.6 0.1016 39.6 0.0528487 115.304
|
1493 |
+
630 15.6 0.1016 39.6 0.0528487 118.084
|
1494 |
+
800 15.6 0.1016 39.6 0.0528487 118.964
|
1495 |
+
1000 15.6 0.1016 39.6 0.0528487 119.224
|
1496 |
+
1250 15.6 0.1016 39.6 0.0528487 118.214
|
1497 |
+
1600 15.6 0.1016 39.6 0.0528487 114.554
|
1498 |
+
2000 15.6 0.1016 39.6 0.0528487 110.894
|
1499 |
+
2500 15.6 0.1016 39.6 0.0528487 110.264
|
1500 |
+
3150 15.6 0.1016 39.6 0.0528487 109.254
|
1501 |
+
4000 15.6 0.1016 39.6 0.0528487 106.604
|
1502 |
+
5000 15.6 0.1016 39.6 0.0528487 106.224
|
1503 |
+
6300 15.6 0.1016 39.6 0.0528487 104.204
|
datasets/conditions_based_maintenance/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
datasets/conditions_based_maintenance/Features.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1 - Lever position (lp) [ ]
|
2 |
+
2 - Ship speed (v) [knots]
|
3 |
+
3 - Gas Turbine shaft torque (GTT) [kN m]
|
4 |
+
4 - Gas Turbine rate of revolutions (GTn) [rpm]
|
5 |
+
5 - Gas Generator rate of revolutions (GGn) [rpm]
|
6 |
+
6 - Starboard Propeller Torque (Ts) [kN]
|
7 |
+
7 - Port Propeller Torque (Tp) [kN]
|
8 |
+
8 - HP Turbine exit temperature (T48) [C]
|
9 |
+
9 - GT Compressor inlet air temperature (T1) [C]
|
10 |
+
10 - GT Compressor outlet air temperature (T2) [C]
|
11 |
+
11 - HP Turbine exit pressure (P48) [bar]
|
12 |
+
12 - GT Compressor inlet air pressure (P1) [bar]
|
13 |
+
13 - GT Compressor outlet air pressure (P2) [bar]
|
14 |
+
14 - Gas Turbine exhaust gas pressure (Pexh) [bar]
|
15 |
+
15 - Turbine Injecton Control (TIC) [%]
|
16 |
+
16 - Fuel flow (mf) [kg/s]
|
17 |
+
17 - GT Compressor decay state coefficient.
|
18 |
+
18 - GT Turbine decay state coefficient.
|
datasets/conditions_based_maintenance/README.txt
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
=================================================================================================================
|
2 |
+
Human Activity Recognition Using Smartphones Dataset
|
3 |
+
Version 1.0
|
4 |
+
=================================================================================================================
|
5 |
+
Andrea Coraddu(2), Luca Oneto(1), Alessandro Ghio(1), Stefano Savio(2), Davide Anguita(1), Massimo Figari(2)
|
6 |
+
1 - Smartlab - Non-Linear Complex Systems Laboratory
|
7 |
+
DITEN - Universit� degli Studi di Genova, Genoa (I-16145), Italy.
|
8 |
+
{luca.oneto,alessandro.ghio,davide.anguita}@unige.it
|
9 |
+
2 - Marine Technology Research Team
|
10 |
+
DITEN - Universit� degli Studi di Genova, Genoa (I-16145), Italy.
|
11 |
+
{andrea.coraddu,stefano.savio,massimo.figari}@unige.it
|
12 |
+
=================================================================================================================
|
13 |
+
|
14 |
+
The experiments have been carried out by means of a numerical simulator of a naval vessel (Frigate) characterized by a Gas Turbine (GT) propulsion plant. The different blocks forming the complete simulator (Propeller, Hull, GT, Gear Box and Controller) have been developed and fine tuned over the year on several similar real propulsion plants. In view of these observations the available data are in agreement with a possible real vessel.
|
15 |
+
In this release of the simulator it is also possible to take into account the performance decay over time of the GT components such as GT compressor and turbines.
|
16 |
+
The propulsion system behaviour has been described with this parameters:
|
17 |
+
- Ship speed (linear function of the lever position lp).
|
18 |
+
- Compressor degradation coefficient kMc.
|
19 |
+
- Turbine degradation coefficient kMt.
|
20 |
+
so that each possible degradation state can be described by a combination of this triple (lp,kMt,kMc).
|
21 |
+
The range of decay of compressor and turbine has been sampled with an uniform grid of precision 0.001 so to have a good granularity of representation.
|
22 |
+
In particular for the compressor decay state discretization the kMc coefficient has been investigated in the domain [1; 0.95], and the turbine coefficient in the domain [1; 0.975].
|
23 |
+
Ship speed has been investigated sampling the range of feasible speed from 3 knots to 27 knots with a granularity of representation equal to tree knots.
|
24 |
+
A series of measures (16 features) which indirectly represents of the state of the system subject to performance decay has been acquired and stored in the dataset over the parameter's space.
|
25 |
+
Check the README.txt file for further details about this dataset.
|
26 |
+
|
27 |
+
For each record it is provided:
|
28 |
+
======================================
|
29 |
+
|
30 |
+
- A 16-feature vector containing the GT measures at steady state of the physical asset:
|
31 |
+
Lever position (lp) [ ]
|
32 |
+
Ship speed (v) [knots]
|
33 |
+
Gas Turbine (GT) shaft torque (GTT) [kN m]
|
34 |
+
GT rate of revolutions (GTn) [rpm]
|
35 |
+
Gas Generator rate of revolutions (GGn) [rpm]
|
36 |
+
Starboard Propeller Torque (Ts) [kN]
|
37 |
+
Port Propeller Torque (Tp) [kN]
|
38 |
+
Hight Pressure (HP) Turbine exit temperature (T48) [C]
|
39 |
+
GT Compressor inlet air temperature (T1) [C]
|
40 |
+
GT Compressor outlet air temperature (T2) [C]
|
41 |
+
HP Turbine exit pressure (P48) [bar]
|
42 |
+
GT Compressor inlet air pressure (P1) [bar]
|
43 |
+
GT Compressor outlet air pressure (P2) [bar]
|
44 |
+
GT exhaust gas pressure (Pexh) [bar]
|
45 |
+
Turbine Injecton Control (TIC) [%]
|
46 |
+
Fuel flow (mf) [kg/s]
|
47 |
+
- GT Compressor decay state coefficient
|
48 |
+
- GT Turbine decay state coefficient
|
49 |
+
|
50 |
+
The dataset includes the following files:
|
51 |
+
=========================================
|
52 |
+
|
53 |
+
- 'README.txt'
|
54 |
+
|
55 |
+
- 'Features.txt': List of all features.
|
56 |
+
|
57 |
+
- 'data.txt': Dataset.
|
58 |
+
|
59 |
+
Notes:
|
60 |
+
======
|
61 |
+
- Features are not normalized
|
62 |
+
- Each feature vector is a row on the text file (18 elements in each row)
|
63 |
+
|
64 |
+
For more information about this dataset please contact: cbm@smartlab.ws
|
65 |
+
Check at www.cbm.smartlab.ws for updates on this dataset.
|
66 |
+
|
67 |
+
License:
|
68 |
+
========
|
69 |
+
Use of this dataset in publications must be acknowledged by referencing the following publication [1]
|
70 |
+
|
71 |
+
[1] A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, M. Figari, Machine Learning Approaches for Improving Condition?Based Maintenance of Naval Propulsion Plants, Journal of Engineering for the Maritime Environment, 2014, DOI: 10.1177/1475090214540874, (In Press)
|
72 |
+
|
73 |
+
@article{Coraddu2013Machine,
|
74 |
+
author={Coraddu, Andrea and Oneto, Luca and Ghio, Alessandro and
|
75 |
+
Savio, Stefano and Anguita, Davide and Figari, Massimo},
|
76 |
+
title={Machine Learning Approaches for Improving Condition?Based Maintenance of Naval Propulsion Plants},
|
77 |
+
journal={Journal of Engineering for the Maritime Environment},
|
78 |
+
volume={--},
|
79 |
+
number={--},
|
80 |
+
pages={--},
|
81 |
+
year={2014}
|
82 |
+
}
|
83 |
+
|
84 |
+
This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.
|
85 |
+
|
86 |
+
Other Related Publications:
|
87 |
+
===========================
|
88 |
+
|
89 |
+
[2] M. Altosole, G. Benvenuto, M. Figari, U. Campora, Real-time simulation of a cogag naval ship propulsion system, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223 (1) (2009) 47-62.
|
90 |
+
|
91 |
+
=================================================================================================================
|
92 |
+
Andrea Coraddu, Luca Oneto, Alessandro Ghio, Stefano Savio, Davide Anguita, Massimo Figari. September 2014.
|
datasets/conditions_based_maintenance/data.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/energy efficiency.csv
ADDED
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
X1,X2,X3,X4,X5,X6,X7,X8,Y1,Y2
|
2 |
+
0.98,514.5,294,110.25,7,2,0,0,15.55,21.33
|
3 |
+
0.98,514.5,294,110.25,7,3,0,0,15.55,21.33
|
4 |
+
0.98,514.5,294,110.25,7,4,0,0,15.55,21.33
|
5 |
+
0.98,514.5,294,110.25,7,5,0,0,15.55,21.33
|
6 |
+
0.9,563.5,318.5,122.5,7,2,0,0,20.84,28.28
|
7 |
+
0.9,563.5,318.5,122.5,7,3,0,0,21.46,25.38
|
8 |
+
0.9,563.5,318.5,122.5,7,4,0,0,20.71,25.16
|
9 |
+
0.9,563.5,318.5,122.5,7,5,0,0,19.68,29.6
|
10 |
+
0.86,588,294,147,7,2,0,0,19.5,27.3
|
11 |
+
0.86,588,294,147,7,3,0,0,19.95,21.97
|
12 |
+
0.86,588,294,147,7,4,0,0,19.34,23.49
|
13 |
+
0.86,588,294,147,7,5,0,0,18.31,27.87
|
14 |
+
0.82,612.5,318.5,147,7,2,0,0,17.05,23.77
|
15 |
+
0.82,612.5,318.5,147,7,3,0,0,17.41,21.46
|
16 |
+
0.82,612.5,318.5,147,7,4,0,0,16.95,21.16
|
17 |
+
0.82,612.5,318.5,147,7,5,0,0,15.98,24.93
|
18 |
+
0.79,637,343,147,7,2,0,0,28.52,37.73
|
19 |
+
0.79,637,343,147,7,3,0,0,29.9,31.27
|
20 |
+
0.79,637,343,147,7,4,0,0,29.63,30.93
|
21 |
+
0.79,637,343,147,7,5,0,0,28.75,39.44
|
22 |
+
0.76,661.5,416.5,122.5,7,2,0,0,24.77,29.79
|
23 |
+
0.76,661.5,416.5,122.5,7,3,0,0,23.93,29.68
|
24 |
+
0.76,661.5,416.5,122.5,7,4,0,0,24.77,29.79
|
25 |
+
0.76,661.5,416.5,122.5,7,5,0,0,23.93,29.4
|
26 |
+
0.74,686,245,220.5,3.5,2,0,0,6.07,10.9
|
27 |
+
0.74,686,245,220.5,3.5,3,0,0,6.05,11.19
|
28 |
+
0.74,686,245,220.5,3.5,4,0,0,6.01,10.94
|
29 |
+
0.74,686,245,220.5,3.5,5,0,0,6.04,11.17
|
30 |
+
0.71,710.5,269.5,220.5,3.5,2,0,0,6.37,11.27
|
31 |
+
0.71,710.5,269.5,220.5,3.5,3,0,0,6.4,11.72
|
32 |
+
0.71,710.5,269.5,220.5,3.5,4,0,0,6.366,11.29
|
33 |
+
0.71,710.5,269.5,220.5,3.5,5,0,0,6.4,11.67
|
34 |
+
0.69,735,294,220.5,3.5,2,0,0,6.85,11.74
|
35 |
+
0.69,735,294,220.5,3.5,3,0,0,6.79,12.05
|
36 |
+
0.69,735,294,220.5,3.5,4,0,0,6.77,11.73
|
37 |
+
0.69,735,294,220.5,3.5,5,0,0,6.81,11.93
|
38 |
+
0.66,759.5,318.5,220.5,3.5,2,0,0,7.18,12.4
|
39 |
+
0.66,759.5,318.5,220.5,3.5,3,0,0,7.1,12.23
|
40 |
+
0.66,759.5,318.5,220.5,3.5,4,0,0,7.1,12.4
|
41 |
+
0.66,759.5,318.5,220.5,3.5,5,0,0,7.1,12.14
|
42 |
+
0.64,784,343,220.5,3.5,2,0,0,10.85,16.78
|
43 |
+
0.64,784,343,220.5,3.5,3,0,0,10.54,16.8
|
44 |
+
0.64,784,343,220.5,3.5,4,0,0,10.77,16.75
|
45 |
+
0.64,784,343,220.5,3.5,5,0,0,10.56,16.67
|
46 |
+
0.62,808.5,367.5,220.5,3.5,2,0,0,8.6,12.07
|
47 |
+
0.62,808.5,367.5,220.5,3.5,3,0,0,8.49,12.22
|
48 |
+
0.62,808.5,367.5,220.5,3.5,4,0,0,8.45,12.08
|
49 |
+
0.62,808.5,367.5,220.5,3.5,5,0,0,8.5,12.04
|
50 |
+
0.98,514.5,294,110.25,7,2,0.1,1,24.58,26.47
|
51 |
+
0.98,514.5,294,110.25,7,3,0.1,1,24.63,26.37
|
52 |
+
0.98,514.5,294,110.25,7,4,0.1,1,24.63,26.44
|
53 |
+
0.98,514.5,294,110.25,7,5,0.1,1,24.59,26.29
|
54 |
+
0.9,563.5,318.5,122.5,7,2,0.1,1,29.03,32.92
|
55 |
+
0.9,563.5,318.5,122.5,7,3,0.1,1,29.87,29.87
|
56 |
+
0.9,563.5,318.5,122.5,7,4,0.1,1,29.14,29.58
|
57 |
+
0.9,563.5,318.5,122.5,7,5,0.1,1,28.09,34.33
|
58 |
+
0.86,588,294,147,7,2,0.1,1,26.28,30.89
|
59 |
+
0.86,588,294,147,7,3,0.1,1,26.91,25.6
|
60 |
+
0.86,588,294,147,7,4,0.1,1,26.37,27.03
|
61 |
+
0.86,588,294,147,7,5,0.1,1,25.27,31.73
|
62 |
+
0.82,612.5,318.5,147,7,2,0.1,1,23.53,27.31
|
63 |
+
0.82,612.5,318.5,147,7,3,0.1,1,24.03,24.91
|
64 |
+
0.82,612.5,318.5,147,7,4,0.1,1,23.54,24.61
|
65 |
+
0.82,612.5,318.5,147,7,5,0.1,1,22.58,28.51
|
66 |
+
0.79,637,343,147,7,2,0.1,1,35.56,41.68
|
67 |
+
0.79,637,343,147,7,3,0.1,1,37.12,35.28
|
68 |
+
0.79,637,343,147,7,4,0.1,1,36.9,34.43
|
69 |
+
0.79,637,343,147,7,5,0.1,1,35.94,43.33
|
70 |
+
0.76,661.5,416.5,122.5,7,2,0.1,1,32.96,33.87
|
71 |
+
0.76,661.5,416.5,122.5,7,3,0.1,1,32.12,34.07
|
72 |
+
0.76,661.5,416.5,122.5,7,4,0.1,1,32.94,34.14
|
73 |
+
0.76,661.5,416.5,122.5,7,5,0.1,1,32.21,33.67
|
74 |
+
0.74,686,245,220.5,3.5,2,0.1,1,10.36,13.43
|
75 |
+
0.74,686,245,220.5,3.5,3,0.1,1,10.43,13.71
|
76 |
+
0.74,686,245,220.5,3.5,4,0.1,1,10.36,13.48
|
77 |
+
0.74,686,245,220.5,3.5,5,0.1,1,10.39,13.7
|
78 |
+
0.71,710.5,269.5,220.5,3.5,2,0.1,1,10.71,13.8
|
79 |
+
0.71,710.5,269.5,220.5,3.5,3,0.1,1,10.8,14.28
|
80 |
+
0.71,710.5,269.5,220.5,3.5,4,0.1,1,10.7,13.87
|
81 |
+
0.71,710.5,269.5,220.5,3.5,5,0.1,1,10.75,14.27
|
82 |
+
0.69,735,294,220.5,3.5,2,0.1,1,11.11,14.28
|
83 |
+
0.69,735,294,220.5,3.5,3,0.1,1,11.13,14.61
|
84 |
+
0.69,735,294,220.5,3.5,4,0.1,1,11.09,14.3
|
85 |
+
0.69,735,294,220.5,3.5,5,0.1,1,11.16,14.45
|
86 |
+
0.66,759.5,318.5,220.5,3.5,2,0.1,1,11.68,13.9
|
87 |
+
0.66,759.5,318.5,220.5,3.5,3,0.1,1,11.69,13.72
|
88 |
+
0.66,759.5,318.5,220.5,3.5,4,0.1,1,11.7,13.88
|
89 |
+
0.66,759.5,318.5,220.5,3.5,5,0.1,1,11.69,13.65
|
90 |
+
0.64,784,343,220.5,3.5,2,0.1,1,15.41,19.37
|
91 |
+
0.64,784,343,220.5,3.5,3,0.1,1,15.2,19.43
|
92 |
+
0.64,784,343,220.5,3.5,4,0.1,1,15.42,19.34
|
93 |
+
0.64,784,343,220.5,3.5,5,0.1,1,15.21,19.32
|
94 |
+
0.62,808.5,367.5,220.5,3.5,2,0.1,1,12.96,14.34
|
95 |
+
0.62,808.5,367.5,220.5,3.5,3,0.1,1,12.97,14.5
|
96 |
+
0.62,808.5,367.5,220.5,3.5,4,0.1,1,12.93,14.33
|
97 |
+
0.62,808.5,367.5,220.5,3.5,5,0.1,1,13.02,14.27
|
98 |
+
0.98,514.5,294,110.25,7,2,0.1,2,24.29,25.95
|
99 |
+
0.98,514.5,294,110.25,7,3,0.1,2,24.31,25.63
|
100 |
+
0.98,514.5,294,110.25,7,4,0.1,2,24.13,26.13
|
101 |
+
0.98,514.5,294,110.25,7,5,0.1,2,24.25,25.89
|
102 |
+
0.9,563.5,318.5,122.5,7,2,0.1,2,28.88,32.54
|
103 |
+
0.9,563.5,318.5,122.5,7,3,0.1,2,29.68,29.44
|
104 |
+
0.9,563.5,318.5,122.5,7,4,0.1,2,28.83,29.36
|
105 |
+
0.9,563.5,318.5,122.5,7,5,0.1,2,27.9,34.2
|
106 |
+
0.86,588,294,147,7,2,0.1,2,26.48,30.91
|
107 |
+
0.86,588,294,147,7,3,0.1,2,27.02,25.63
|
108 |
+
0.86,588,294,147,7,4,0.1,2,26.33,27.36
|
109 |
+
0.86,588,294,147,7,5,0.1,2,25.36,31.9
|
110 |
+
0.82,612.5,318.5,147,7,2,0.1,2,23.75,27.38
|
111 |
+
0.82,612.5,318.5,147,7,3,0.1,2,24.23,25.02
|
112 |
+
0.82,612.5,318.5,147,7,4,0.1,2,23.67,24.8
|
113 |
+
0.82,612.5,318.5,147,7,5,0.1,2,22.79,28.79
|
114 |
+
0.79,637,343,147,7,2,0.1,2,35.65,41.07
|
115 |
+
0.79,637,343,147,7,3,0.1,2,37.26,34.62
|
116 |
+
0.79,637,343,147,7,4,0.1,2,36.97,33.87
|
117 |
+
0.79,637,343,147,7,5,0.1,2,36.03,42.86
|
118 |
+
0.76,661.5,416.5,122.5,7,2,0.1,2,33.16,33.91
|
119 |
+
0.76,661.5,416.5,122.5,7,3,0.1,2,32.4,34.07
|
120 |
+
0.76,661.5,416.5,122.5,7,4,0.1,2,33.12,34.17
|
121 |
+
0.76,661.5,416.5,122.5,7,5,0.1,2,32.41,33.78
|
122 |
+
0.74,686,245,220.5,3.5,2,0.1,2,10.42,13.39
|
123 |
+
0.74,686,245,220.5,3.5,3,0.1,2,10.46,13.72
|
124 |
+
0.74,686,245,220.5,3.5,4,0.1,2,10.32,13.57
|
125 |
+
0.74,686,245,220.5,3.5,5,0.1,2,10.45,13.79
|
126 |
+
0.71,710.5,269.5,220.5,3.5,2,0.1,2,10.64,13.67
|
127 |
+
0.71,710.5,269.5,220.5,3.5,3,0.1,2,10.72,14.11
|
128 |
+
0.71,710.5,269.5,220.5,3.5,4,0.1,2,10.55,13.8
|
129 |
+
0.71,710.5,269.5,220.5,3.5,5,0.1,2,10.68,14.21
|
130 |
+
0.69,735,294,220.5,3.5,2,0.1,2,11.45,13.2
|
131 |
+
0.69,735,294,220.5,3.5,3,0.1,2,11.46,13.54
|
132 |
+
0.69,735,294,220.5,3.5,4,0.1,2,11.32,13.32
|
133 |
+
0.69,735,294,220.5,3.5,5,0.1,2,11.49,13.51
|
134 |
+
0.66,759.5,318.5,220.5,3.5,2,0.1,2,11.45,14.86
|
135 |
+
0.66,759.5,318.5,220.5,3.5,3,0.1,2,11.42,14.75
|
136 |
+
0.66,759.5,318.5,220.5,3.5,4,0.1,2,11.33,15
|
137 |
+
0.66,759.5,318.5,220.5,3.5,5,0.1,2,11.43,14.74
|
138 |
+
0.64,784,343,220.5,3.5,2,0.1,2,15.41,19.23
|
139 |
+
0.64,784,343,220.5,3.5,3,0.1,2,15.18,19.34
|
140 |
+
0.64,784,343,220.5,3.5,4,0.1,2,15.34,19.32
|
141 |
+
0.64,784,343,220.5,3.5,5,0.1,2,15.19,19.3
|
142 |
+
0.62,808.5,367.5,220.5,3.5,2,0.1,2,12.88,14.37
|
143 |
+
0.62,808.5,367.5,220.5,3.5,3,0.1,2,13,14.57
|
144 |
+
0.62,808.5,367.5,220.5,3.5,4,0.1,2,12.97,14.27
|
145 |
+
0.62,808.5,367.5,220.5,3.5,5,0.1,2,13.04,14.24
|
146 |
+
0.98,514.5,294,110.25,7,2,0.1,3,24.28,25.68
|
147 |
+
0.98,514.5,294,110.25,7,3,0.1,3,24.4,26.02
|
148 |
+
0.98,514.5,294,110.25,7,4,0.1,3,24.11,25.84
|
149 |
+
0.98,514.5,294,110.25,7,5,0.1,3,24.35,26.14
|
150 |
+
0.9,563.5,318.5,122.5,7,2,0.1,3,28.07,34.14
|
151 |
+
0.9,563.5,318.5,122.5,7,3,0.1,3,29.01,32.85
|
152 |
+
0.9,563.5,318.5,122.5,7,4,0.1,3,29.62,30.08
|
153 |
+
0.9,563.5,318.5,122.5,7,5,0.1,3,29.05,29.67
|
154 |
+
0.86,588,294,147,7,2,0.1,3,25.41,31.73
|
155 |
+
0.86,588,294,147,7,3,0.1,3,26.47,31.01
|
156 |
+
0.86,588,294,147,7,4,0.1,3,26.89,25.9
|
157 |
+
0.86,588,294,147,7,5,0.1,3,26.46,27.4
|
158 |
+
0.82,612.5,318.5,147,7,2,0.1,3,22.93,28.68
|
159 |
+
0.82,612.5,318.5,147,7,3,0.1,3,23.84,27.54
|
160 |
+
0.82,612.5,318.5,147,7,4,0.1,3,24.17,25.35
|
161 |
+
0.82,612.5,318.5,147,7,5,0.1,3,23.87,24.93
|
162 |
+
0.79,637,343,147,7,2,0.1,3,35.78,43.12
|
163 |
+
0.79,637,343,147,7,3,0.1,3,35.48,41.22
|
164 |
+
0.79,637,343,147,7,4,0.1,3,36.97,35.1
|
165 |
+
0.79,637,343,147,7,5,0.1,3,36.7,34.29
|
166 |
+
0.76,661.5,416.5,122.5,7,2,0.1,3,32.52,33.85
|
167 |
+
0.76,661.5,416.5,122.5,7,3,0.1,3,33.28,34.11
|
168 |
+
0.76,661.5,416.5,122.5,7,4,0.1,3,32.33,34.48
|
169 |
+
0.76,661.5,416.5,122.5,7,5,0.1,3,33.24,34.5
|
170 |
+
0.74,686,245,220.5,3.5,2,0.1,3,10.39,13.6
|
171 |
+
0.74,686,245,220.5,3.5,3,0.1,3,10.34,13.36
|
172 |
+
0.74,686,245,220.5,3.5,4,0.1,3,10.35,13.65
|
173 |
+
0.74,686,245,220.5,3.5,5,0.1,3,10.38,13.49
|
174 |
+
0.71,710.5,269.5,220.5,3.5,2,0.1,3,10.77,14.14
|
175 |
+
0.71,710.5,269.5,220.5,3.5,3,0.1,3,10.68,13.77
|
176 |
+
0.71,710.5,269.5,220.5,3.5,4,0.1,3,10.68,14.3
|
177 |
+
0.71,710.5,269.5,220.5,3.5,5,0.1,3,10.7,13.87
|
178 |
+
0.69,735,294,220.5,3.5,2,0.1,3,11.22,14.44
|
179 |
+
0.69,735,294,220.5,3.5,3,0.1,3,11.16,14.27
|
180 |
+
0.69,735,294,220.5,3.5,4,0.1,3,11.1,14.67
|
181 |
+
0.69,735,294,220.5,3.5,5,0.1,3,11.14,14.4
|
182 |
+
0.66,759.5,318.5,220.5,3.5,2,0.1,3,11.59,13.46
|
183 |
+
0.66,759.5,318.5,220.5,3.5,3,0.1,3,11.6,13.7
|
184 |
+
0.66,759.5,318.5,220.5,3.5,4,0.1,3,11.53,13.59
|
185 |
+
0.66,759.5,318.5,220.5,3.5,5,0.1,3,11.61,13.83
|
186 |
+
0.64,784,343,220.5,3.5,2,0.1,3,15.16,19.14
|
187 |
+
0.64,784,343,220.5,3.5,3,0.1,3,15.36,19.18
|
188 |
+
0.64,784,343,220.5,3.5,4,0.1,3,15.12,19.37
|
189 |
+
0.64,784,343,220.5,3.5,5,0.1,3,15.36,19.29
|
190 |
+
0.62,808.5,367.5,220.5,3.5,2,0.1,3,12.68,14.09
|
191 |
+
0.62,808.5,367.5,220.5,3.5,3,0.1,3,12.63,14.23
|
192 |
+
0.62,808.5,367.5,220.5,3.5,4,0.1,3,12.71,14.14
|
193 |
+
0.62,808.5,367.5,220.5,3.5,5,0.1,3,12.73,13.89
|
194 |
+
0.98,514.5,294,110.25,7,2,0.1,4,24.38,25.91
|
195 |
+
0.98,514.5,294,110.25,7,3,0.1,4,24.23,25.72
|
196 |
+
0.98,514.5,294,110.25,7,4,0.1,4,24.04,26.18
|
197 |
+
0.98,514.5,294,110.25,7,5,0.1,4,24.32,25.87
|
198 |
+
0.9,563.5,318.5,122.5,7,2,0.1,4,29.06,29.34
|
199 |
+
0.9,563.5,318.5,122.5,7,3,0.1,4,28.05,33.91
|
200 |
+
0.9,563.5,318.5,122.5,7,4,0.1,4,28.86,32.83
|
201 |
+
0.9,563.5,318.5,122.5,7,5,0.1,4,29.79,29.92
|
202 |
+
0.86,588,294,147,7,2,0.1,4,26.44,27.17
|
203 |
+
0.86,588,294,147,7,3,0.1,4,25.37,31.76
|
204 |
+
0.86,588,294,147,7,4,0.1,4,26.33,31.06
|
205 |
+
0.86,588,294,147,7,5,0.1,4,27.03,25.81
|
206 |
+
0.82,612.5,318.5,147,7,2,0.1,4,23.8,24.61
|
207 |
+
0.82,612.5,318.5,147,7,3,0.1,4,22.8,28.61
|
208 |
+
0.82,612.5,318.5,147,7,4,0.1,4,23.59,27.57
|
209 |
+
0.82,612.5,318.5,147,7,5,0.1,4,24.24,25.16
|
210 |
+
0.79,637,343,147,7,2,0.1,4,36.86,34.25
|
211 |
+
0.79,637,343,147,7,3,0.1,4,35.89,43.3
|
212 |
+
0.79,637,343,147,7,4,0.1,4,35.45,41.86
|
213 |
+
0.79,637,343,147,7,5,0.1,4,37.1,35.29
|
214 |
+
0.76,661.5,416.5,122.5,7,2,0.1,4,33.08,34.11
|
215 |
+
0.76,661.5,416.5,122.5,7,3,0.1,4,32.38,33.62
|
216 |
+
0.76,661.5,416.5,122.5,7,4,0.1,4,33.09,33.89
|
217 |
+
0.76,661.5,416.5,122.5,7,5,0.1,4,32.31,34.05
|
218 |
+
0.74,686,245,220.5,3.5,2,0.1,4,10.08,13.2
|
219 |
+
0.74,686,245,220.5,3.5,3,0.1,4,10.15,13.36
|
220 |
+
0.74,686,245,220.5,3.5,4,0.1,4,10.07,13.21
|
221 |
+
0.74,686,245,220.5,3.5,5,0.1,4,10.14,13.53
|
222 |
+
0.71,710.5,269.5,220.5,3.5,2,0.1,4,10.66,13.67
|
223 |
+
0.71,710.5,269.5,220.5,3.5,3,0.1,4,10.68,14.12
|
224 |
+
0.71,710.5,269.5,220.5,3.5,4,0.1,4,10.53,13.79
|
225 |
+
0.71,710.5,269.5,220.5,3.5,5,0.1,4,10.72,14.2
|
226 |
+
0.69,735,294,220.5,3.5,2,0.1,4,11.18,14.29
|
227 |
+
0.69,735,294,220.5,3.5,3,0.1,4,11.22,14.49
|
228 |
+
0.69,735,294,220.5,3.5,4,0.1,4,11.07,14.42
|
229 |
+
0.69,735,294,220.5,3.5,5,0.1,4,11.2,14.73
|
230 |
+
0.66,759.5,318.5,220.5,3.5,2,0.1,4,11.44,14.86
|
231 |
+
0.66,759.5,318.5,220.5,3.5,3,0.1,4,11.42,14.67
|
232 |
+
0.66,759.5,318.5,220.5,3.5,4,0.1,4,11.33,15
|
233 |
+
0.66,759.5,318.5,220.5,3.5,5,0.1,4,11.43,14.83
|
234 |
+
0.64,784,343,220.5,3.5,2,0.1,4,15.4,19.24
|
235 |
+
0.64,784,343,220.5,3.5,3,0.1,4,15.19,19.25
|
236 |
+
0.64,784,343,220.5,3.5,4,0.1,4,15.32,19.42
|
237 |
+
0.64,784,343,220.5,3.5,5,0.1,4,15.16,19.48
|
238 |
+
0.62,808.5,367.5,220.5,3.5,2,0.1,4,12.85,14.37
|
239 |
+
0.62,808.5,367.5,220.5,3.5,3,0.1,4,13.04,14.34
|
240 |
+
0.62,808.5,367.5,220.5,3.5,4,0.1,4,13,14.28
|
241 |
+
0.62,808.5,367.5,220.5,3.5,5,0.1,4,13,14.47
|
242 |
+
0.98,514.5,294,110.25,7,2,0.1,5,24.35,25.64
|
243 |
+
0.98,514.5,294,110.25,7,3,0.1,5,24.33,25.98
|
244 |
+
0.98,514.5,294,110.25,7,4,0.1,5,24.03,25.88
|
245 |
+
0.98,514.5,294,110.25,7,5,0.1,5,24.26,26.18
|
246 |
+
0.9,563.5,318.5,122.5,7,2,0.1,5,29.83,29.82
|
247 |
+
0.9,563.5,318.5,122.5,7,3,0.1,5,29.08,29.52
|
248 |
+
0.9,563.5,318.5,122.5,7,4,0.1,5,28.03,34.45
|
249 |
+
0.9,563.5,318.5,122.5,7,5,0.1,5,29.02,33.01
|
250 |
+
0.86,588,294,147,7,2,0.1,5,27.03,25.82
|
251 |
+
0.86,588,294,147,7,3,0.1,5,26.45,27.33
|
252 |
+
0.86,588,294,147,7,4,0.1,5,25.36,32.04
|
253 |
+
0.86,588,294,147,7,5,0.1,5,26.45,31.28
|
254 |
+
0.82,612.5,318.5,147,7,2,0.1,5,24.37,25.11
|
255 |
+
0.82,612.5,318.5,147,7,3,0.1,5,23.89,24.77
|
256 |
+
0.82,612.5,318.5,147,7,4,0.1,5,22.89,28.88
|
257 |
+
0.82,612.5,318.5,147,7,5,0.1,5,23.86,27.69
|
258 |
+
0.79,637,343,147,7,2,0.1,5,37.03,34.99
|
259 |
+
0.79,637,343,147,7,3,0.1,5,36.71,34.18
|
260 |
+
0.79,637,343,147,7,4,0.1,5,36.77,43.14
|
261 |
+
0.79,637,343,147,7,5,0.1,5,35.48,41.26
|
262 |
+
0.76,661.5,416.5,122.5,7,2,0.1,5,32.31,34.25
|
263 |
+
0.76,661.5,416.5,122.5,7,3,0.1,5,33.21,34.35
|
264 |
+
0.76,661.5,416.5,122.5,7,4,0.1,5,32.46,33.64
|
265 |
+
0.76,661.5,416.5,122.5,7,5,0.1,5,33.27,33.88
|
266 |
+
0.74,686,245,220.5,3.5,2,0.1,5,10.47,13.65
|
267 |
+
0.74,686,245,220.5,3.5,3,0.1,5,10.37,13.44
|
268 |
+
0.74,686,245,220.5,3.5,4,0.1,5,10.34,13.72
|
269 |
+
0.74,686,245,220.5,3.5,5,0.1,5,10.39,13.5
|
270 |
+
0.71,710.5,269.5,220.5,3.5,2,0.1,5,10.78,14.18
|
271 |
+
0.71,710.5,269.5,220.5,3.5,3,0.1,5,10.7,13.75
|
272 |
+
0.71,710.5,269.5,220.5,3.5,4,0.1,5,10.67,14.26
|
273 |
+
0.71,710.5,269.5,220.5,3.5,5,0.1,5,13.69,13.89
|
274 |
+
0.69,735,294,220.5,3.5,2,0.1,5,11.21,14.55
|
275 |
+
0.69,735,294,220.5,3.5,3,0.1,5,11.14,14.28
|
276 |
+
0.69,735,294,220.5,3.5,4,0.1,5,11.11,14.46
|
277 |
+
0.69,735,294,220.5,3.5,5,0.1,5,11.16,14.39
|
278 |
+
0.66,759.5,318.5,220.5,3.5,2,0.1,5,11.38,14.54
|
279 |
+
0.66,759.5,318.5,220.5,3.5,3,0.1,5,11.34,14.81
|
280 |
+
0.66,759.5,318.5,220.5,3.5,4,0.1,5,11.22,14.65
|
281 |
+
0.66,759.5,318.5,220.5,3.5,5,0.1,5,11.34,14.87
|
282 |
+
0.64,784,343,220.5,3.5,2,0.1,5,15.16,19.24
|
283 |
+
0.64,784,343,220.5,3.5,3,0.1,5,15.37,19.18
|
284 |
+
0.64,784,343,220.5,3.5,4,0.1,5,15.12,19.26
|
285 |
+
0.64,784,343,220.5,3.5,5,0.1,5,15.36,19.29
|
286 |
+
0.62,808.5,367.5,220.5,3.5,2,0.1,5,12.59,14.24
|
287 |
+
0.62,808.5,367.5,220.5,3.5,3,0.1,5,12.74,13.97
|
288 |
+
0.62,808.5,367.5,220.5,3.5,4,0.1,5,12.8,13.99
|
289 |
+
0.62,808.5,367.5,220.5,3.5,5,0.1,5,12.62,14.15
|
290 |
+
0.98,514.5,294,110.25,7,2,0.25,1,28.15,29.79
|
291 |
+
0.98,514.5,294,110.25,7,3,0.25,1,28.15,29.79
|
292 |
+
0.98,514.5,294,110.25,7,4,0.25,1,28.37,29.28
|
293 |
+
0.98,514.5,294,110.25,7,5,0.25,1,28.41,29.49
|
294 |
+
0.9,563.5,318.5,122.5,7,2,0.25,1,32.68,36.12
|
295 |
+
0.9,563.5,318.5,122.5,7,3,0.25,1,33.48,33.17
|
296 |
+
0.9,563.5,318.5,122.5,7,4,0.25,1,32.84,32.71
|
297 |
+
0.9,563.5,318.5,122.5,7,5,0.25,1,32,37.58
|
298 |
+
0.86,588,294,147,7,2,0.25,1,29.54,33.98
|
299 |
+
0.86,588,294,147,7,3,0.25,1,30.05,28.61
|
300 |
+
0.86,588,294,147,7,4,0.25,1,29.6,30.12
|
301 |
+
0.86,588,294,147,7,5,0.25,1,28.66,34.73
|
302 |
+
0.82,612.5,318.5,147,7,2,0.25,1,26.84,30.17
|
303 |
+
0.82,612.5,318.5,147,7,3,0.25,1,27.27,27.84
|
304 |
+
0.82,612.5,318.5,147,7,4,0.25,1,26.97,27.25
|
305 |
+
0.82,612.5,318.5,147,7,5,0.25,1,26.19,31.39
|
306 |
+
0.79,637,343,147,7,2,0.25,1,38.67,43.8
|
307 |
+
0.79,637,343,147,7,3,0.25,1,40.03,37.81
|
308 |
+
0.79,637,343,147,7,4,0.25,1,39.86,36.85
|
309 |
+
0.79,637,343,147,7,5,0.25,1,39.04,45.52
|
310 |
+
0.76,661.5,416.5,122.5,7,2,0.25,1,36.96,36.85
|
311 |
+
0.76,661.5,416.5,122.5,7,3,0.25,1,36.13,37.58
|
312 |
+
0.76,661.5,416.5,122.5,7,4,0.25,1,36.91,37.45
|
313 |
+
0.76,661.5,416.5,122.5,7,5,0.25,1,36.43,36.62
|
314 |
+
0.74,686,245,220.5,3.5,2,0.25,1,12.43,15.19
|
315 |
+
0.74,686,245,220.5,3.5,3,0.25,1,12.5,15.5
|
316 |
+
0.74,686,245,220.5,3.5,4,0.25,1,12.41,15.28
|
317 |
+
0.74,686,245,220.5,3.5,5,0.25,1,12.45,15.5
|
318 |
+
0.71,710.5,269.5,220.5,3.5,2,0.25,1,12.57,15.42
|
319 |
+
0.71,710.5,269.5,220.5,3.5,3,0.25,1,12.65,15.85
|
320 |
+
0.71,710.5,269.5,220.5,3.5,4,0.25,1,12.57,15.44
|
321 |
+
0.71,710.5,269.5,220.5,3.5,5,0.25,1,12.63,15.81
|
322 |
+
0.69,735,294,220.5,3.5,2,0.25,1,12.78,15.21
|
323 |
+
0.69,735,294,220.5,3.5,3,0.25,1,12.93,15.63
|
324 |
+
0.69,735,294,220.5,3.5,4,0.25,1,12.73,15.48
|
325 |
+
0.69,735,294,220.5,3.5,5,0.25,1,12.72,15.78
|
326 |
+
0.66,759.5,318.5,220.5,3.5,2,0.25,1,13.17,16.39
|
327 |
+
0.66,759.5,318.5,220.5,3.5,3,0.25,1,13.18,16.27
|
328 |
+
0.66,759.5,318.5,220.5,3.5,4,0.25,1,13.17,16.39
|
329 |
+
0.66,759.5,318.5,220.5,3.5,5,0.25,1,13.18,16.19
|
330 |
+
0.64,784,343,220.5,3.5,2,0.25,1,17.5,21.13
|
331 |
+
0.64,784,343,220.5,3.5,3,0.25,1,17.35,21.19
|
332 |
+
0.64,784,343,220.5,3.5,4,0.25,1,17.52,21.09
|
333 |
+
0.64,784,343,220.5,3.5,5,0.25,1,17.37,21.08
|
334 |
+
0.62,808.5,367.5,220.5,3.5,2,0.25,1,15.09,15.77
|
335 |
+
0.62,808.5,367.5,220.5,3.5,3,0.25,1,15.12,15.95
|
336 |
+
0.62,808.5,367.5,220.5,3.5,4,0.25,1,15.08,15.77
|
337 |
+
0.62,808.5,367.5,220.5,3.5,5,0.25,1,15.16,15.76
|
338 |
+
0.98,514.5,294,110.25,7,2,0.25,2,28.67,29.62
|
339 |
+
0.98,514.5,294,110.25,7,3,0.25,2,28.57,29.69
|
340 |
+
0.98,514.5,294,110.25,7,4,0.25,2,28.18,30.18
|
341 |
+
0.98,514.5,294,110.25,7,5,0.25,2,28.6,30.02
|
342 |
+
0.9,563.5,318.5,122.5,7,2,0.25,2,32.46,35.56
|
343 |
+
0.9,563.5,318.5,122.5,7,3,0.25,2,33.27,32.64
|
344 |
+
0.9,563.5,318.5,122.5,7,4,0.25,2,32.33,32.77
|
345 |
+
0.9,563.5,318.5,122.5,7,5,0.25,2,31.66,37.72
|
346 |
+
0.86,588,294,147,7,2,0.25,2,29.34,33.37
|
347 |
+
0.86,588,294,147,7,3,0.25,2,29.87,27.89
|
348 |
+
0.86,588,294,147,7,4,0.25,2,29.27,29.9
|
349 |
+
0.86,588,294,147,7,5,0.25,2,28.4,34.52
|
350 |
+
0.82,612.5,318.5,147,7,2,0.25,2,25.74,28.27
|
351 |
+
0.82,612.5,318.5,147,7,3,0.25,2,25.98,26.96
|
352 |
+
0.82,612.5,318.5,147,7,4,0.25,2,25.38,26.72
|
353 |
+
0.82,612.5,318.5,147,7,5,0.25,2,24.94,29.88
|
354 |
+
0.79,637,343,147,7,2,0.25,2,38.57,43.86
|
355 |
+
0.79,637,343,147,7,3,0.25,2,40.19,37.41
|
356 |
+
0.79,637,343,147,7,4,0.25,2,39.97,36.77
|
357 |
+
0.79,637,343,147,7,5,0.25,2,38.98,45.97
|
358 |
+
0.76,661.5,416.5,122.5,7,2,0.25,2,36.95,36.87
|
359 |
+
0.76,661.5,416.5,122.5,7,3,0.25,2,36.28,37.35
|
360 |
+
0.76,661.5,416.5,122.5,7,4,0.25,2,36.86,37.28
|
361 |
+
0.76,661.5,416.5,122.5,7,5,0.25,2,36.45,36.81
|
362 |
+
0.74,686,245,220.5,3.5,2,0.25,2,12.35,14.73
|
363 |
+
0.74,686,245,220.5,3.5,3,0.25,2,12.45,15.1
|
364 |
+
0.74,686,245,220.5,3.5,4,0.25,2,12.16,15.18
|
365 |
+
0.74,686,245,220.5,3.5,5,0.25,2,12.3,15.44
|
366 |
+
0.71,710.5,269.5,220.5,3.5,2,0.25,2,12.33,14.91
|
367 |
+
0.71,710.5,269.5,220.5,3.5,3,0.25,2,12.29,15.4
|
368 |
+
0.71,710.5,269.5,220.5,3.5,4,0.25,2,12.2,14.94
|
369 |
+
0.71,710.5,269.5,220.5,3.5,5,0.25,2,12.49,15.32
|
370 |
+
0.69,735,294,220.5,3.5,2,0.25,2,12.85,15.52
|
371 |
+
0.69,735,294,220.5,3.5,3,0.25,2,12.87,15.85
|
372 |
+
0.69,735,294,220.5,3.5,4,0.25,2,12.73,15.66
|
373 |
+
0.69,735,294,220.5,3.5,5,0.25,2,12.95,15.99
|
374 |
+
0.66,759.5,318.5,220.5,3.5,2,0.25,2,13.05,15.89
|
375 |
+
0.66,759.5,318.5,220.5,3.5,3,0.25,2,12.93,15.85
|
376 |
+
0.66,759.5,318.5,220.5,3.5,4,0.25,2,12.77,16.22
|
377 |
+
0.66,759.5,318.5,220.5,3.5,5,0.25,2,13,15.87
|
378 |
+
0.64,784,343,220.5,3.5,2,0.25,2,17.14,20.47
|
379 |
+
0.64,784,343,220.5,3.5,3,0.25,2,16.84,20.56
|
380 |
+
0.64,784,343,220.5,3.5,4,0.25,2,17.02,20.48
|
381 |
+
0.64,784,343,220.5,3.5,5,0.25,2,17.11,20.43
|
382 |
+
0.62,808.5,367.5,220.5,3.5,2,0.25,2,14.34,15.32
|
383 |
+
0.62,808.5,367.5,220.5,3.5,3,0.25,2,14.66,15.64
|
384 |
+
0.62,808.5,367.5,220.5,3.5,4,0.25,2,14.6,15.14
|
385 |
+
0.62,808.5,367.5,220.5,3.5,5,0.25,2,14.6,15.3
|
386 |
+
0.98,514.5,294,110.25,7,2,0.25,3,28.67,29.43
|
387 |
+
0.98,514.5,294,110.25,7,3,0.25,3,28.56,29.78
|
388 |
+
0.98,514.5,294,110.25,7,4,0.25,3,28.17,30.1
|
389 |
+
0.98,514.5,294,110.25,7,5,0.25,3,28.63,30.19
|
390 |
+
0.9,563.5,318.5,122.5,7,2,0.25,3,31.63,36.35
|
391 |
+
0.9,563.5,318.5,122.5,7,3,0.25,3,32.4,35.1
|
392 |
+
0.9,563.5,318.5,122.5,7,4,0.25,3,32.68,32.83
|
393 |
+
0.9,563.5,318.5,122.5,7,5,0.25,3,32.29,32.46
|
394 |
+
0.86,588,294,147,7,2,0.25,3,28.4,33.52
|
395 |
+
0.86,588,294,147,7,3,0.25,3,29.4,32.93
|
396 |
+
0.86,588,294,147,7,4,0.25,3,29.43,28.38
|
397 |
+
0.86,588,294,147,7,5,0.25,3,29.07,29.82
|
398 |
+
0.82,612.5,318.5,147,7,2,0.25,3,24.7,28.77
|
399 |
+
0.82,612.5,318.5,147,7,3,0.25,3,25.48,27.76
|
400 |
+
0.82,612.5,318.5,147,7,4,0.25,3,25.37,26.95
|
401 |
+
0.82,612.5,318.5,147,7,5,0.25,3,25.17,26.41
|
402 |
+
0.79,637,343,147,7,2,0.25,3,39.04,45.13
|
403 |
+
0.79,637,343,147,7,3,0.25,3,38.35,43.66
|
404 |
+
0.79,637,343,147,7,4,0.25,3,39.81,37.76
|
405 |
+
0.79,637,343,147,7,5,0.25,3,39.83,36.87
|
406 |
+
0.76,661.5,416.5,122.5,7,2,0.25,3,35.99,36.07
|
407 |
+
0.76,661.5,416.5,122.5,7,3,0.25,3,36.59,36.44
|
408 |
+
0.76,661.5,416.5,122.5,7,4,0.25,3,35.64,37.28
|
409 |
+
0.76,661.5,416.5,122.5,7,5,0.25,3,36.52,37.29
|
410 |
+
0.74,686,245,220.5,3.5,2,0.25,3,11.8,14.49
|
411 |
+
0.74,686,245,220.5,3.5,3,0.25,3,12.03,13.79
|
412 |
+
0.74,686,245,220.5,3.5,4,0.25,3,11.98,14.72
|
413 |
+
0.74,686,245,220.5,3.5,5,0.25,3,11.69,14.76
|
414 |
+
0.71,710.5,269.5,220.5,3.5,2,0.25,3,12.41,14.92
|
415 |
+
0.71,710.5,269.5,220.5,3.5,3,0.25,3,12.28,14.74
|
416 |
+
0.71,710.5,269.5,220.5,3.5,4,0.25,3,12.1,15.57
|
417 |
+
0.71,710.5,269.5,220.5,3.5,5,0.25,3,12.19,14.94
|
418 |
+
0.69,735,294,220.5,3.5,2,0.25,3,12.34,14.92
|
419 |
+
0.69,735,294,220.5,3.5,3,0.25,3,12.46,14.38
|
420 |
+
0.69,735,294,220.5,3.5,4,0.25,3,12.31,15.44
|
421 |
+
0.69,735,294,220.5,3.5,5,0.25,3,12.12,15.17
|
422 |
+
0.66,759.5,318.5,220.5,3.5,2,0.25,3,12.97,15.53
|
423 |
+
0.66,759.5,318.5,220.5,3.5,3,0.25,3,13.01,15.8
|
424 |
+
0.66,759.5,318.5,220.5,3.5,4,0.25,3,12.74,16.14
|
425 |
+
0.66,759.5,318.5,220.5,3.5,5,0.25,3,12.84,16.26
|
426 |
+
0.64,784,343,220.5,3.5,2,0.25,3,16.83,19.87
|
427 |
+
0.64,784,343,220.5,3.5,3,0.25,3,16.93,20.03
|
428 |
+
0.64,784,343,220.5,3.5,4,0.25,3,16.66,20.46
|
429 |
+
0.64,784,343,220.5,3.5,5,0.25,3,16.86,20.28
|
430 |
+
0.62,808.5,367.5,220.5,3.5,2,0.25,3,13.91,14.89
|
431 |
+
0.62,808.5,367.5,220.5,3.5,3,0.25,3,14.34,14.96
|
432 |
+
0.62,808.5,367.5,220.5,3.5,4,0.25,3,13.95,14.89
|
433 |
+
0.62,808.5,367.5,220.5,3.5,5,0.25,3,13.99,14.35
|
434 |
+
0.98,514.5,294,110.25,7,2,0.25,4,28.7,29.61
|
435 |
+
0.98,514.5,294,110.25,7,3,0.25,4,28.55,29.59
|
436 |
+
0.98,514.5,294,110.25,7,4,0.25,4,28.15,30.19
|
437 |
+
0.98,514.5,294,110.25,7,5,0.25,4,28.62,30.12
|
438 |
+
0.9,563.5,318.5,122.5,7,2,0.25,4,32.67,32.12
|
439 |
+
0.9,563.5,318.5,122.5,7,3,0.25,4,31.69,37.12
|
440 |
+
0.9,563.5,318.5,122.5,7,4,0.25,4,32.07,36.16
|
441 |
+
0.9,563.5,318.5,122.5,7,5,0.25,4,33.28,33.16
|
442 |
+
0.86,588,294,147,7,2,0.25,4,29.47,29.45
|
443 |
+
0.86,588,294,147,7,3,0.25,4,28.42,34.19
|
444 |
+
0.86,588,294,147,7,4,0.25,4,29.08,33.93
|
445 |
+
0.86,588,294,147,7,5,0.25,4,29.88,28.31
|
446 |
+
0.82,612.5,318.5,147,7,2,0.25,4,25.66,26.3
|
447 |
+
0.82,612.5,318.5,147,7,3,0.25,4,24.96,29.43
|
448 |
+
0.82,612.5,318.5,147,7,4,0.25,4,25.43,28.76
|
449 |
+
0.82,612.5,318.5,147,7,5,0.25,4,26,27.34
|
450 |
+
0.79,637,343,147,7,2,0.25,4,40,36.26
|
451 |
+
0.79,637,343,147,7,3,0.25,4,38.84,45.48
|
452 |
+
0.79,637,343,147,7,4,0.25,4,38.33,44.16
|
453 |
+
0.79,637,343,147,7,5,0.25,4,40.12,37.26
|
454 |
+
0.76,661.5,416.5,122.5,7,2,0.25,4,36.95,37.2
|
455 |
+
0.76,661.5,416.5,122.5,7,3,0.25,4,36.45,36.76
|
456 |
+
0.76,661.5,416.5,122.5,7,4,0.25,4,36.81,37.05
|
457 |
+
0.76,661.5,416.5,122.5,7,5,0.25,4,36.26,37.51
|
458 |
+
0.74,686,245,220.5,3.5,2,0.25,4,12.32,14.92
|
459 |
+
0.74,686,245,220.5,3.5,3,0.25,4,12.3,15.24
|
460 |
+
0.74,686,245,220.5,3.5,4,0.25,4,12.18,15.03
|
461 |
+
0.74,686,245,220.5,3.5,5,0.25,4,12.43,15.35
|
462 |
+
0.71,710.5,269.5,220.5,3.5,2,0.25,4,12.36,14.67
|
463 |
+
0.71,710.5,269.5,220.5,3.5,3,0.25,4,12.49,15.09
|
464 |
+
0.71,710.5,269.5,220.5,3.5,4,0.25,4,12.17,15.2
|
465 |
+
0.71,710.5,269.5,220.5,3.5,5,0.25,4,12.28,15.64
|
466 |
+
0.69,735,294,220.5,3.5,2,0.25,4,12.91,15.37
|
467 |
+
0.69,735,294,220.5,3.5,3,0.25,4,12.95,15.73
|
468 |
+
0.69,735,294,220.5,3.5,4,0.25,4,12.67,15.83
|
469 |
+
0.69,735,294,220.5,3.5,5,0.25,4,12.86,16.13
|
470 |
+
0.66,759.5,318.5,220.5,3.5,2,0.25,4,12.95,15.95
|
471 |
+
0.66,759.5,318.5,220.5,3.5,3,0.25,4,13,15.59
|
472 |
+
0.66,759.5,318.5,220.5,3.5,4,0.25,4,12.86,16.17
|
473 |
+
0.66,759.5,318.5,220.5,3.5,5,0.25,4,12.92,16.14
|
474 |
+
0.64,784,343,220.5,3.5,2,0.25,4,16.99,19.65
|
475 |
+
0.64,784,343,220.5,3.5,3,0.25,4,16.69,19.76
|
476 |
+
0.64,784,343,220.5,3.5,4,0.25,4,16.56,20.37
|
477 |
+
0.64,784,343,220.5,3.5,5,0.25,4,16.62,19.9
|
478 |
+
0.62,808.5,367.5,220.5,3.5,2,0.25,4,14.33,15.41
|
479 |
+
0.62,808.5,367.5,220.5,3.5,3,0.25,4,14.61,15.56
|
480 |
+
0.62,808.5,367.5,220.5,3.5,4,0.25,4,14.61,15.07
|
481 |
+
0.62,808.5,367.5,220.5,3.5,5,0.25,4,14.65,15.38
|
482 |
+
0.98,514.5,294,110.25,7,2,0.25,5,28.69,29.53
|
483 |
+
0.98,514.5,294,110.25,7,3,0.25,5,28.58,29.77
|
484 |
+
0.98,514.5,294,110.25,7,4,0.25,5,28.15,30
|
485 |
+
0.98,514.5,294,110.25,7,5,0.25,5,28.61,30.2
|
486 |
+
0.9,563.5,318.5,122.5,7,2,0.25,5,33.13,32.25
|
487 |
+
0.9,563.5,318.5,122.5,7,3,0.25,5,32.31,32
|
488 |
+
0.9,563.5,318.5,122.5,7,4,0.25,5,31.53,37.19
|
489 |
+
0.9,563.5,318.5,122.5,7,5,0.25,5,32.46,35.62
|
490 |
+
0.86,588,294,147,7,2,0.25,5,29.71,28.02
|
491 |
+
0.86,588,294,147,7,3,0.25,5,29.09,29.43
|
492 |
+
0.86,588,294,147,7,4,0.25,5,28.31,34.15
|
493 |
+
0.86,588,294,147,7,5,0.25,5,29.39,33.47
|
494 |
+
0.82,612.5,318.5,147,7,2,0.25,5,25.7,26.53
|
495 |
+
0.82,612.5,318.5,147,7,3,0.25,5,25.17,26.08
|
496 |
+
0.82,612.5,318.5,147,7,4,0.25,5,24.6,29.31
|
497 |
+
0.82,612.5,318.5,147,7,5,0.25,5,25.49,28.14
|
498 |
+
0.79,637,343,147,7,2,0.25,5,39.89,37.54
|
499 |
+
0.79,637,343,147,7,3,0.25,5,39.83,36.66
|
500 |
+
0.79,637,343,147,7,4,0.25,5,39.01,45.28
|
501 |
+
0.79,637,343,147,7,5,0.25,5,38.65,43.73
|
502 |
+
0.76,661.5,416.5,122.5,7,2,0.25,5,35.69,36.93
|
503 |
+
0.76,661.5,416.5,122.5,7,3,0.25,5,36.64,37.01
|
504 |
+
0.76,661.5,416.5,122.5,7,4,0.25,5,36.06,35.73
|
505 |
+
0.76,661.5,416.5,122.5,7,5,0.25,5,36.7,36.15
|
506 |
+
0.74,686,245,220.5,3.5,2,0.25,5,12.12,14.48
|
507 |
+
0.74,686,245,220.5,3.5,3,0.25,5,11.67,14.58
|
508 |
+
0.74,686,245,220.5,3.5,4,0.25,5,11.64,14.81
|
509 |
+
0.74,686,245,220.5,3.5,5,0.25,5,12.02,14.03
|
510 |
+
0.71,710.5,269.5,220.5,3.5,2,0.25,5,12.27,15.27
|
511 |
+
0.71,710.5,269.5,220.5,3.5,3,0.25,5,12.19,14.71
|
512 |
+
0.71,710.5,269.5,220.5,3.5,4,0.25,5,12.25,15.23
|
513 |
+
0.71,710.5,269.5,220.5,3.5,5,0.25,5,12.27,14.97
|
514 |
+
0.69,735,294,220.5,3.5,2,0.25,5,12.47,15.14
|
515 |
+
0.69,735,294,220.5,3.5,3,0.25,5,12.12,14.97
|
516 |
+
0.69,735,294,220.5,3.5,4,0.25,5,12.18,15.22
|
517 |
+
0.69,735,294,220.5,3.5,5,0.25,5,12.47,14.6
|
518 |
+
0.66,759.5,318.5,220.5,3.5,2,0.25,5,12.93,15.83
|
519 |
+
0.66,759.5,318.5,220.5,3.5,3,0.25,5,12.82,16.03
|
520 |
+
0.66,759.5,318.5,220.5,3.5,4,0.25,5,12.78,15.8
|
521 |
+
0.66,759.5,318.5,220.5,3.5,5,0.25,5,13.02,16.06
|
522 |
+
0.64,784,343,220.5,3.5,2,0.25,5,16.73,20.13
|
523 |
+
0.64,784,343,220.5,3.5,3,0.25,5,16.86,20.01
|
524 |
+
0.64,784,343,220.5,3.5,4,0.25,5,16.76,20.19
|
525 |
+
0.64,784,343,220.5,3.5,5,0.25,5,16.92,20.29
|
526 |
+
0.62,808.5,367.5,220.5,3.5,2,0.25,5,13.68,15.19
|
527 |
+
0.62,808.5,367.5,220.5,3.5,3,0.25,5,13.99,14.61
|
528 |
+
0.62,808.5,367.5,220.5,3.5,4,0.25,5,14.16,14.61
|
529 |
+
0.62,808.5,367.5,220.5,3.5,5,0.25,5,13.86,14.75
|
530 |
+
0.98,514.5,294,110.25,7,2,0.4,1,32.26,33.37
|
531 |
+
0.98,514.5,294,110.25,7,3,0.4,1,32.26,33.34
|
532 |
+
0.98,514.5,294,110.25,7,4,0.4,1,32.49,32.83
|
533 |
+
0.98,514.5,294,110.25,7,5,0.4,1,32.53,33.04
|
534 |
+
0.9,563.5,318.5,122.5,7,2,0.4,1,36.47,39.28
|
535 |
+
0.9,563.5,318.5,122.5,7,3,0.4,1,37.24,36.38
|
536 |
+
0.9,563.5,318.5,122.5,7,4,0.4,1,36.66,35.92
|
537 |
+
0.9,563.5,318.5,122.5,7,5,0.4,1,35.96,40.99
|
538 |
+
0.86,588,294,147,7,2,0.4,1,31.89,35.99
|
539 |
+
0.86,588,294,147,7,3,0.4,1,32.39,30.66
|
540 |
+
0.86,588,294,147,7,4,0.4,1,32.09,31.7
|
541 |
+
0.86,588,294,147,7,5,0.4,1,31.29,36.73
|
542 |
+
0.82,612.5,318.5,147,7,2,0.4,1,29.22,31.71
|
543 |
+
0.82,612.5,318.5,147,7,3,0.4,1,29.91,29.13
|
544 |
+
0.82,612.5,318.5,147,7,4,0.4,1,29.53,28.99
|
545 |
+
0.82,612.5,318.5,147,7,5,0.4,1,28.65,33.54
|
546 |
+
0.79,637,343,147,7,2,0.4,1,41.4,45.29
|
547 |
+
0.79,637,343,147,7,3,0.4,1,42.62,39.07
|
548 |
+
0.79,637,343,147,7,4,0.4,1,42.5,38.35
|
549 |
+
0.79,637,343,147,7,5,0.4,1,41.67,46.94
|
550 |
+
0.76,661.5,416.5,122.5,7,2,0.4,1,40.78,39.55
|
551 |
+
0.76,661.5,416.5,122.5,7,3,0.4,1,39.97,40.85
|
552 |
+
0.76,661.5,416.5,122.5,7,4,0.4,1,40.71,40.63
|
553 |
+
0.76,661.5,416.5,122.5,7,5,0.4,1,40.43,39.48
|
554 |
+
0.74,686,245,220.5,3.5,2,0.4,1,14.52,16.94
|
555 |
+
0.74,686,245,220.5,3.5,3,0.4,1,14.61,17.25
|
556 |
+
0.74,686,245,220.5,3.5,4,0.4,1,14.5,17.03
|
557 |
+
0.74,686,245,220.5,3.5,5,0.4,1,14.55,17.25
|
558 |
+
0.71,710.5,269.5,220.5,3.5,2,0.4,1,14.51,17.1
|
559 |
+
0.71,710.5,269.5,220.5,3.5,3,0.4,1,14.6,17.51
|
560 |
+
0.71,710.5,269.5,220.5,3.5,4,0.4,1,14.5,17.12
|
561 |
+
0.71,710.5,269.5,220.5,3.5,5,0.4,1,14.58,17.47
|
562 |
+
0.69,735,294,220.5,3.5,2,0.4,1,14.51,16.5
|
563 |
+
0.69,735,294,220.5,3.5,3,0.4,1,14.7,17
|
564 |
+
0.69,735,294,220.5,3.5,4,0.4,1,14.42,16.87
|
565 |
+
0.69,735,294,220.5,3.5,5,0.4,1,14.42,17.2
|
566 |
+
0.66,759.5,318.5,220.5,3.5,2,0.4,1,15.23,18.14
|
567 |
+
0.66,759.5,318.5,220.5,3.5,3,0.4,1,15.23,18.03
|
568 |
+
0.66,759.5,318.5,220.5,3.5,4,0.4,1,15.23,18.14
|
569 |
+
0.66,759.5,318.5,220.5,3.5,5,0.4,1,15.23,17.95
|
570 |
+
0.64,784,343,220.5,3.5,2,0.4,1,19.52,22.72
|
571 |
+
0.64,784,343,220.5,3.5,3,0.4,1,19.36,22.73
|
572 |
+
0.64,784,343,220.5,3.5,4,0.4,1,19.48,22.72
|
573 |
+
0.64,784,343,220.5,3.5,5,0.4,1,19.42,22.53
|
574 |
+
0.62,808.5,367.5,220.5,3.5,2,0.4,1,15.09,17.2
|
575 |
+
0.62,808.5,367.5,220.5,3.5,3,0.4,1,17.17,17.21
|
576 |
+
0.62,808.5,367.5,220.5,3.5,4,0.4,1,17.14,17.15
|
577 |
+
0.62,808.5,367.5,220.5,3.5,5,0.4,1,17.14,17.2
|
578 |
+
0.98,514.5,294,110.25,7,2,0.4,2,32.82,32.96
|
579 |
+
0.98,514.5,294,110.25,7,3,0.4,2,32.71,33.13
|
580 |
+
0.98,514.5,294,110.25,7,4,0.4,2,32.24,33.94
|
581 |
+
0.98,514.5,294,110.25,7,5,0.4,2,32.72,33.78
|
582 |
+
0.9,563.5,318.5,122.5,7,2,0.4,2,35.84,38.35
|
583 |
+
0.9,563.5,318.5,122.5,7,3,0.4,2,36.57,35.39
|
584 |
+
0.9,563.5,318.5,122.5,7,4,0.4,2,36.06,34.94
|
585 |
+
0.9,563.5,318.5,122.5,7,5,0.4,2,35.69,40.66
|
586 |
+
0.86,588,294,147,7,2,0.4,2,32.48,35.48
|
587 |
+
0.86,588,294,147,7,3,0.4,2,32.74,30.53
|
588 |
+
0.86,588,294,147,7,4,0.4,2,32.13,32.28
|
589 |
+
0.86,588,294,147,7,5,0.4,2,31.64,36.86
|
590 |
+
0.82,612.5,318.5,147,7,2,0.4,2,28.95,30.34
|
591 |
+
0.82,612.5,318.5,147,7,3,0.4,2,29.49,27.93
|
592 |
+
0.82,612.5,318.5,147,7,4,0.4,2,28.64,28.95
|
593 |
+
0.82,612.5,318.5,147,7,5,0.4,2,28.01,32.92
|
594 |
+
0.79,637,343,147,7,2,0.4,2,41.64,45.59
|
595 |
+
0.79,637,343,147,7,3,0.4,2,43.1,39.41
|
596 |
+
0.79,637,343,147,7,4,0.4,2,42.74,38.84
|
597 |
+
0.79,637,343,147,7,5,0.4,2,41.92,48.03
|
598 |
+
0.76,661.5,416.5,122.5,7,2,0.4,2,40.78,39.48
|
599 |
+
0.76,661.5,416.5,122.5,7,3,0.4,2,40.15,40.4
|
600 |
+
0.76,661.5,416.5,122.5,7,4,0.4,2,40.57,40.47
|
601 |
+
0.76,661.5,416.5,122.5,7,5,0.4,2,40.42,39.7
|
602 |
+
0.74,686,245,220.5,3.5,2,0.4,2,14.54,16.43
|
603 |
+
0.74,686,245,220.5,3.5,3,0.4,2,14.45,16.93
|
604 |
+
0.74,686,245,220.5,3.5,4,0.4,2,14.18,16.99
|
605 |
+
0.74,686,245,220.5,3.5,5,0.4,2,14.5,17.03
|
606 |
+
0.71,710.5,269.5,220.5,3.5,2,0.4,2,14.7,16.77
|
607 |
+
0.71,710.5,269.5,220.5,3.5,3,0.4,2,14.66,17.37
|
608 |
+
0.71,710.5,269.5,220.5,3.5,4,0.4,2,14.4,17.27
|
609 |
+
0.71,710.5,269.5,220.5,3.5,5,0.4,2,14.71,17.51
|
610 |
+
0.69,735,294,220.5,3.5,2,0.4,2,14.75,16.44
|
611 |
+
0.69,735,294,220.5,3.5,3,0.4,2,14.71,17.01
|
612 |
+
0.69,735,294,220.5,3.5,4,0.4,2,14.33,17.23
|
613 |
+
0.69,735,294,220.5,3.5,5,0.4,2,14.62,17.22
|
614 |
+
0.66,759.5,318.5,220.5,3.5,2,0.4,2,15.34,17.85
|
615 |
+
0.66,759.5,318.5,220.5,3.5,3,0.4,2,15.29,17.89
|
616 |
+
0.66,759.5,318.5,220.5,3.5,4,0.4,2,15.09,18.36
|
617 |
+
0.66,759.5,318.5,220.5,3.5,5,0.4,2,15.3,18.15
|
618 |
+
0.64,784,343,220.5,3.5,2,0.4,2,19.2,21.72
|
619 |
+
0.64,784,343,220.5,3.5,3,0.4,2,18.88,22.07
|
620 |
+
0.64,784,343,220.5,3.5,4,0.4,2,18.9,22.09
|
621 |
+
0.64,784,343,220.5,3.5,5,0.4,2,19.12,21.93
|
622 |
+
0.62,808.5,367.5,220.5,3.5,2,0.4,2,16.76,17.36
|
623 |
+
0.62,808.5,367.5,220.5,3.5,3,0.4,2,17.23,17.38
|
624 |
+
0.62,808.5,367.5,220.5,3.5,4,0.4,2,17.26,16.86
|
625 |
+
0.62,808.5,367.5,220.5,3.5,5,0.4,2,17.15,16.99
|
626 |
+
0.98,514.5,294,110.25,7,2,0.4,3,32.82,32.78
|
627 |
+
0.98,514.5,294,110.25,7,3,0.4,3,32.69,33.24
|
628 |
+
0.98,514.5,294,110.25,7,4,0.4,3,32.23,33.86
|
629 |
+
0.98,514.5,294,110.25,7,5,0.4,3,32.75,34
|
630 |
+
0.9,563.5,318.5,122.5,7,2,0.4,3,34.24,37.26
|
631 |
+
0.9,563.5,318.5,122.5,7,3,0.4,3,34.95,35.04
|
632 |
+
0.9,563.5,318.5,122.5,7,4,0.4,3,35.05,33.82
|
633 |
+
0.9,563.5,318.5,122.5,7,5,0.4,3,34.29,33.31
|
634 |
+
0.86,588,294,147,7,2,0.4,3,31.28,35.22
|
635 |
+
0.86,588,294,147,7,3,0.4,3,32.12,34.7
|
636 |
+
0.86,588,294,147,7,4,0.4,3,32.05,30.11
|
637 |
+
0.86,588,294,147,7,5,0.4,3,31.84,31.6
|
638 |
+
0.82,612.5,318.5,147,7,2,0.4,3,28.67,32.43
|
639 |
+
0.82,612.5,318.5,147,7,3,0.4,3,29.67,30.65
|
640 |
+
0.82,612.5,318.5,147,7,4,0.4,3,29.47,29.77
|
641 |
+
0.82,612.5,318.5,147,7,5,0.4,3,28.91,29.64
|
642 |
+
0.79,637,343,147,7,2,0.4,3,41.26,46.44
|
643 |
+
0.79,637,343,147,7,3,0.4,3,41.3,44.18
|
644 |
+
0.79,637,343,147,7,4,0.4,3,42.49,38.81
|
645 |
+
0.79,637,343,147,7,5,0.4,3,42.08,38.23
|
646 |
+
0.76,661.5,416.5,122.5,7,2,0.4,3,39.32,38.17
|
647 |
+
0.76,661.5,416.5,122.5,7,3,0.4,3,39.84,38.48
|
648 |
+
0.76,661.5,416.5,122.5,7,4,0.4,3,38.89,39.66
|
649 |
+
0.76,661.5,416.5,122.5,7,5,0.4,3,39.68,40.1
|
650 |
+
0.74,686,245,220.5,3.5,2,0.4,3,13.97,16.08
|
651 |
+
0.74,686,245,220.5,3.5,3,0.4,3,14.22,15.39
|
652 |
+
0.74,686,245,220.5,3.5,4,0.4,3,14.1,16.57
|
653 |
+
0.74,686,245,220.5,3.5,5,0.4,3,13.78,16.6
|
654 |
+
0.71,710.5,269.5,220.5,3.5,2,0.4,3,14.07,16.11
|
655 |
+
0.71,710.5,269.5,220.5,3.5,3,0.4,3,14.03,15.47
|
656 |
+
0.71,710.5,269.5,220.5,3.5,4,0.4,3,13.94,16.7
|
657 |
+
0.71,710.5,269.5,220.5,3.5,5,0.4,3,13.86,16.1
|
658 |
+
0.69,735,294,220.5,3.5,2,0.4,3,14.32,16.35
|
659 |
+
0.69,735,294,220.5,3.5,3,0.4,3,14.56,15.84
|
660 |
+
0.69,735,294,220.5,3.5,4,0.4,3,14.33,16.99
|
661 |
+
0.69,735,294,220.5,3.5,5,0.4,3,14.08,17.02
|
662 |
+
0.66,759.5,318.5,220.5,3.5,2,0.4,3,15.16,17.04
|
663 |
+
0.66,759.5,318.5,220.5,3.5,3,0.4,3,15.18,17.63
|
664 |
+
0.66,759.5,318.5,220.5,3.5,4,0.4,3,14.72,18.1
|
665 |
+
0.66,759.5,318.5,220.5,3.5,5,0.4,3,14.9,18.22
|
666 |
+
0.64,784,343,220.5,3.5,2,0.4,3,18.48,20.78
|
667 |
+
0.64,784,343,220.5,3.5,3,0.4,3,18.71,20.72
|
668 |
+
0.64,784,343,220.5,3.5,4,0.4,3,18.48,21.54
|
669 |
+
0.64,784,343,220.5,3.5,5,0.4,3,18.46,21.53
|
670 |
+
0.62,808.5,367.5,220.5,3.5,2,0.4,3,16.47,16.9
|
671 |
+
0.62,808.5,367.5,220.5,3.5,3,0.4,3,16.35,17.14
|
672 |
+
0.62,808.5,367.5,220.5,3.5,4,0.4,3,16.55,16.56
|
673 |
+
0.62,808.5,367.5,220.5,3.5,5,0.4,3,16.74,16
|
674 |
+
0.98,514.5,294,110.25,7,2,0.4,4,32.85,32.95
|
675 |
+
0.98,514.5,294,110.25,7,3,0.4,4,32.67,33.06
|
676 |
+
0.98,514.5,294,110.25,7,4,0.4,4,32.21,33.95
|
677 |
+
0.98,514.5,294,110.25,7,5,0.4,4,32.74,33.88
|
678 |
+
0.9,563.5,318.5,122.5,7,2,0.4,4,36.45,33.98
|
679 |
+
0.9,563.5,318.5,122.5,7,3,0.4,4,35.73,39.92
|
680 |
+
0.9,563.5,318.5,122.5,7,4,0.4,4,35.4,39.22
|
681 |
+
0.9,563.5,318.5,122.5,7,5,0.4,4,36.57,36.1
|
682 |
+
0.86,588,294,147,7,2,0.4,4,32.38,31.53
|
683 |
+
0.86,588,294,147,7,3,0.4,4,31.66,36.2
|
684 |
+
0.86,588,294,147,7,4,0.4,4,32.15,36.21
|
685 |
+
0.86,588,294,147,7,5,0.4,4,32.75,31
|
686 |
+
0.82,612.5,318.5,147,7,2,0.4,4,28.93,28.2
|
687 |
+
0.82,612.5,318.5,147,7,3,0.4,4,28.05,32.35
|
688 |
+
0.82,612.5,318.5,147,7,4,0.4,4,28.64,31.14
|
689 |
+
0.82,612.5,318.5,147,7,5,0.4,4,29.52,28.43
|
690 |
+
0.79,637,343,147,7,2,0.4,4,42.77,38.33
|
691 |
+
0.79,637,343,147,7,3,0.4,4,41.73,47.59
|
692 |
+
0.79,637,343,147,7,4,0.4,4,41.32,46.23
|
693 |
+
0.79,637,343,147,7,5,0.4,4,42.96,39.56
|
694 |
+
0.76,661.5,416.5,122.5,7,2,0.4,4,40.68,40.36
|
695 |
+
0.76,661.5,416.5,122.5,7,3,0.4,4,40.4,39.67
|
696 |
+
0.76,661.5,416.5,122.5,7,4,0.4,4,40.6,39.85
|
697 |
+
0.76,661.5,416.5,122.5,7,5,0.4,4,40.11,40.77
|
698 |
+
0.74,686,245,220.5,3.5,2,0.4,4,14.37,16.61
|
699 |
+
0.74,686,245,220.5,3.5,3,0.4,4,14.48,16.74
|
700 |
+
0.74,686,245,220.5,3.5,4,0.4,4,14.32,16.9
|
701 |
+
0.74,686,245,220.5,3.5,5,0.4,4,14.44,17.32
|
702 |
+
0.71,710.5,269.5,220.5,3.5,2,0.4,4,14.6,16.85
|
703 |
+
0.71,710.5,269.5,220.5,3.5,3,0.4,4,14.7,17.2
|
704 |
+
0.71,710.5,269.5,220.5,3.5,4,0.4,4,14.47,17.23
|
705 |
+
0.71,710.5,269.5,220.5,3.5,5,0.4,4,14.66,17.74
|
706 |
+
0.69,735,294,220.5,3.5,2,0.4,4,14.54,16.81
|
707 |
+
0.69,735,294,220.5,3.5,3,0.4,4,14.62,16.88
|
708 |
+
0.69,735,294,220.5,3.5,4,0.4,4,14.53,16.9
|
709 |
+
0.69,735,294,220.5,3.5,5,0.4,4,14.71,17.39
|
710 |
+
0.66,759.5,318.5,220.5,3.5,2,0.4,4,15.34,17.86
|
711 |
+
0.66,759.5,318.5,220.5,3.5,3,0.4,4,15.29,17.82
|
712 |
+
0.66,759.5,318.5,220.5,3.5,4,0.4,4,15.09,18.36
|
713 |
+
0.66,759.5,318.5,220.5,3.5,5,0.4,4,15.3,18.24
|
714 |
+
0.64,784,343,220.5,3.5,2,0.4,4,19.06,21.68
|
715 |
+
0.64,784,343,220.5,3.5,3,0.4,4,19.13,21.54
|
716 |
+
0.64,784,343,220.5,3.5,4,0.4,4,19,22.25
|
717 |
+
0.64,784,343,220.5,3.5,5,0.4,4,18.84,22.49
|
718 |
+
0.62,808.5,367.5,220.5,3.5,2,0.4,4,16.44,17.1
|
719 |
+
0.62,808.5,367.5,220.5,3.5,3,0.4,4,16.9,16.79
|
720 |
+
0.62,808.5,367.5,220.5,3.5,4,0.4,4,16.94,16.58
|
721 |
+
0.62,808.5,367.5,220.5,3.5,5,0.4,4,16.77,16.79
|
722 |
+
0.98,514.5,294,110.25,7,2,0.4,5,32.84,32.88
|
723 |
+
0.98,514.5,294,110.25,7,3,0.4,5,32.72,33.23
|
724 |
+
0.98,514.5,294,110.25,7,4,0.4,5,32.21,33.76
|
725 |
+
0.98,514.5,294,110.25,7,5,0.4,5,32.73,34.01
|
726 |
+
0.9,563.5,318.5,122.5,7,2,0.4,5,35.67,33.94
|
727 |
+
0.9,563.5,318.5,122.5,7,3,0.4,5,35.01,33.14
|
728 |
+
0.9,563.5,318.5,122.5,7,4,0.4,5,34.72,38.79
|
729 |
+
0.9,563.5,318.5,122.5,7,5,0.4,5,35.24,37.27
|
730 |
+
0.86,588,294,147,7,2,0.4,5,32.31,29.69
|
731 |
+
0.86,588,294,147,7,3,0.4,5,31.81,31.2
|
732 |
+
0.86,588,294,147,7,4,0.4,5,31.12,36.26
|
733 |
+
0.86,588,294,147,7,5,0.4,5,32.06,35.71
|
734 |
+
0.82,612.5,318.5,147,7,2,0.4,5,30,29.93
|
735 |
+
0.82,612.5,318.5,147,7,3,0.4,5,29.5,29.56
|
736 |
+
0.82,612.5,318.5,147,7,4,0.4,5,29.06,33.84
|
737 |
+
0.82,612.5,318.5,147,7,5,0.4,5,29.92,32.54
|
738 |
+
0.79,637,343,147,7,2,0.4,5,42.11,38.56
|
739 |
+
0.79,637,343,147,7,3,0.4,5,41.96,37.7
|
740 |
+
0.79,637,343,147,7,4,0.4,5,41.09,47.01
|
741 |
+
0.79,637,343,147,7,5,0.4,5,40.79,44.87
|
742 |
+
0.76,661.5,416.5,122.5,7,2,0.4,5,38.82,39.37
|
743 |
+
0.76,661.5,416.5,122.5,7,3,0.4,5,39.72,39.8
|
744 |
+
0.76,661.5,416.5,122.5,7,4,0.4,5,39.31,37.79
|
745 |
+
0.76,661.5,416.5,122.5,7,5,0.4,5,39.86,38.18
|
746 |
+
0.74,686,245,220.5,3.5,2,0.4,5,14.41,16.69
|
747 |
+
0.74,686,245,220.5,3.5,3,0.4,5,14.19,16.62
|
748 |
+
0.74,686,245,220.5,3.5,4,0.4,5,14.17,16.94
|
749 |
+
0.74,686,245,220.5,3.5,5,0.4,5,14.39,16.7
|
750 |
+
0.71,710.5,269.5,220.5,3.5,2,0.4,5,12.43,15.59
|
751 |
+
0.71,710.5,269.5,220.5,3.5,3,0.4,5,12.63,14.58
|
752 |
+
0.71,710.5,269.5,220.5,3.5,4,0.4,5,12.76,15.33
|
753 |
+
0.71,710.5,269.5,220.5,3.5,5,0.4,5,12.42,15.31
|
754 |
+
0.69,735,294,220.5,3.5,2,0.4,5,14.12,16.63
|
755 |
+
0.69,735,294,220.5,3.5,3,0.4,5,14.28,15.87
|
756 |
+
0.69,735,294,220.5,3.5,4,0.4,5,14.37,16.54
|
757 |
+
0.69,735,294,220.5,3.5,5,0.4,5,14.21,16.74
|
758 |
+
0.66,759.5,318.5,220.5,3.5,2,0.4,5,14.96,17.64
|
759 |
+
0.66,759.5,318.5,220.5,3.5,3,0.4,5,14.92,17.79
|
760 |
+
0.66,759.5,318.5,220.5,3.5,4,0.4,5,14.92,17.55
|
761 |
+
0.66,759.5,318.5,220.5,3.5,5,0.4,5,15.16,18.06
|
762 |
+
0.64,784,343,220.5,3.5,2,0.4,5,17.69,20.82
|
763 |
+
0.64,784,343,220.5,3.5,3,0.4,5,18.19,20.21
|
764 |
+
0.64,784,343,220.5,3.5,4,0.4,5,18.16,20.71
|
765 |
+
0.64,784,343,220.5,3.5,5,0.4,5,17.88,21.4
|
766 |
+
0.62,808.5,367.5,220.5,3.5,2,0.4,5,16.54,16.88
|
767 |
+
0.62,808.5,367.5,220.5,3.5,3,0.4,5,16.44,17.11
|
768 |
+
0.62,808.5,367.5,220.5,3.5,4,0.4,5,16.48,16.61
|
769 |
+
0.62,808.5,367.5,220.5,3.5,5,0.4,5,16.64,16.03
|
datasets/forestfires.csv
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
X,Y,month,day,FFMC,DMC,DC,ISI,temp,RH,wind,rain,area
|
2 |
+
7,5,mar,fri,86.2,26.2,94.3,5.1,8.2,51,6.7,0,0
|
3 |
+
7,4,oct,tue,90.6,35.4,669.1,6.7,18,33,0.9,0,0
|
4 |
+
7,4,oct,sat,90.6,43.7,686.9,6.7,14.6,33,1.3,0,0
|
5 |
+
8,6,mar,fri,91.7,33.3,77.5,9,8.3,97,4,0.2,0
|
6 |
+
8,6,mar,sun,89.3,51.3,102.2,9.6,11.4,99,1.8,0,0
|
7 |
+
8,6,aug,sun,92.3,85.3,488,14.7,22.2,29,5.4,0,0
|
8 |
+
8,6,aug,mon,92.3,88.9,495.6,8.5,24.1,27,3.1,0,0
|
9 |
+
8,6,aug,mon,91.5,145.4,608.2,10.7,8,86,2.2,0,0
|
10 |
+
8,6,sep,tue,91,129.5,692.6,7,13.1,63,5.4,0,0
|
11 |
+
7,5,sep,sat,92.5,88,698.6,7.1,22.8,40,4,0,0
|
12 |
+
7,5,sep,sat,92.5,88,698.6,7.1,17.8,51,7.2,0,0
|
13 |
+
7,5,sep,sat,92.8,73.2,713,22.6,19.3,38,4,0,0
|
14 |
+
6,5,aug,fri,63.5,70.8,665.3,0.8,17,72,6.7,0,0
|
15 |
+
6,5,sep,mon,90.9,126.5,686.5,7,21.3,42,2.2,0,0
|
16 |
+
6,5,sep,wed,92.9,133.3,699.6,9.2,26.4,21,4.5,0,0
|
17 |
+
6,5,sep,fri,93.3,141.2,713.9,13.9,22.9,44,5.4,0,0
|
18 |
+
5,5,mar,sat,91.7,35.8,80.8,7.8,15.1,27,5.4,0,0
|
19 |
+
8,5,oct,mon,84.9,32.8,664.2,3,16.7,47,4.9,0,0
|
20 |
+
6,4,mar,wed,89.2,27.9,70.8,6.3,15.9,35,4,0,0
|
21 |
+
6,4,apr,sat,86.3,27.4,97.1,5.1,9.3,44,4.5,0,0
|
22 |
+
6,4,sep,tue,91,129.5,692.6,7,18.3,40,2.7,0,0
|
23 |
+
5,4,sep,mon,91.8,78.5,724.3,9.2,19.1,38,2.7,0,0
|
24 |
+
7,4,jun,sun,94.3,96.3,200,56.1,21,44,4.5,0,0
|
25 |
+
7,4,aug,sat,90.2,110.9,537.4,6.2,19.5,43,5.8,0,0
|
26 |
+
7,4,aug,sat,93.5,139.4,594.2,20.3,23.7,32,5.8,0,0
|
27 |
+
7,4,aug,sun,91.4,142.4,601.4,10.6,16.3,60,5.4,0,0
|
28 |
+
7,4,sep,fri,92.4,117.9,668,12.2,19,34,5.8,0,0
|
29 |
+
7,4,sep,mon,90.9,126.5,686.5,7,19.4,48,1.3,0,0
|
30 |
+
6,3,sep,sat,93.4,145.4,721.4,8.1,30.2,24,2.7,0,0
|
31 |
+
6,3,sep,sun,93.5,149.3,728.6,8.1,22.8,39,3.6,0,0
|
32 |
+
6,3,sep,fri,94.3,85.1,692.3,15.9,25.4,24,3.6,0,0
|
33 |
+
6,3,sep,mon,88.6,91.8,709.9,7.1,11.2,78,7.6,0,0
|
34 |
+
6,3,sep,fri,88.6,69.7,706.8,5.8,20.6,37,1.8,0,0
|
35 |
+
6,3,sep,sun,91.7,75.6,718.3,7.8,17.7,39,3.6,0,0
|
36 |
+
6,3,sep,mon,91.8,78.5,724.3,9.2,21.2,32,2.7,0,0
|
37 |
+
6,3,sep,tue,90.3,80.7,730.2,6.3,18.2,62,4.5,0,0
|
38 |
+
6,3,oct,tue,90.6,35.4,669.1,6.7,21.7,24,4.5,0,0
|
39 |
+
7,4,oct,fri,90,41.5,682.6,8.7,11.3,60,5.4,0,0
|
40 |
+
7,3,oct,sat,90.6,43.7,686.9,6.7,17.8,27,4,0,0
|
41 |
+
4,4,mar,tue,88.1,25.7,67.6,3.8,14.1,43,2.7,0,0
|
42 |
+
4,4,jul,tue,79.5,60.6,366.7,1.5,23.3,37,3.1,0,0
|
43 |
+
4,4,aug,sat,90.2,96.9,624.2,8.9,18.4,42,6.7,0,0
|
44 |
+
4,4,aug,tue,94.8,108.3,647.1,17,16.6,54,5.4,0,0
|
45 |
+
4,4,sep,sat,92.5,88,698.6,7.1,19.6,48,2.7,0,0
|
46 |
+
4,4,sep,wed,90.1,82.9,735.7,6.2,12.9,74,4.9,0,0
|
47 |
+
5,6,sep,wed,94.3,85.1,692.3,15.9,25.9,24,4,0,0
|
48 |
+
5,6,sep,mon,90.9,126.5,686.5,7,14.7,70,3.6,0,0
|
49 |
+
6,6,jul,mon,94.2,62.3,442.9,11,23,36,3.1,0,0
|
50 |
+
4,4,mar,mon,87.2,23.9,64.7,4.1,11.8,35,1.8,0,0
|
51 |
+
4,4,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,0
|
52 |
+
4,4,sep,thu,92.9,137,706.4,9.2,20.8,17,1.3,0,0
|
53 |
+
4,3,aug,sun,90.2,99.6,631.2,6.3,21.5,34,2.2,0,0
|
54 |
+
4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0
|
55 |
+
4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0
|
56 |
+
4,3,aug,thu,91.7,114.3,661.3,6.3,17.6,45,3.6,0,0
|
57 |
+
4,3,sep,thu,92.9,137,706.4,9.2,27.7,24,2.2,0,0
|
58 |
+
4,3,sep,tue,90.3,80.7,730.2,6.3,17.8,63,4.9,0,0
|
59 |
+
4,3,oct,sun,92.6,46.5,691.8,8.8,13.8,50,2.7,0,0
|
60 |
+
2,2,feb,mon,84,9.3,34,2.1,13.9,40,5.4,0,0
|
61 |
+
2,2,feb,fri,86.6,13.2,43,5.3,12.3,51,0.9,0,0
|
62 |
+
2,2,mar,sun,89.3,51.3,102.2,9.6,11.5,39,5.8,0,0
|
63 |
+
2,2,mar,sun,89.3,51.3,102.2,9.6,5.5,59,6.3,0,0
|
64 |
+
2,2,aug,thu,93,75.3,466.6,7.7,18.8,35,4.9,0,0
|
65 |
+
2,2,aug,sun,90.2,99.6,631.2,6.3,20.8,33,2.7,0,0
|
66 |
+
2,2,aug,mon,91.1,103.2,638.8,5.8,23.1,31,3.1,0,0
|
67 |
+
2,2,aug,thu,91.7,114.3,661.3,6.3,18.6,44,4.5,0,0
|
68 |
+
2,2,sep,fri,92.4,117.9,668,12.2,23,37,4.5,0,0
|
69 |
+
2,2,sep,fri,92.4,117.9,668,12.2,19.6,33,5.4,0,0
|
70 |
+
2,2,sep,fri,92.4,117.9,668,12.2,19.6,33,6.3,0,0
|
71 |
+
4,5,mar,fri,91.7,33.3,77.5,9,17.2,26,4.5,0,0
|
72 |
+
4,5,mar,fri,91.2,48.3,97.8,12.5,15.8,27,7.6,0,0
|
73 |
+
4,5,sep,fri,94.3,85.1,692.3,15.9,17.7,37,3.6,0,0
|
74 |
+
5,4,mar,fri,91.7,33.3,77.5,9,15.6,25,6.3,0,0
|
75 |
+
5,4,aug,tue,88.8,147.3,614.5,9,17.3,43,4.5,0,0
|
76 |
+
5,4,sep,fri,93.3,141.2,713.9,13.9,27.6,30,1.3,0,0
|
77 |
+
9,9,feb,thu,84.2,6.8,26.6,7.7,6.7,79,3.1,0,0
|
78 |
+
9,9,feb,fri,86.6,13.2,43,5.3,15.7,43,3.1,0,0
|
79 |
+
1,3,mar,mon,87.6,52.2,103.8,5,8.3,72,3.1,0,0
|
80 |
+
1,2,aug,fri,90.1,108,529.8,12.5,14.7,66,2.7,0,0
|
81 |
+
1,2,aug,tue,91,121.2,561.6,7,21.6,19,6.7,0,0
|
82 |
+
1,2,aug,sun,91.4,142.4,601.4,10.6,19.5,39,6.3,0,0
|
83 |
+
1,2,aug,sun,90.2,99.6,631.2,6.3,17.9,44,2.2,0,0
|
84 |
+
1,2,aug,tue,94.8,108.3,647.1,17,18.6,51,4.5,0,0
|
85 |
+
1,2,aug,wed,92.1,111.2,654.1,9.6,16.6,47,0.9,0,0
|
86 |
+
1,2,aug,thu,91.7,114.3,661.3,6.3,20.2,45,3.6,0,0
|
87 |
+
1,2,sep,thu,92.9,137,706.4,9.2,21.5,15,0.9,0,0
|
88 |
+
1,2,sep,thu,92.9,137,706.4,9.2,25.4,27,2.2,0,0
|
89 |
+
1,2,sep,thu,92.9,137,706.4,9.2,22.4,34,2.2,0,0
|
90 |
+
1,2,sep,sun,93.5,149.3,728.6,8.1,25.3,36,3.6,0,0
|
91 |
+
6,5,mar,sat,91.7,35.8,80.8,7.8,17.4,25,4.9,0,0
|
92 |
+
6,5,aug,sat,90.2,96.9,624.2,8.9,14.7,59,5.8,0,0
|
93 |
+
8,6,mar,fri,91.7,35.8,80.8,7.8,17.4,24,5.4,0,0
|
94 |
+
8,6,aug,sun,92.3,85.3,488,14.7,20.8,32,6.3,0,0
|
95 |
+
8,6,aug,sun,91.4,142.4,601.4,10.6,18.2,43,4.9,0,0
|
96 |
+
8,6,aug,mon,91.1,103.2,638.8,5.8,23.4,22,2.7,0,0
|
97 |
+
4,4,sep,sun,89.7,90,704.4,4.8,17.8,64,1.3,0,0
|
98 |
+
3,4,feb,sat,83.9,8,30.2,2.6,12.7,48,1.8,0,0
|
99 |
+
3,4,mar,sat,69,2.4,15.5,0.7,17.4,24,5.4,0,0
|
100 |
+
3,4,aug,sun,91.4,142.4,601.4,10.6,11.6,87,4.5,0,0
|
101 |
+
3,4,aug,sun,91.4,142.4,601.4,10.6,19.8,39,5.4,0,0
|
102 |
+
3,4,aug,sun,91.4,142.4,601.4,10.6,19.8,39,5.4,0,0
|
103 |
+
3,4,aug,tue,88.8,147.3,614.5,9,14.4,66,5.4,0,0
|
104 |
+
2,4,aug,tue,94.8,108.3,647.1,17,20.1,40,4,0,0
|
105 |
+
2,4,sep,sat,92.5,121.1,674.4,8.6,24.1,29,4.5,0,0
|
106 |
+
2,4,jan,sat,82.1,3.7,9.3,2.9,5.3,78,3.1,0,0
|
107 |
+
4,5,mar,fri,85.9,19.5,57.3,2.8,12.7,52,6.3,0,0
|
108 |
+
4,5,mar,thu,91.4,30.7,74.3,7.5,18.2,29,3.1,0,0
|
109 |
+
4,5,aug,sun,90.2,99.6,631.2,6.3,21.4,33,3.1,0,0
|
110 |
+
4,5,sep,sat,92.5,88,698.6,7.1,20.3,45,3.1,0,0
|
111 |
+
4,5,sep,mon,88.6,91.8,709.9,7.1,17.4,56,5.4,0,0
|
112 |
+
4,4,mar,fri,85.9,19.5,57.3,2.8,13.7,43,5.8,0,0
|
113 |
+
3,4,mar,fri,91.7,33.3,77.5,9,18.8,18,4.5,0,0
|
114 |
+
3,4,sep,sun,89.7,90,704.4,4.8,22.8,39,3.6,0,0
|
115 |
+
3,4,sep,mon,91.8,78.5,724.3,9.2,18.9,35,2.7,0,0
|
116 |
+
3,4,mar,tue,88.1,25.7,67.6,3.8,15.8,27,7.6,0,0
|
117 |
+
3,5,mar,tue,88.1,25.7,67.6,3.8,15.5,27,6.3,0,0
|
118 |
+
3,4,mar,sat,91.7,35.8,80.8,7.8,11.6,30,6.3,0,0
|
119 |
+
3,4,mar,sat,91.7,35.8,80.8,7.8,15.2,27,4.9,0,0
|
120 |
+
3,4,mar,mon,90.1,39.7,86.6,6.2,10.6,30,4,0,0
|
121 |
+
3,4,aug,thu,93,75.3,466.6,7.7,19.6,36,3.1,0,0
|
122 |
+
3,4,aug,mon,91.5,145.4,608.2,10.7,10.3,74,2.2,0,0
|
123 |
+
3,4,aug,mon,91.5,145.4,608.2,10.7,17.1,43,5.4,0,0
|
124 |
+
3,4,sep,sun,92.4,124.1,680.7,8.5,22.5,42,5.4,0,0
|
125 |
+
3,4,sep,tue,84.4,73.4,671.9,3.2,17.9,45,3.1,0,0
|
126 |
+
3,4,sep,fri,94.3,85.1,692.3,15.9,19.8,50,5.4,0,0
|
127 |
+
3,4,oct,sun,92.6,46.5,691.8,8.8,20.6,24,5.4,0,0
|
128 |
+
3,5,mar,mon,87.6,52.2,103.8,5,9,49,2.2,0,0
|
129 |
+
3,5,sep,fri,93.5,149.3,728.6,8.1,17.2,43,3.1,0,0
|
130 |
+
3,5,oct,wed,91.4,37.9,673.8,5.2,15.9,46,3.6,0,0
|
131 |
+
2,5,oct,sun,92.6,46.5,691.8,8.8,15.4,35,0.9,0,0
|
132 |
+
4,6,feb,sat,68.2,21.5,87.2,0.8,15.4,40,2.7,0,0
|
133 |
+
4,6,mar,mon,87.2,23.9,64.7,4.1,14,39,3.1,0,0
|
134 |
+
4,6,mar,sun,89.3,51.3,102.2,9.6,10.6,46,4.9,0,0
|
135 |
+
4,6,sep,thu,93.7,80.9,685.2,17.9,17.6,42,3.1,0,0
|
136 |
+
3,5,mar,tue,88.1,25.7,67.6,3.8,14.9,38,2.7,0,0
|
137 |
+
3,5,aug,sat,93.5,139.4,594.2,20.3,17.6,52,5.8,0,0
|
138 |
+
3,6,sep,sun,92.4,124.1,680.7,8.5,17.2,58,1.3,0,0
|
139 |
+
3,6,sep,mon,90.9,126.5,686.5,7,15.6,66,3.1,0,0
|
140 |
+
9,9,jul,tue,85.8,48.3,313.4,3.9,18,42,2.7,0,0.36
|
141 |
+
1,4,sep,tue,91,129.5,692.6,7,21.7,38,2.2,0,0.43
|
142 |
+
2,5,sep,mon,90.9,126.5,686.5,7,21.9,39,1.8,0,0.47
|
143 |
+
1,2,aug,wed,95.5,99.9,513.3,13.2,23.3,31,4.5,0,0.55
|
144 |
+
8,6,aug,fri,90.1,108,529.8,12.5,21.2,51,8.9,0,0.61
|
145 |
+
1,2,jul,sat,90,51.3,296.3,8.7,16.6,53,5.4,0,0.71
|
146 |
+
2,5,aug,wed,95.5,99.9,513.3,13.2,23.8,32,5.4,0,0.77
|
147 |
+
6,5,aug,thu,95.2,131.7,578.8,10.4,27.4,22,4,0,0.9
|
148 |
+
5,4,mar,mon,90.1,39.7,86.6,6.2,13.2,40,5.4,0,0.95
|
149 |
+
8,3,sep,tue,84.4,73.4,671.9,3.2,24.2,28,3.6,0,0.96
|
150 |
+
2,2,aug,tue,94.8,108.3,647.1,17,17.4,43,6.7,0,1.07
|
151 |
+
8,6,sep,thu,93.7,80.9,685.2,17.9,23.7,25,4.5,0,1.12
|
152 |
+
6,5,jun,fri,92.5,56.4,433.3,7.1,23.2,39,5.4,0,1.19
|
153 |
+
9,9,jul,sun,90.1,68.6,355.2,7.2,24.8,29,2.2,0,1.36
|
154 |
+
3,4,jul,sat,90.1,51.2,424.1,6.2,24.6,43,1.8,0,1.43
|
155 |
+
5,4,sep,fri,94.3,85.1,692.3,15.9,20.1,47,4.9,0,1.46
|
156 |
+
1,5,sep,sat,93.4,145.4,721.4,8.1,29.6,27,2.7,0,1.46
|
157 |
+
7,4,aug,sun,94.8,108.3,647.1,17,16.4,47,1.3,0,1.56
|
158 |
+
2,4,sep,sat,93.4,145.4,721.4,8.1,28.6,27,2.2,0,1.61
|
159 |
+
2,2,aug,wed,92.1,111.2,654.1,9.6,18.4,45,3.6,0,1.63
|
160 |
+
2,4,aug,wed,92.1,111.2,654.1,9.6,20.5,35,4,0,1.64
|
161 |
+
7,4,sep,fri,92.4,117.9,668,12.2,19,34,5.8,0,1.69
|
162 |
+
7,4,mar,mon,90.1,39.7,86.6,6.2,16.1,29,3.1,0,1.75
|
163 |
+
6,4,aug,thu,95.2,131.7,578.8,10.4,20.3,41,4,0,1.9
|
164 |
+
6,3,mar,sat,90.6,50.1,100.4,7.8,15.2,31,8.5,0,1.94
|
165 |
+
8,6,sep,sat,92.5,121.1,674.4,8.6,17.8,56,1.8,0,1.95
|
166 |
+
8,5,sep,sun,89.7,90,704.4,4.8,17.8,67,2.2,0,2.01
|
167 |
+
6,5,mar,thu,84.9,18.2,55,3,5.3,70,4.5,0,2.14
|
168 |
+
6,5,aug,wed,92.1,111.2,654.1,9.6,16.6,47,0.9,0,2.29
|
169 |
+
6,5,aug,wed,96,127.1,570.5,16.5,23.4,33,4.5,0,2.51
|
170 |
+
6,5,mar,fri,91.2,48.3,97.8,12.5,14.6,26,9.4,0,2.53
|
171 |
+
8,6,aug,thu,95.2,131.7,578.8,10.4,20.7,45,2.2,0,2.55
|
172 |
+
5,4,sep,wed,92.9,133.3,699.6,9.2,21.9,35,1.8,0,2.57
|
173 |
+
8,6,aug,wed,85.6,90.4,609.6,6.6,17.4,50,4,0,2.69
|
174 |
+
7,4,aug,sun,91.4,142.4,601.4,10.6,20.1,39,5.4,0,2.74
|
175 |
+
4,4,sep,mon,90.9,126.5,686.5,7,17.7,39,2.2,0,3.07
|
176 |
+
1,4,aug,sat,90.2,96.9,624.2,8.9,14.2,53,1.8,0,3.5
|
177 |
+
1,4,aug,sat,90.2,96.9,624.2,8.9,20.3,39,4.9,0,4.53
|
178 |
+
6,5,apr,thu,81.5,9.1,55.2,2.7,5.8,54,5.8,0,4.61
|
179 |
+
2,5,aug,sun,90.2,99.6,631.2,6.3,19.2,44,2.7,0,4.69
|
180 |
+
2,5,sep,wed,90.1,82.9,735.7,6.2,18.3,45,2.2,0,4.88
|
181 |
+
8,6,aug,tue,88.8,147.3,614.5,9,14.4,66,5.4,0,5.23
|
182 |
+
1,3,sep,sun,92.4,124.1,680.7,8.5,23.9,32,6.7,0,5.33
|
183 |
+
8,6,oct,mon,84.9,32.8,664.2,3,19.1,32,4,0,5.44
|
184 |
+
5,4,feb,sun,86.8,15.6,48.3,3.9,12.4,53,2.2,0,6.38
|
185 |
+
7,4,oct,mon,91.7,48.5,696.1,11.1,16.8,45,4.5,0,6.83
|
186 |
+
8,6,aug,fri,93.9,135.7,586.7,15.1,20.8,34,4.9,0,6.96
|
187 |
+
2,5,sep,tue,91,129.5,692.6,7,17.6,46,3.1,0,7.04
|
188 |
+
8,6,mar,sun,89.3,51.3,102.2,9.6,11.5,39,5.8,0,7.19
|
189 |
+
1,5,sep,mon,90.9,126.5,686.5,7,21,42,2.2,0,7.3
|
190 |
+
6,4,mar,sat,90.8,41.9,89.4,7.9,13.3,42,0.9,0,7.4
|
191 |
+
7,4,mar,sun,90.7,44,92.4,5.5,11.5,60,4,0,8.24
|
192 |
+
6,5,mar,fri,91.2,48.3,97.8,12.5,11.7,33,4,0,8.31
|
193 |
+
2,5,aug,thu,95.2,131.7,578.8,10.4,24.2,28,2.7,0,8.68
|
194 |
+
2,2,aug,tue,94.8,108.3,647.1,17,24.6,22,4.5,0,8.71
|
195 |
+
4,5,sep,wed,92.9,133.3,699.6,9.2,24.3,25,4,0,9.41
|
196 |
+
2,2,aug,tue,94.8,108.3,647.1,17,24.6,22,4.5,0,10.01
|
197 |
+
2,5,aug,fri,93.9,135.7,586.7,15.1,23.5,36,5.4,0,10.02
|
198 |
+
6,5,apr,thu,81.5,9.1,55.2,2.7,5.8,54,5.8,0,10.93
|
199 |
+
4,5,sep,thu,92.9,137,706.4,9.2,21.5,15,0.9,0,11.06
|
200 |
+
3,4,sep,tue,91,129.5,692.6,7,13.9,59,6.3,0,11.24
|
201 |
+
2,4,sep,mon,63.5,70.8,665.3,0.8,22.6,38,3.6,0,11.32
|
202 |
+
1,5,sep,tue,91,129.5,692.6,7,21.6,33,2.2,0,11.53
|
203 |
+
6,5,mar,sun,90.1,37.6,83.7,7.2,12.4,54,3.6,0,12.1
|
204 |
+
7,4,feb,sun,83.9,8.7,32.1,2.1,8.8,68,2.2,0,13.05
|
205 |
+
8,6,oct,wed,91.4,37.9,673.8,5.2,20.2,37,2.7,0,13.7
|
206 |
+
5,6,mar,sat,90.6,50.1,100.4,7.8,15.1,64,4,0,13.99
|
207 |
+
4,5,sep,thu,92.9,137,706.4,9.2,22.1,34,1.8,0,14.57
|
208 |
+
2,2,aug,sat,93.5,139.4,594.2,20.3,22.9,31,7.2,0,15.45
|
209 |
+
7,5,sep,tue,91,129.5,692.6,7,20.7,37,2.2,0,17.2
|
210 |
+
6,5,sep,fri,92.4,117.9,668,12.2,19.6,33,6.3,0,19.23
|
211 |
+
8,3,sep,thu,93.7,80.9,685.2,17.9,23.2,26,4.9,0,23.41
|
212 |
+
4,4,oct,sat,90.6,43.7,686.9,6.7,18.4,25,3.1,0,24.23
|
213 |
+
7,4,aug,sat,93.5,139.4,594.2,20.3,5.1,96,5.8,0,26
|
214 |
+
7,4,sep,fri,94.3,85.1,692.3,15.9,20.1,47,4.9,0,26.13
|
215 |
+
7,3,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,27.35
|
216 |
+
4,4,mar,sat,91.7,35.8,80.8,7.8,17,27,4.9,0,28.66
|
217 |
+
4,4,mar,sat,91.7,35.8,80.8,7.8,17,27,4.9,0,28.66
|
218 |
+
4,4,sep,sun,92.4,124.1,680.7,8.5,16.9,60,1.3,0,29.48
|
219 |
+
1,3,sep,mon,88.6,91.8,709.9,7.1,12.4,73,6.3,0,30.32
|
220 |
+
4,5,sep,wed,92.9,133.3,699.6,9.2,19.4,19,1.3,0,31.72
|
221 |
+
6,5,mar,mon,90.1,39.7,86.6,6.2,15.2,27,3.1,0,31.86
|
222 |
+
8,6,aug,sun,90.2,99.6,631.2,6.3,16.2,59,3.1,0,32.07
|
223 |
+
3,4,sep,fri,93.3,141.2,713.9,13.9,18.6,49,3.6,0,35.88
|
224 |
+
4,3,mar,mon,87.6,52.2,103.8,5,11,46,5.8,0,36.85
|
225 |
+
2,2,jul,fri,88.3,150.3,309.9,6.8,13.4,79,3.6,0,37.02
|
226 |
+
7,4,sep,wed,90.1,82.9,735.7,6.2,15.4,57,4.5,0,37.71
|
227 |
+
4,4,sep,sun,93.5,149.3,728.6,8.1,22.9,39,4.9,0,48.55
|
228 |
+
7,5,oct,mon,91.7,48.5,696.1,11.1,16.1,44,4,0,49.37
|
229 |
+
8,6,aug,sat,92.2,81.8,480.8,11.9,20.1,34,4.5,0,58.3
|
230 |
+
4,6,sep,sun,93.5,149.3,728.6,8.1,28.3,26,3.1,0,64.1
|
231 |
+
8,6,aug,sat,92.2,81.8,480.8,11.9,16.4,43,4,0,71.3
|
232 |
+
4,4,sep,wed,92.9,133.3,699.6,9.2,26.4,21,4.5,0,88.49
|
233 |
+
1,5,sep,sun,93.5,149.3,728.6,8.1,27.8,27,3.1,0,95.18
|
234 |
+
6,4,sep,tue,91,129.5,692.6,7,18.7,43,2.7,0,103.39
|
235 |
+
9,4,sep,tue,84.4,73.4,671.9,3.2,24.3,36,3.1,0,105.66
|
236 |
+
4,5,sep,sat,92.5,121.1,674.4,8.6,17.7,25,3.1,0,154.88
|
237 |
+
8,6,aug,sun,91.4,142.4,601.4,10.6,19.6,41,5.8,0,196.48
|
238 |
+
2,2,sep,sat,92.5,121.1,674.4,8.6,18.2,46,1.8,0,200.94
|
239 |
+
1,2,sep,tue,91,129.5,692.6,7,18.8,40,2.2,0,212.88
|
240 |
+
6,5,sep,sat,92.5,121.1,674.4,8.6,25.1,27,4,0,1090.84
|
241 |
+
7,5,apr,sun,81.9,3,7.9,3.5,13.4,75,1.8,0,0
|
242 |
+
6,3,apr,wed,88,17.2,43.5,3.8,15.2,51,2.7,0,0
|
243 |
+
4,4,apr,fri,83,23.3,85.3,2.3,16.7,20,3.1,0,0
|
244 |
+
2,4,aug,sun,94.2,122.3,589.9,12.9,15.4,66,4,0,10.13
|
245 |
+
7,4,aug,sun,91.8,175.1,700.7,13.8,21.9,73,7.6,1,0
|
246 |
+
2,4,aug,sun,91.8,175.1,700.7,13.8,22.4,54,7.6,0,2.87
|
247 |
+
3,4,aug,sun,91.8,175.1,700.7,13.8,26.8,38,6.3,0,0.76
|
248 |
+
5,4,aug,sun,91.8,175.1,700.7,13.8,25.7,39,5.4,0,0.09
|
249 |
+
2,4,aug,wed,92.2,91.6,503.6,9.6,20.7,70,2.2,0,0.75
|
250 |
+
8,6,aug,wed,93.1,157.3,666.7,13.5,28.7,28,2.7,0,0
|
251 |
+
3,4,aug,wed,93.1,157.3,666.7,13.5,21.7,40,0.4,0,2.47
|
252 |
+
8,5,aug,wed,93.1,157.3,666.7,13.5,26.8,25,3.1,0,0.68
|
253 |
+
8,5,aug,wed,93.1,157.3,666.7,13.5,24,36,3.1,0,0.24
|
254 |
+
6,5,aug,wed,93.1,157.3,666.7,13.5,22.1,37,3.6,0,0.21
|
255 |
+
7,4,aug,thu,91.9,109.2,565.5,8,21.4,38,2.7,0,1.52
|
256 |
+
6,3,aug,thu,91.6,138.1,621.7,6.3,18.9,41,3.1,0,10.34
|
257 |
+
2,5,aug,thu,87.5,77,694.8,5,22.3,46,4,0,0
|
258 |
+
8,6,aug,sat,94.2,117.2,581.1,11,23.9,41,2.2,0,8.02
|
259 |
+
4,3,aug,sat,94.2,117.2,581.1,11,21.4,44,2.7,0,0.68
|
260 |
+
3,4,aug,sat,91.8,170.9,692.3,13.7,20.6,59,0.9,0,0
|
261 |
+
7,4,aug,sat,91.8,170.9,692.3,13.7,23.7,40,1.8,0,1.38
|
262 |
+
2,4,aug,mon,93.6,97.9,542,14.4,28.3,32,4,0,8.85
|
263 |
+
3,4,aug,fri,91.6,112.4,573,8.9,11.2,84,7.6,0,3.3
|
264 |
+
2,4,aug,fri,91.6,112.4,573,8.9,21.4,42,3.1,0,4.25
|
265 |
+
6,3,aug,fri,91.1,141.1,629.1,7.1,19.3,39,3.6,0,1.56
|
266 |
+
4,4,aug,fri,94.3,167.6,684.4,13,21.8,53,3.1,0,6.54
|
267 |
+
4,4,aug,tue,93.7,102.2,550.3,14.6,22.1,54,7.6,0,0.79
|
268 |
+
6,5,aug,tue,94.3,131.7,607.1,22.7,19.4,55,4,0,0.17
|
269 |
+
2,2,aug,tue,92.1,152.6,658.2,14.3,23.7,24,3.1,0,0
|
270 |
+
3,4,aug,tue,92.1,152.6,658.2,14.3,21,32,3.1,0,0
|
271 |
+
4,4,aug,tue,92.1,152.6,658.2,14.3,19.1,53,2.7,0,4.4
|
272 |
+
2,2,aug,tue,92.1,152.6,658.2,14.3,21.8,56,3.1,0,0.52
|
273 |
+
8,6,aug,tue,92.1,152.6,658.2,14.3,20.1,58,4.5,0,9.27
|
274 |
+
2,5,aug,tue,92.1,152.6,658.2,14.3,20.2,47,4,0,3.09
|
275 |
+
4,6,dec,sun,84.4,27.2,353.5,6.8,4.8,57,8.5,0,8.98
|
276 |
+
8,6,dec,wed,84,27.8,354.6,5.3,5.1,61,8,0,11.19
|
277 |
+
4,6,dec,thu,84.6,26.4,352,2,5.1,61,4.9,0,5.38
|
278 |
+
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,17.85
|
279 |
+
3,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,10.73
|
280 |
+
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,22.03
|
281 |
+
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,9.77
|
282 |
+
4,6,dec,fri,84.7,26.7,352.6,4.1,2.2,59,4.9,0,9.27
|
283 |
+
6,5,dec,tue,85.4,25.4,349.7,2.6,5.1,24,8.5,0,24.77
|
284 |
+
6,3,feb,sun,84.9,27.5,353.5,3.4,4.2,51,4,0,0
|
285 |
+
3,4,feb,wed,86.9,6.6,18.7,3.2,8.8,35,3.1,0,1.1
|
286 |
+
5,4,feb,fri,85.2,4.9,15.8,6.3,7.5,46,8,0,24.24
|
287 |
+
2,5,jul,sun,93.9,169.7,411.8,12.3,23.4,40,6.3,0,0
|
288 |
+
7,6,jul,wed,91.2,183.1,437.7,12.5,12.6,90,7.6,0.2,0
|
289 |
+
7,4,jul,sat,91.6,104.2,474.9,9,22.1,49,2.7,0,0
|
290 |
+
7,4,jul,sat,91.6,104.2,474.9,9,24.2,32,1.8,0,0
|
291 |
+
7,4,jul,sat,91.6,104.2,474.9,9,24.3,30,1.8,0,0
|
292 |
+
2,5,jul,sat,91.6,104.2,474.9,9,18.7,53,1.8,0,0
|
293 |
+
9,4,jul,sat,91.6,104.2,474.9,9,25.3,39,0.9,0,8
|
294 |
+
4,5,jul,fri,91.6,100.2,466.3,6.3,22.9,40,1.3,0,2.64
|
295 |
+
7,6,jul,tue,93.1,180.4,430.8,11,26.9,28,5.4,0,86.45
|
296 |
+
8,6,jul,tue,92.3,88.8,440.9,8.5,17.1,67,3.6,0,6.57
|
297 |
+
7,5,jun,sun,93.1,180.4,430.8,11,22.2,48,1.3,0,0
|
298 |
+
6,4,jun,sun,90.4,89.5,290.8,6.4,14.3,46,1.8,0,0.9
|
299 |
+
8,6,jun,sun,90.4,89.5,290.8,6.4,15.4,45,2.2,0,0
|
300 |
+
8,6,jun,wed,91.2,147.8,377.2,12.7,19.6,43,4.9,0,0
|
301 |
+
6,5,jun,sat,53.4,71,233.8,0.4,10.6,90,2.7,0,0
|
302 |
+
6,5,jun,mon,90.4,93.3,298.1,7.5,20.7,25,4.9,0,0
|
303 |
+
6,5,jun,mon,90.4,93.3,298.1,7.5,19.1,39,5.4,0,3.52
|
304 |
+
3,6,jun,fri,91.1,94.1,232.1,7.1,19.2,38,4.5,0,0
|
305 |
+
3,6,jun,fri,91.1,94.1,232.1,7.1,19.2,38,4.5,0,0
|
306 |
+
6,5,may,sat,85.1,28,113.8,3.5,11.3,94,4.9,0,0
|
307 |
+
1,4,sep,sun,89.6,84.1,714.3,5.7,19,52,2.2,0,0
|
308 |
+
7,4,sep,sun,89.6,84.1,714.3,5.7,17.1,53,5.4,0,0.41
|
309 |
+
3,4,sep,sun,89.6,84.1,714.3,5.7,23.8,35,3.6,0,5.18
|
310 |
+
2,4,sep,sun,92.4,105.8,758.1,9.9,16,45,1.8,0,0
|
311 |
+
2,4,sep,sun,92.4,105.8,758.1,9.9,24.9,27,2.2,0,0
|
312 |
+
7,4,sep,sun,92.4,105.8,758.1,9.9,25.3,27,2.7,0,0
|
313 |
+
6,3,sep,sun,92.4,105.8,758.1,9.9,24.8,28,1.8,0,14.29
|
314 |
+
2,4,sep,sun,50.4,46.2,706.6,0.4,12.2,78,6.3,0,0
|
315 |
+
6,5,sep,wed,92.6,115.4,777.1,8.8,24.3,27,4.9,0,0
|
316 |
+
4,4,sep,wed,92.6,115.4,777.1,8.8,19.7,41,1.8,0,1.58
|
317 |
+
3,4,sep,wed,91.2,134.7,817.5,7.2,18.5,30,2.7,0,0
|
318 |
+
4,5,sep,thu,92.4,96.2,739.4,8.6,18.6,24,5.8,0,0
|
319 |
+
4,4,sep,thu,92.4,96.2,739.4,8.6,19.2,24,4.9,0,3.78
|
320 |
+
6,5,sep,thu,92.8,119,783.5,7.5,21.6,27,2.2,0,0
|
321 |
+
5,4,sep,thu,92.8,119,783.5,7.5,21.6,28,6.3,0,4.41
|
322 |
+
6,3,sep,thu,92.8,119,783.5,7.5,18.9,34,7.2,0,34.36
|
323 |
+
1,4,sep,thu,92.8,119,783.5,7.5,16.8,28,4,0,7.21
|
324 |
+
6,5,sep,thu,92.8,119,783.5,7.5,16.8,28,4,0,1.01
|
325 |
+
3,5,sep,thu,90.7,136.9,822.8,6.8,12.9,39,2.7,0,2.18
|
326 |
+
6,5,sep,thu,88.1,53.3,726.9,5.4,13.7,56,1.8,0,4.42
|
327 |
+
1,4,sep,sat,92.2,102.3,751.5,8.4,24.2,27,3.1,0,0
|
328 |
+
5,4,sep,sat,92.2,102.3,751.5,8.4,24.1,27,3.1,0,0
|
329 |
+
6,5,sep,sat,92.2,102.3,751.5,8.4,21.2,32,2.2,0,0
|
330 |
+
6,5,sep,sat,92.2,102.3,751.5,8.4,19.7,35,1.8,0,0
|
331 |
+
4,3,sep,sat,92.2,102.3,751.5,8.4,23.5,27,4,0,3.33
|
332 |
+
3,3,sep,sat,92.2,102.3,751.5,8.4,24.2,27,3.1,0,6.58
|
333 |
+
7,4,sep,sat,91.2,124.4,795.3,8.5,21.5,28,4.5,0,15.64
|
334 |
+
4,4,sep,sat,91.2,124.4,795.3,8.5,17.1,41,2.2,0,11.22
|
335 |
+
1,4,sep,mon,92.1,87.7,721.1,9.5,18.1,54,3.1,0,2.13
|
336 |
+
2,3,sep,mon,91.6,108.4,764,6.2,18,51,5.4,0,0
|
337 |
+
4,3,sep,mon,91.6,108.4,764,6.2,9.8,86,1.8,0,0
|
338 |
+
7,4,sep,mon,91.6,108.4,764,6.2,19.3,44,2.2,0,0
|
339 |
+
6,3,sep,mon,91.6,108.4,764,6.2,23,34,2.2,0,56.04
|
340 |
+
8,6,sep,mon,91.6,108.4,764,6.2,22.7,35,2.2,0,7.48
|
341 |
+
2,4,sep,mon,91.6,108.4,764,6.2,20.4,41,1.8,0,1.47
|
342 |
+
2,5,sep,mon,91.6,108.4,764,6.2,19.3,44,2.2,0,3.93
|
343 |
+
8,6,sep,mon,91.9,111.7,770.3,6.5,15.7,51,2.2,0,0
|
344 |
+
6,3,sep,mon,91.5,130.1,807.1,7.5,20.6,37,1.8,0,0
|
345 |
+
8,6,sep,mon,91.5,130.1,807.1,7.5,15.9,51,4.5,0,2.18
|
346 |
+
6,3,sep,mon,91.5,130.1,807.1,7.5,12.2,66,4.9,0,6.1
|
347 |
+
2,2,sep,mon,91.5,130.1,807.1,7.5,16.8,43,3.1,0,5.83
|
348 |
+
1,4,sep,mon,91.5,130.1,807.1,7.5,21.3,35,2.2,0,28.19
|
349 |
+
5,4,sep,fri,92.1,99,745.3,9.6,10.1,75,3.6,0,0
|
350 |
+
3,4,sep,fri,92.1,99,745.3,9.6,17.4,57,4.5,0,0
|
351 |
+
5,4,sep,fri,92.1,99,745.3,9.6,12.8,64,3.6,0,1.64
|
352 |
+
5,4,sep,fri,92.1,99,745.3,9.6,10.1,75,3.6,0,3.71
|
353 |
+
4,4,sep,fri,92.1,99,745.3,9.6,15.4,53,6.3,0,7.31
|
354 |
+
7,4,sep,fri,92.1,99,745.3,9.6,20.6,43,3.6,0,2.03
|
355 |
+
7,4,sep,fri,92.1,99,745.3,9.6,19.8,47,2.7,0,1.72
|
356 |
+
7,4,sep,fri,92.1,99,745.3,9.6,18.7,50,2.2,0,5.97
|
357 |
+
4,4,sep,fri,92.1,99,745.3,9.6,20.8,35,4.9,0,13.06
|
358 |
+
4,4,sep,fri,92.1,99,745.3,9.6,20.8,35,4.9,0,1.26
|
359 |
+
6,3,sep,fri,92.5,122,789.7,10.2,15.9,55,3.6,0,0
|
360 |
+
6,3,sep,fri,92.5,122,789.7,10.2,19.7,39,2.7,0,0
|
361 |
+
1,4,sep,fri,92.5,122,789.7,10.2,21.1,39,2.2,0,8.12
|
362 |
+
6,5,sep,fri,92.5,122,789.7,10.2,18.4,42,2.2,0,1.09
|
363 |
+
4,3,sep,fri,92.5,122,789.7,10.2,17.3,45,4,0,3.94
|
364 |
+
7,4,sep,fri,88.2,55.2,732.3,11.6,15.2,64,3.1,0,0.52
|
365 |
+
4,3,sep,tue,91.9,111.7,770.3,6.5,15.9,53,2.2,0,2.93
|
366 |
+
6,5,sep,tue,91.9,111.7,770.3,6.5,21.1,35,2.7,0,5.65
|
367 |
+
6,5,sep,tue,91.9,111.7,770.3,6.5,19.6,45,3.1,0,20.03
|
368 |
+
4,5,sep,tue,91.1,132.3,812.1,12.5,15.9,38,5.4,0,1.75
|
369 |
+
4,5,sep,tue,91.1,132.3,812.1,12.5,16.4,27,3.6,0,0
|
370 |
+
6,5,sep,sat,91.2,94.3,744.4,8.4,16.8,47,4.9,0,12.64
|
371 |
+
4,5,sep,sun,91,276.3,825.1,7.1,13.8,77,7.6,0,0
|
372 |
+
7,4,sep,sun,91,276.3,825.1,7.1,13.8,77,7.6,0,11.06
|
373 |
+
3,4,jul,wed,91.9,133.6,520.5,8,14.2,58,4,0,0
|
374 |
+
4,5,aug,sun,92,203.2,664.5,8.1,10.4,75,0.9,0,0
|
375 |
+
5,4,aug,thu,94.8,222.4,698.6,13.9,20.3,42,2.7,0,0
|
376 |
+
6,5,sep,fri,90.3,290,855.3,7.4,10.3,78,4,0,18.3
|
377 |
+
6,5,sep,sat,91.2,94.3,744.4,8.4,15.4,57,4.9,0,39.35
|
378 |
+
8,6,aug,mon,92.1,207,672.6,8.2,21.1,54,2.2,0,0
|
379 |
+
2,2,aug,sat,93.7,231.1,715.1,8.4,21.9,42,2.2,0,174.63
|
380 |
+
6,5,mar,thu,90.9,18.9,30.6,8,8.7,51,5.8,0,0
|
381 |
+
4,5,jan,sun,18.7,1.1,171.4,0,5.2,100,0.9,0,0
|
382 |
+
5,4,jul,wed,93.7,101.3,458.8,11.9,19.3,39,7.2,0,7.73
|
383 |
+
8,6,aug,thu,90.7,194.1,643,6.8,16.2,63,2.7,0,16.33
|
384 |
+
8,6,aug,wed,95.2,217.7,690,18,28.2,29,1.8,0,5.86
|
385 |
+
9,6,aug,thu,91.6,248.4,753.8,6.3,20.5,58,2.7,0,42.87
|
386 |
+
8,4,aug,sat,91.6,273.8,819.1,7.7,21.3,44,4.5,0,12.18
|
387 |
+
2,4,aug,sun,91.6,181.3,613,7.6,20.9,50,2.2,0,16
|
388 |
+
3,4,sep,sun,90.5,96.7,750.5,11.4,20.6,55,5.4,0,24.59
|
389 |
+
5,5,mar,thu,90.9,18.9,30.6,8,11.6,48,5.4,0,0
|
390 |
+
6,4,aug,fri,94.8,227,706.7,12,23.3,34,3.1,0,28.74
|
391 |
+
7,4,aug,fri,94.8,227,706.7,12,23.3,34,3.1,0,0
|
392 |
+
7,4,feb,mon,84.7,9.5,58.3,4.1,7.5,71,6.3,0,9.96
|
393 |
+
8,6,sep,fri,91.1,91.3,738.1,7.2,20.7,46,2.7,0,30.18
|
394 |
+
1,3,sep,sun,91,276.3,825.1,7.1,21.9,43,4,0,70.76
|
395 |
+
2,4,mar,tue,93.4,15,25.6,11.4,15.2,19,7.6,0,0
|
396 |
+
6,5,feb,mon,84.1,4.6,46.7,2.2,5.3,68,1.8,0,0
|
397 |
+
4,5,feb,sun,85,9,56.9,3.5,10.1,62,1.8,0,51.78
|
398 |
+
4,3,sep,sun,90.5,96.7,750.5,11.4,20.4,55,4.9,0,3.64
|
399 |
+
5,6,aug,sun,91.6,181.3,613,7.6,24.3,33,3.6,0,3.63
|
400 |
+
1,2,aug,sat,93.7,231.1,715.1,8.4,25.9,32,3.1,0,0
|
401 |
+
9,5,jun,wed,93.3,49.5,297.7,14,28,34,4.5,0,0
|
402 |
+
9,5,jun,wed,93.3,49.5,297.7,14,28,34,4.5,0,8.16
|
403 |
+
3,4,sep,thu,91.1,88.2,731.7,8.3,22.8,46,4,0,4.95
|
404 |
+
9,9,aug,fri,94.8,227,706.7,12,25,36,4,0,0
|
405 |
+
8,6,aug,thu,90.7,194.1,643,6.8,21.3,41,3.6,0,0
|
406 |
+
2,4,sep,wed,87.9,84.8,725.1,3.7,21.8,34,2.2,0,6.04
|
407 |
+
2,2,aug,tue,94.6,212.1,680.9,9.5,27.9,27,2.2,0,0
|
408 |
+
6,5,sep,sat,87.1,291.3,860.6,4,17,67,4.9,0,3.95
|
409 |
+
4,5,feb,sat,84.7,8.2,55,2.9,14.2,46,4,0,0
|
410 |
+
4,3,sep,fri,90.3,290,855.3,7.4,19.9,44,3.1,0,7.8
|
411 |
+
1,4,jul,tue,92.3,96.2,450.2,12.1,23.4,31,5.4,0,0
|
412 |
+
6,3,feb,fri,84.1,7.3,52.8,2.7,14.7,42,2.7,0,0
|
413 |
+
7,4,feb,fri,84.6,3.2,43.6,3.3,8.2,53,9.4,0,4.62
|
414 |
+
9,4,jul,mon,92.3,92.1,442.1,9.8,22.8,27,4.5,0,1.63
|
415 |
+
7,5,aug,sat,93.7,231.1,715.1,8.4,26.4,33,3.6,0,0
|
416 |
+
5,4,aug,sun,93.6,235.1,723.1,10.1,24.1,50,4,0,0
|
417 |
+
8,6,aug,thu,94.8,222.4,698.6,13.9,27.5,27,4.9,0,746.28
|
418 |
+
6,3,jul,tue,92.7,164.1,575.8,8.9,26.3,39,3.1,0,7.02
|
419 |
+
6,5,mar,wed,93.4,17.3,28.3,9.9,13.8,24,5.8,0,0
|
420 |
+
2,4,aug,sun,92,203.2,664.5,8.1,24.9,42,5.4,0,2.44
|
421 |
+
2,5,aug,sun,91.6,181.3,613,7.6,24.8,36,4,0,3.05
|
422 |
+
8,8,aug,wed,91.7,191.4,635.9,7.8,26.2,36,4.5,0,185.76
|
423 |
+
2,4,aug,wed,95.2,217.7,690,18,30.8,19,4.5,0,0
|
424 |
+
8,6,jul,sun,88.9,263.1,795.9,5.2,29.3,27,3.6,0,6.3
|
425 |
+
1,3,sep,sat,91.2,94.3,744.4,8.4,22.3,48,4,0,0.72
|
426 |
+
8,6,aug,sat,93.7,231.1,715.1,8.4,26.9,31,3.6,0,4.96
|
427 |
+
2,2,aug,thu,91.6,248.4,753.8,6.3,20.4,56,2.2,0,0
|
428 |
+
8,6,aug,thu,91.6,248.4,753.8,6.3,20.4,56,2.2,0,0
|
429 |
+
2,4,aug,mon,92.1,207,672.6,8.2,27.9,33,2.2,0,2.35
|
430 |
+
1,3,aug,thu,94.8,222.4,698.6,13.9,26.2,34,5.8,0,0
|
431 |
+
3,4,aug,sun,91.6,181.3,613,7.6,24.6,44,4,0,3.2
|
432 |
+
7,4,sep,thu,89.7,287.2,849.3,6.8,19.4,45,3.6,0,0
|
433 |
+
1,3,aug,sat,92.1,178,605.3,9.6,23.3,40,4,0,6.36
|
434 |
+
8,6,aug,thu,94.8,222.4,698.6,13.9,23.9,38,6.7,0,0
|
435 |
+
2,4,aug,sun,93.6,235.1,723.1,10.1,20.9,66,4.9,0,15.34
|
436 |
+
1,4,aug,fri,90.6,269.8,811.2,5.5,22.2,45,3.6,0,0
|
437 |
+
2,5,jul,sat,90.8,84.7,376.6,5.6,23.8,51,1.8,0,0
|
438 |
+
8,6,aug,mon,92.1,207,672.6,8.2,26.8,35,1.3,0,0.54
|
439 |
+
8,6,aug,sat,89.4,253.6,768.4,9.7,14.2,73,2.7,0,0
|
440 |
+
2,5,aug,sat,93.7,231.1,715.1,8.4,23.6,53,4,0,6.43
|
441 |
+
1,3,sep,fri,91.1,91.3,738.1,7.2,19.1,46,2.2,0,0.33
|
442 |
+
5,4,sep,fri,90.3,290,855.3,7.4,16.2,58,3.6,0,0
|
443 |
+
8,6,aug,mon,92.1,207,672.6,8.2,25.5,29,1.8,0,1.23
|
444 |
+
6,5,apr,mon,87.9,24.9,41.6,3.7,10.9,64,3.1,0,3.35
|
445 |
+
1,2,jul,fri,90.7,80.9,368.3,16.8,14.8,78,8,0,0
|
446 |
+
2,5,sep,fri,90.3,290,855.3,7.4,16.2,58,3.6,0,9.96
|
447 |
+
5,5,aug,sun,94,47.9,100.7,10.7,17.3,80,4.5,0,0
|
448 |
+
6,5,aug,sun,92,203.2,664.5,8.1,19.1,70,2.2,0,0
|
449 |
+
3,4,mar,wed,93.4,17.3,28.3,9.9,8.9,35,8,0,0
|
450 |
+
7,4,sep,wed,89.7,284.9,844,10.1,10.5,77,4,0,0
|
451 |
+
7,4,aug,sun,91.6,181.3,613,7.6,19.3,61,4.9,0,0
|
452 |
+
4,5,aug,wed,95.2,217.7,690,18,23.4,49,5.4,0,6.43
|
453 |
+
1,4,aug,fri,90.5,196.8,649.9,16.3,11.8,88,4.9,0,9.71
|
454 |
+
7,4,aug,mon,91.5,238.2,730.6,7.5,17.7,65,4,0,0
|
455 |
+
4,5,aug,thu,89.4,266.2,803.3,5.6,17.4,54,3.1,0,0
|
456 |
+
3,4,aug,thu,91.6,248.4,753.8,6.3,16.8,56,3.1,0,0
|
457 |
+
3,4,jul,mon,94.6,160,567.2,16.7,17.9,48,2.7,0,0
|
458 |
+
2,4,aug,thu,91.6,248.4,753.8,6.3,16.6,59,2.7,0,0
|
459 |
+
1,4,aug,wed,91.7,191.4,635.9,7.8,19.9,50,4,0,82.75
|
460 |
+
8,6,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,3.32
|
461 |
+
7,4,aug,sat,91.6,273.8,819.1,7.7,15.5,72,8,0,1.94
|
462 |
+
2,5,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,0
|
463 |
+
8,6,aug,sat,93.7,231.1,715.1,8.4,18.9,64,4.9,0,0
|
464 |
+
1,4,sep,sun,91,276.3,825.1,7.1,14.5,76,7.6,0,3.71
|
465 |
+
6,5,feb,tue,75.1,4.4,16.2,1.9,4.6,82,6.3,0,5.39
|
466 |
+
6,4,feb,tue,75.1,4.4,16.2,1.9,5.1,77,5.4,0,2.14
|
467 |
+
2,2,feb,sat,79.5,3.6,15.3,1.8,4.6,59,0.9,0,6.84
|
468 |
+
6,5,mar,mon,87.2,15.1,36.9,7.1,10.2,45,5.8,0,3.18
|
469 |
+
3,4,mar,wed,90.2,18.5,41.1,7.3,11.2,41,5.4,0,5.55
|
470 |
+
6,5,mar,thu,91.3,20.6,43.5,8.5,13.3,27,3.6,0,6.61
|
471 |
+
6,3,apr,sun,91,14.6,25.6,12.3,13.7,33,9.4,0,61.13
|
472 |
+
5,4,apr,sun,91,14.6,25.6,12.3,17.6,27,5.8,0,0
|
473 |
+
4,3,may,fri,89.6,25.4,73.7,5.7,18,40,4,0,38.48
|
474 |
+
8,3,jun,mon,88.2,96.2,229,4.7,14.3,79,4,0,1.94
|
475 |
+
9,4,jun,sat,90.5,61.1,252.6,9.4,24.5,50,3.1,0,70.32
|
476 |
+
4,3,jun,thu,93,103.8,316.7,10.8,26.4,35,2.7,0,10.08
|
477 |
+
2,5,jun,thu,93.7,121.7,350.2,18,22.7,40,9.4,0,3.19
|
478 |
+
4,3,jul,thu,93.5,85.3,395,9.9,27.2,28,1.3,0,1.76
|
479 |
+
4,3,jul,sun,93.7,101.3,423.4,14.7,26.1,45,4,0,7.36
|
480 |
+
7,4,jul,sun,93.7,101.3,423.4,14.7,18.2,82,4.5,0,2.21
|
481 |
+
7,4,jul,mon,89.2,103.9,431.6,6.4,22.6,57,4.9,0,278.53
|
482 |
+
9,9,jul,thu,93.2,114.4,560,9.5,30.2,25,4.5,0,2.75
|
483 |
+
4,3,jul,thu,93.2,114.4,560,9.5,30.2,22,4.9,0,0
|
484 |
+
3,4,aug,sun,94.9,130.3,587.1,14.1,23.4,40,5.8,0,1.29
|
485 |
+
8,6,aug,sun,94.9,130.3,587.1,14.1,31,27,5.4,0,0
|
486 |
+
2,5,aug,sun,94.9,130.3,587.1,14.1,33.1,25,4,0,26.43
|
487 |
+
2,4,aug,mon,95,135.5,596.3,21.3,30.6,28,3.6,0,2.07
|
488 |
+
5,4,aug,tue,95.1,141.3,605.8,17.7,24.1,43,6.3,0,2
|
489 |
+
5,4,aug,tue,95.1,141.3,605.8,17.7,26.4,34,3.6,0,16.4
|
490 |
+
4,4,aug,tue,95.1,141.3,605.8,17.7,19.4,71,7.6,0,46.7
|
491 |
+
4,4,aug,wed,95.1,141.3,605.8,17.7,20.6,58,1.3,0,0
|
492 |
+
4,4,aug,wed,95.1,141.3,605.8,17.7,28.7,33,4,0,0
|
493 |
+
4,4,aug,thu,95.8,152,624.1,13.8,32.4,21,4.5,0,0
|
494 |
+
1,3,aug,fri,95.9,158,633.6,11.3,32.4,27,2.2,0,0
|
495 |
+
1,3,aug,fri,95.9,158,633.6,11.3,27.5,29,4.5,0,43.32
|
496 |
+
6,6,aug,sat,96,164,643,14,30.8,30,4.9,0,8.59
|
497 |
+
6,6,aug,mon,96.2,175.5,661.8,16.8,23.9,42,2.2,0,0
|
498 |
+
4,5,aug,mon,96.2,175.5,661.8,16.8,32.6,26,3.1,0,2.77
|
499 |
+
3,4,aug,tue,96.1,181.1,671.2,14.3,32.3,27,2.2,0,14.68
|
500 |
+
6,5,aug,tue,96.1,181.1,671.2,14.3,33.3,26,2.7,0,40.54
|
501 |
+
7,5,aug,tue,96.1,181.1,671.2,14.3,27.3,63,4.9,6.4,10.82
|
502 |
+
8,6,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0
|
503 |
+
7,5,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0
|
504 |
+
4,4,aug,tue,96.1,181.1,671.2,14.3,20.7,69,4.9,0.4,0
|
505 |
+
2,4,aug,wed,94.5,139.4,689.1,20,29.2,30,4.9,0,1.95
|
506 |
+
4,3,aug,wed,94.5,139.4,689.1,20,28.9,29,4.9,0,49.59
|
507 |
+
1,2,aug,thu,91,163.2,744.4,10.1,26.7,35,1.8,0,5.8
|
508 |
+
1,2,aug,fri,91,166.9,752.6,7.1,18.5,73,8.5,0,0
|
509 |
+
2,4,aug,fri,91,166.9,752.6,7.1,25.9,41,3.6,0,0
|
510 |
+
1,2,aug,fri,91,166.9,752.6,7.1,25.9,41,3.6,0,0
|
511 |
+
5,4,aug,fri,91,166.9,752.6,7.1,21.1,71,7.6,1.4,2.17
|
512 |
+
6,5,aug,fri,91,166.9,752.6,7.1,18.2,62,5.4,0,0.43
|
513 |
+
8,6,aug,sun,81.6,56.7,665.6,1.9,27.8,35,2.7,0,0
|
514 |
+
4,3,aug,sun,81.6,56.7,665.6,1.9,27.8,32,2.7,0,6.44
|
515 |
+
2,4,aug,sun,81.6,56.7,665.6,1.9,21.9,71,5.8,0,54.29
|
516 |
+
7,4,aug,sun,81.6,56.7,665.6,1.9,21.2,70,6.7,0,11.16
|
517 |
+
1,4,aug,sat,94.4,146,614.7,11.3,25.6,42,4,0,0
|
518 |
+
6,3,nov,tue,79.5,3,106.7,1.1,11.8,31,4.5,0,0
|
datasets/slump_test.data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
No,Cement,Slag,Fly ash,Water,SP,Coarse Aggr.,Fine Aggr.,SLUMP(cm),FLOW(cm),Compressive Strength (28-day)(Mpa)
|
2 |
+
1,273,82,105,210,9,904,680,23,62,34.99
|
3 |
+
2,163,149,191,180,12,843,746,0,20,41.14
|
4 |
+
3,162,148,191,179,16,840,743,1,20,41.81
|
5 |
+
4,162,148,190,179,19,838,741,3,21.5,42.08
|
6 |
+
5,154,112,144,220,10,923,658,20,64,26.82
|
7 |
+
6,147,89,115,202,9,860,829,23,55,25.21
|
8 |
+
7,152,139,178,168,18,944,695,0,20,38.86
|
9 |
+
8,145,0,227,240,6,750,853,14.5,58.5,36.59
|
10 |
+
9,152,0,237,204,6,785,892,15.5,51,32.71
|
11 |
+
10,304,0,140,214,6,895,722,19,51,38.46
|
12 |
+
11,145,106,136,208,10,751,883,24.5,61,26.02
|
13 |
+
12,148,109,139,193,7,768,902,23.75,58,28.03
|
14 |
+
13,142,130,167,215,6,735,836,25.5,67,31.37
|
15 |
+
14,354,0,0,234,6,959,691,17,54,33.91
|
16 |
+
15,374,0,0,190,7,1013,730,14.5,42.5,32.44
|
17 |
+
16,159,116,149,175,15,953,720,23.5,54.5,34.05
|
18 |
+
17,153,0,239,200,6,1002,684,12,35,28.29
|
19 |
+
18,295,106,136,206,11,750,766,25,68.5,41.01
|
20 |
+
19,310,0,143,168,10,914,804,20.5,48.2,49.3
|
21 |
+
20,296,97,0,219,9,932,685,15,48.5,29.23
|
22 |
+
21,305,100,0,196,10,959,705,20,49,29.77
|
23 |
+
22,310,0,143,218,10,787,804,13,46,36.19
|
24 |
+
23,148,180,0,183,11,972,757,0,20,18.52
|
25 |
+
24,146,178,0,192,11,961,749,18,46,17.19
|
26 |
+
25,142,130,167,174,11,883,785,0,20,36.72
|
27 |
+
26,140,128,164,183,12,871,775,23.75,53,33.38
|
28 |
+
27,308,111,142,217,10,783,686,25,70,42.08
|
29 |
+
28,295,106,136,208,6,871,650,26.5,70,39.4
|
30 |
+
29,298,107,137,201,6,878,655,16,26,41.27
|
31 |
+
30,314,0,161,207,6,851,757,21.5,64,41.14
|
32 |
+
31,321,0,164,190,5,870,774,24,60,45.82
|
33 |
+
32,349,0,178,230,6,785,721,20,68.5,43.95
|
34 |
+
33,366,0,187,191,7,824,757,24.75,62.7,52.65
|
35 |
+
34,274,89,115,202,9,759,827,26.5,68,35.52
|
36 |
+
35,137,167,214,226,6,708,757,27.5,70,34.45
|
37 |
+
36,275,99,127,184,13,810,790,25.75,64.5,43.54
|
38 |
+
37,252,76,97,194,8,835,821,23,54,33.11
|
39 |
+
38,165,150,0,182,12,1023,729,14.5,20,18.26
|
40 |
+
39,158,0,246,174,7,1035,706,19,43,34.99
|
41 |
+
40,156,0,243,180,11,1022,698,21,57,33.78
|
42 |
+
41,145,177,227,209,11,752,715,2.5,20,35.66
|
43 |
+
42,154,141,181,234,11,797,683,23,65,33.51
|
44 |
+
43,160,146,188,203,11,829,710,13,38,33.51
|
45 |
+
44,291,105,0,205,6,859,797,24,59,27.62
|
46 |
+
45,298,107,0,186,6,879,815,3,20,30.97
|
47 |
+
46,318,126,0,210,6,861,737,17.5,48,31.77
|
48 |
+
47,280,92,118,207,9,883,679,25.5,64,37.39
|
49 |
+
48,287,94,121,188,9,904,696,25,61,43.01
|
50 |
+
49,332,0,170,160,6,900,806,0,20,58.53
|
51 |
+
50,326,0,167,174,6,884,792,21.5,42,52.65
|
52 |
+
51,320,0,163,188,9,866,776,23.5,60,45.69
|
53 |
+
52,342,136,0,225,11,770,747,21,61,32.04
|
54 |
+
53,356,142,0,193,11,801,778,8,30,36.46
|
55 |
+
54,309,0,142,218,10,912,680,24,62,38.59
|
56 |
+
55,322,0,149,186,8,951,709,20.5,61.5,45.42
|
57 |
+
56,159,193,0,208,12,821,818,23,50,19.19
|
58 |
+
57,307,110,0,189,10,904,765,22,40,31.5
|
59 |
+
58,313,124,0,205,11,846,758,22,49,29.63
|
60 |
+
59,143,131,168,217,6,891,672,25,69,26.42
|
61 |
+
60,140,128,164,237,6,869,656,24,65,29.5
|
62 |
+
61,278,0,117,205,9,875,799,19,48,32.71
|
63 |
+
62,288,0,121,177,7,908,829,22.5,48.5,39.93
|
64 |
+
63,299,107,0,210,10,881,745,25,63,28.29
|
65 |
+
64,291,104,0,231,9,857,725,23,69,30.43
|
66 |
+
65,265,86,111,195,6,833,790,27,60,37.39
|
67 |
+
66,159,0,248,175,12,1041,683,21,51,35.39
|
68 |
+
67,160,0,250,168,12,1049,688,18,48,37.66
|
69 |
+
68,166,0,260,183,13,859,827,21,54,40.34
|
70 |
+
69,320,127,164,211,6,721,723,2,20,46.36
|
71 |
+
70,336,134,0,222,6,756,787,26,64,31.9
|
72 |
+
71,276,90,116,180,9,870,768,0,20,44.08
|
73 |
+
72,313,112,0,220,10,794,789,23,58,28.16
|
74 |
+
73,322,116,0,196,10,818,813,25.5,67,29.77
|
75 |
+
74,294,106,136,207,6,747,778,24,47,41.27
|
76 |
+
75,146,106,137,209,6,875,765,24,67,27.89
|
77 |
+
76,149,109,139,193,6,892,780,23.5,58.5,28.7
|
78 |
+
77,159,0,187,176,11,990,789,12,39,32.57
|
79 |
+
78,261,78,100,201,9,864,761,23,63.5,34.18
|
80 |
+
79,140,1.4,198.1,174.9,4.4,1049.9,780.5,16.25,31,30.83
|
81 |
+
80,141.1,0.6,209.5,188.8,4.6,996.1,789.2,23.5,53,30.43
|
82 |
+
81,140.1,4.2,215.9,193.9,4.7,1049.5,710.1,24.5,57,26.42
|
83 |
+
82,140.1,11.8,226.1,207.8,4.9,1020.9,683.8,21,64,26.28
|
84 |
+
83,160.2,0.3,240,233.5,9.2,781,841.1,24,75,36.19
|
85 |
+
84,140.2,30.5,239,169.4,5.3,1028.4,742.7,21.25,46,36.32
|
86 |
+
85,140.2,44.8,234.9,171.3,5.5,1047.6,704,23.5,52.5,33.78
|
87 |
+
86,140.5,61.1,238.9,182.5,5.7,1017.7,681.4,24.5,60,30.97
|
88 |
+
87,143.3,91.8,239.8,200.8,6.2,964.8,647.1,25,55,27.09
|
89 |
+
88,194.3,0.3,240,234.2,8.9,780.6,811.3,26.5,78,38.46
|
90 |
+
89,150.4,110.9,239.7,168.1,6.5,1000.2,667.2,9.5,27.5,37.92
|
91 |
+
90,150.3,111.4,238.8,167.3,6.5,999.5,670.5,14.5,36.5,38.19
|
92 |
+
91,155.4,122.1,240,179.9,6.7,966.8,652.5,14.5,41.5,35.52
|
93 |
+
92,165.3,143.2,238.3,200.4,7.1,883.2,652.6,17,27,32.84
|
94 |
+
93,303.8,0.2,239.8,236.4,8.3,780.1,715.3,25,78,44.48
|
95 |
+
94,172,162.1,238.5,166,7.4,953.3,641.4,0,20,41.54
|
96 |
+
95,172.8,158.3,239.5,166.4,7.4,952.6,644.1,0,20,41.81
|
97 |
+
96,184.3,153.4,239.2,179,7.5,920.2,640.9,0,20,41.01
|
98 |
+
97,215.6,112.9,239,198.7,7.4,884,649.1,27.5,64,39.13
|
99 |
+
98,295.3,0,239.9,236.2,8.3,780.3,722.9,25,77,44.08
|
100 |
+
99,248.3,101,239.1,168.9,7.7,954.2,640.6,0,20,49.97
|
101 |
+
100,248,101,239.9,169.1,7.7,949.9,644.1,2,20,50.23
|
102 |
+
101,258.8,88,239.6,175.3,7.6,938.9,646,0,20,50.5
|
103 |
+
102,297.1,40.9,239.9,194,7.5,908.9,651.8,27.5,67,49.17
|
104 |
+
103,348.7,0.1,223.1,208.5,9.6,786.2,758.1,29,78,48.77
|
datasets/traffic_flow_forecasting/Traffic Flow Prediction Dataset.docx
ADDED
Binary file (16.8 kB). View file
|
|
datasets/traffic_flow_forecasting/traffic_dataset.mat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a3f8b443fd48e2d687d3169d95ac68b6bc31999343b1885eadb787d3aaedbc
|
3 |
+
size 4401723
|
datasets/yacht_hydrodynamics.data
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-2.3 0.568 4.78 3.99 3.17 0.125 0.11
|
2 |
+
-2.3 0.568 4.78 3.99 3.17 0.150 0.27
|
3 |
+
-2.3 0.568 4.78 3.99 3.17 0.175 0.47
|
4 |
+
-2.3 0.568 4.78 3.99 3.17 0.200 0.78
|
5 |
+
-2.3 0.568 4.78 3.99 3.17 0.225 1.18
|
6 |
+
-2.3 0.568 4.78 3.99 3.17 0.250 1.82
|
7 |
+
-2.3 0.568 4.78 3.99 3.17 0.275 2.61
|
8 |
+
-2.3 0.568 4.78 3.99 3.17 0.300 3.76
|
9 |
+
-2.3 0.568 4.78 3.99 3.17 0.325 4.99
|
10 |
+
-2.3 0.568 4.78 3.99 3.17 0.350 7.16
|
11 |
+
-2.3 0.568 4.78 3.99 3.17 0.375 11.93
|
12 |
+
-2.3 0.568 4.78 3.99 3.17 0.400 20.11
|
13 |
+
-2.3 0.568 4.78 3.99 3.17 0.425 32.75
|
14 |
+
-2.3 0.568 4.78 3.99 3.17 0.450 49.49
|
15 |
+
-2.3 0.569 4.78 3.04 3.64 0.125 0.04
|
16 |
+
-2.3 0.569 4.78 3.04 3.64 0.150 0.17
|
17 |
+
-2.3 0.569 4.78 3.04 3.64 0.175 0.37
|
18 |
+
-2.3 0.569 4.78 3.04 3.64 0.200 0.66
|
19 |
+
-2.3 0.569 4.78 3.04 3.64 0.225 1.06
|
20 |
+
-2.3 0.569 4.78 3.04 3.64 0.250 1.59
|
21 |
+
-2.3 0.569 4.78 3.04 3.64 0.275 2.33
|
22 |
+
-2.3 0.569 4.78 3.04 3.64 0.300 3.29
|
23 |
+
-2.3 0.569 4.78 3.04 3.64 0.325 4.61
|
24 |
+
-2.3 0.569 4.78 3.04 3.64 0.350 7.11
|
25 |
+
-2.3 0.569 4.78 3.04 3.64 0.375 11.99
|
26 |
+
-2.3 0.569 4.78 3.04 3.64 0.400 21.09
|
27 |
+
-2.3 0.569 4.78 3.04 3.64 0.425 35.01
|
28 |
+
-2.3 0.569 4.78 3.04 3.64 0.450 51.80
|
29 |
+
-2.3 0.565 4.78 5.35 2.76 0.125 0.09
|
30 |
+
-2.3 0.565 4.78 5.35 2.76 0.150 0.29
|
31 |
+
-2.3 0.565 4.78 5.35 2.76 0.175 0.56
|
32 |
+
-2.3 0.565 4.78 5.35 2.76 0.200 0.86
|
33 |
+
-2.3 0.565 4.78 5.35 2.76 0.225 1.31
|
34 |
+
-2.3 0.565 4.78 5.35 2.76 0.250 1.99
|
35 |
+
-2.3 0.565 4.78 5.35 2.76 0.275 2.94
|
36 |
+
-2.3 0.565 4.78 5.35 2.76 0.300 4.21
|
37 |
+
-2.3 0.565 4.78 5.35 2.76 0.325 5.54
|
38 |
+
-2.3 0.565 4.78 5.35 2.76 0.350 8.25
|
39 |
+
-2.3 0.565 4.78 5.35 2.76 0.375 13.08
|
40 |
+
-2.3 0.565 4.78 5.35 2.76 0.400 21.40
|
41 |
+
-2.3 0.565 4.78 5.35 2.76 0.425 33.14
|
42 |
+
-2.3 0.565 4.78 5.35 2.76 0.450 50.14
|
43 |
+
-2.3 0.564 5.10 3.95 3.53 0.125 0.20
|
44 |
+
-2.3 0.564 5.10 3.95 3.53 0.150 0.35
|
45 |
+
-2.3 0.564 5.10 3.95 3.53 0.175 0.65
|
46 |
+
-2.3 0.564 5.10 3.95 3.53 0.200 0.93
|
47 |
+
-2.3 0.564 5.10 3.95 3.53 0.225 1.37
|
48 |
+
-2.3 0.564 5.10 3.95 3.53 0.250 1.97
|
49 |
+
-2.3 0.564 5.10 3.95 3.53 0.275 2.83
|
50 |
+
-2.3 0.564 5.10 3.95 3.53 0.300 3.99
|
51 |
+
-2.3 0.564 5.10 3.95 3.53 0.325 5.19
|
52 |
+
-2.3 0.564 5.10 3.95 3.53 0.350 8.03
|
53 |
+
-2.3 0.564 5.10 3.95 3.53 0.375 12.86
|
54 |
+
-2.3 0.564 5.10 3.95 3.53 0.400 21.51
|
55 |
+
-2.3 0.564 5.10 3.95 3.53 0.425 33.97
|
56 |
+
-2.3 0.564 5.10 3.95 3.53 0.450 50.36
|
57 |
+
-2.4 0.574 4.36 3.96 2.76 0.125 0.20
|
58 |
+
-2.4 0.574 4.36 3.96 2.76 0.150 0.35
|
59 |
+
-2.4 0.574 4.36 3.96 2.76 0.175 0.65
|
60 |
+
-2.4 0.574 4.36 3.96 2.76 0.200 0.93
|
61 |
+
-2.4 0.574 4.36 3.96 2.76 0.225 1.37
|
62 |
+
-2.4 0.574 4.36 3.96 2.76 0.250 1.97
|
63 |
+
-2.4 0.574 4.36 3.96 2.76 0.275 2.83
|
64 |
+
-2.4 0.574 4.36 3.96 2.76 0.300 3.99
|
65 |
+
-2.4 0.574 4.36 3.96 2.76 0.325 5.19
|
66 |
+
-2.4 0.574 4.36 3.96 2.76 0.350 8.03
|
67 |
+
-2.4 0.574 4.36 3.96 2.76 0.375 12.86
|
68 |
+
-2.4 0.574 4.36 3.96 2.76 0.400 21.51
|
69 |
+
-2.4 0.574 4.36 3.96 2.76 0.425 33.97
|
70 |
+
-2.4 0.574 4.36 3.96 2.76 0.450 50.36
|
71 |
+
-2.4 0.568 4.34 2.98 3.15 0.125 0.12
|
72 |
+
-2.4 0.568 4.34 2.98 3.15 0.150 0.26
|
73 |
+
-2.4 0.568 4.34 2.98 3.15 0.175 0.43
|
74 |
+
-2.4 0.568 4.34 2.98 3.15 0.200 0.69
|
75 |
+
-2.4 0.568 4.34 2.98 3.15 0.225 1.09
|
76 |
+
-2.4 0.568 4.34 2.98 3.15 0.250 1.67
|
77 |
+
-2.4 0.568 4.34 2.98 3.15 0.275 2.46
|
78 |
+
-2.4 0.568 4.34 2.98 3.15 0.300 3.43
|
79 |
+
-2.4 0.568 4.34 2.98 3.15 0.325 4.62
|
80 |
+
-2.4 0.568 4.34 2.98 3.15 0.350 6.86
|
81 |
+
-2.4 0.568 4.34 2.98 3.15 0.375 11.56
|
82 |
+
-2.4 0.568 4.34 2.98 3.15 0.400 20.63
|
83 |
+
-2.4 0.568 4.34 2.98 3.15 0.425 34.50
|
84 |
+
-2.4 0.568 4.34 2.98 3.15 0.450 54.23
|
85 |
+
-2.3 0.562 5.14 4.95 3.17 0.125 0.28
|
86 |
+
-2.3 0.562 5.14 4.95 3.17 0.150 0.44
|
87 |
+
-2.3 0.562 5.14 4.95 3.17 0.175 0.70
|
88 |
+
-2.3 0.562 5.14 4.95 3.17 0.200 1.07
|
89 |
+
-2.3 0.562 5.14 4.95 3.17 0.225 1.57
|
90 |
+
-2.3 0.562 5.14 4.95 3.17 0.250 2.23
|
91 |
+
-2.3 0.562 5.14 4.95 3.17 0.275 3.09
|
92 |
+
-2.3 0.562 5.14 4.95 3.17 0.300 4.09
|
93 |
+
-2.3 0.562 5.14 4.95 3.17 0.325 5.82
|
94 |
+
-2.3 0.562 5.14 4.95 3.17 0.350 8.28
|
95 |
+
-2.3 0.562 5.14 4.95 3.17 0.375 12.80
|
96 |
+
-2.3 0.562 5.14 4.95 3.17 0.400 20.41
|
97 |
+
-2.3 0.562 5.14 4.95 3.17 0.425 32.34
|
98 |
+
-2.3 0.562 5.14 4.95 3.17 0.450 47.29
|
99 |
+
-2.4 0.585 4.78 3.84 3.32 0.125 0.20
|
100 |
+
-2.4 0.585 4.78 3.84 3.32 0.150 0.38
|
101 |
+
-2.4 0.585 4.78 3.84 3.32 0.175 0.64
|
102 |
+
-2.4 0.585 4.78 3.84 3.32 0.200 0.97
|
103 |
+
-2.4 0.585 4.78 3.84 3.32 0.225 1.36
|
104 |
+
-2.4 0.585 4.78 3.84 3.32 0.250 1.98
|
105 |
+
-2.4 0.585 4.78 3.84 3.32 0.275 2.91
|
106 |
+
-2.4 0.585 4.78 3.84 3.32 0.300 4.35
|
107 |
+
-2.4 0.585 4.78 3.84 3.32 0.325 5.79
|
108 |
+
-2.4 0.585 4.78 3.84 3.32 0.350 8.04
|
109 |
+
-2.4 0.585 4.78 3.84 3.32 0.375 12.15
|
110 |
+
-2.4 0.585 4.78 3.84 3.32 0.400 19.18
|
111 |
+
-2.4 0.585 4.78 3.84 3.32 0.425 30.09
|
112 |
+
-2.4 0.585 4.78 3.84 3.32 0.450 44.38
|
113 |
+
-2.2 0.546 4.78 4.13 3.07 0.125 0.15
|
114 |
+
-2.2 0.546 4.78 4.13 3.07 0.150 0.32
|
115 |
+
-2.2 0.546 4.78 4.13 3.07 0.175 0.55
|
116 |
+
-2.2 0.546 4.78 4.13 3.07 0.200 0.86
|
117 |
+
-2.2 0.546 4.78 4.13 3.07 0.225 1.24
|
118 |
+
-2.2 0.546 4.78 4.13 3.07 0.250 1.76
|
119 |
+
-2.2 0.546 4.78 4.13 3.07 0.275 2.49
|
120 |
+
-2.2 0.546 4.78 4.13 3.07 0.300 3.45
|
121 |
+
-2.2 0.546 4.78 4.13 3.07 0.325 4.83
|
122 |
+
-2.2 0.546 4.78 4.13 3.07 0.350 7.37
|
123 |
+
-2.2 0.546 4.78 4.13 3.07 0.375 12.76
|
124 |
+
-2.2 0.546 4.78 4.13 3.07 0.400 21.99
|
125 |
+
-2.2 0.546 4.78 4.13 3.07 0.425 35.64
|
126 |
+
-2.2 0.546 4.78 4.13 3.07 0.450 53.07
|
127 |
+
0.0 0.565 4.77 3.99 3.15 0.125 0.11
|
128 |
+
0.0 0.565 4.77 3.99 3.15 0.150 0.24
|
129 |
+
0.0 0.565 4.77 3.99 3.15 0.175 0.49
|
130 |
+
0.0 0.565 4.77 3.99 3.15 0.200 0.79
|
131 |
+
0.0 0.565 4.77 3.99 3.15 0.225 1.28
|
132 |
+
0.0 0.565 4.77 3.99 3.15 0.250 1.96
|
133 |
+
0.0 0.565 4.77 3.99 3.15 0.275 2.88
|
134 |
+
0.0 0.565 4.77 3.99 3.15 0.300 4.14
|
135 |
+
0.0 0.565 4.77 3.99 3.15 0.325 5.96
|
136 |
+
0.0 0.565 4.77 3.99 3.15 0.350 9.07
|
137 |
+
0.0 0.565 4.77 3.99 3.15 0.375 14.93
|
138 |
+
0.0 0.565 4.77 3.99 3.15 0.400 24.13
|
139 |
+
0.0 0.565 4.77 3.99 3.15 0.425 38.12
|
140 |
+
0.0 0.565 4.77 3.99 3.15 0.450 55.44
|
141 |
+
-5.0 0.565 4.77 3.99 3.15 0.125 0.07
|
142 |
+
-5.0 0.565 4.77 3.99 3.15 0.150 0.18
|
143 |
+
-5.0 0.565 4.77 3.99 3.15 0.175 0.40
|
144 |
+
-5.0 0.565 4.77 3.99 3.15 0.200 0.70
|
145 |
+
-5.0 0.565 4.77 3.99 3.15 0.225 1.14
|
146 |
+
-5.0 0.565 4.77 3.99 3.15 0.250 1.83
|
147 |
+
-5.0 0.565 4.77 3.99 3.15 0.275 2.77
|
148 |
+
-5.0 0.565 4.77 3.99 3.15 0.300 4.12
|
149 |
+
-5.0 0.565 4.77 3.99 3.15 0.325 5.41
|
150 |
+
-5.0 0.565 4.77 3.99 3.15 0.350 7.87
|
151 |
+
-5.0 0.565 4.77 3.99 3.15 0.375 12.71
|
152 |
+
-5.0 0.565 4.77 3.99 3.15 0.400 21.02
|
153 |
+
-5.0 0.565 4.77 3.99 3.15 0.425 34.58
|
154 |
+
-5.0 0.565 4.77 3.99 3.15 0.450 51.77
|
155 |
+
0.0 0.565 5.10 3.94 3.51 0.125 0.08
|
156 |
+
0.0 0.565 5.10 3.94 3.51 0.150 0.26
|
157 |
+
0.0 0.565 5.10 3.94 3.51 0.175 0.50
|
158 |
+
0.0 0.565 5.10 3.94 3.51 0.200 0.83
|
159 |
+
0.0 0.565 5.10 3.94 3.51 0.225 1.28
|
160 |
+
0.0 0.565 5.10 3.94 3.51 0.250 1.90
|
161 |
+
0.0 0.565 5.10 3.94 3.51 0.275 2.68
|
162 |
+
0.0 0.565 5.10 3.94 3.51 0.300 3.76
|
163 |
+
0.0 0.565 5.10 3.94 3.51 0.325 5.57
|
164 |
+
0.0 0.565 5.10 3.94 3.51 0.350 8.76
|
165 |
+
0.0 0.565 5.10 3.94 3.51 0.375 14.24
|
166 |
+
0.0 0.565 5.10 3.94 3.51 0.400 23.05
|
167 |
+
0.0 0.565 5.10 3.94 3.51 0.425 35.46
|
168 |
+
0.0 0.565 5.10 3.94 3.51 0.450 51.99
|
169 |
+
-5.0 0.565 5.10 3.94 3.51 0.125 0.08
|
170 |
+
-5.0 0.565 5.10 3.94 3.51 0.150 0.24
|
171 |
+
-5.0 0.565 5.10 3.94 3.51 0.175 0.45
|
172 |
+
-5.0 0.565 5.10 3.94 3.51 0.200 0.77
|
173 |
+
-5.0 0.565 5.10 3.94 3.51 0.225 1.19
|
174 |
+
-5.0 0.565 5.10 3.94 3.51 0.250 1.76
|
175 |
+
-5.0 0.565 5.10 3.94 3.51 0.275 2.59
|
176 |
+
-5.0 0.565 5.10 3.94 3.51 0.300 3.85
|
177 |
+
-5.0 0.565 5.10 3.94 3.51 0.325 5.27
|
178 |
+
-5.0 0.565 5.10 3.94 3.51 0.350 7.74
|
179 |
+
-5.0 0.565 5.10 3.94 3.51 0.375 12.40
|
180 |
+
-5.0 0.565 5.10 3.94 3.51 0.400 20.91
|
181 |
+
-5.0 0.565 5.10 3.94 3.51 0.425 33.23
|
182 |
+
-5.0 0.565 5.10 3.94 3.51 0.450 49.14
|
183 |
+
-2.3 0.530 5.11 3.69 3.51 0.125 0.08
|
184 |
+
-2.3 0.530 5.11 3.69 3.51 0.150 0.25
|
185 |
+
-2.3 0.530 5.11 3.69 3.51 0.175 0.46
|
186 |
+
-2.3 0.530 5.11 3.69 3.51 0.200 0.75
|
187 |
+
-2.3 0.530 5.11 3.69 3.51 0.225 1.11
|
188 |
+
-2.3 0.530 5.11 3.69 3.51 0.250 1.57
|
189 |
+
-2.3 0.530 5.11 3.69 3.51 0.275 2.17
|
190 |
+
-2.3 0.530 5.11 3.69 3.51 0.300 2.98
|
191 |
+
-2.3 0.530 5.11 3.69 3.51 0.325 4.42
|
192 |
+
-2.3 0.530 5.11 3.69 3.51 0.350 7.84
|
193 |
+
-2.3 0.530 5.11 3.69 3.51 0.375 14.11
|
194 |
+
-2.3 0.530 5.11 3.69 3.51 0.400 24.14
|
195 |
+
-2.3 0.530 5.11 3.69 3.51 0.425 37.95
|
196 |
+
-2.3 0.530 5.11 3.69 3.51 0.450 55.17
|
197 |
+
-2.3 0.530 4.76 3.68 3.16 0.125 0.10
|
198 |
+
-2.3 0.530 4.76 3.68 3.16 0.150 0.23
|
199 |
+
-2.3 0.530 4.76 3.68 3.16 0.175 0.47
|
200 |
+
-2.3 0.530 4.76 3.68 3.16 0.200 0.76
|
201 |
+
-2.3 0.530 4.76 3.68 3.16 0.225 1.15
|
202 |
+
-2.3 0.530 4.76 3.68 3.16 0.250 1.65
|
203 |
+
-2.3 0.530 4.76 3.68 3.16 0.275 2.28
|
204 |
+
-2.3 0.530 4.76 3.68 3.16 0.300 3.09
|
205 |
+
-2.3 0.530 4.76 3.68 3.16 0.325 4.41
|
206 |
+
-2.3 0.530 4.76 3.68 3.16 0.350 7.51
|
207 |
+
-2.3 0.530 4.76 3.68 3.16 0.375 13.77
|
208 |
+
-2.3 0.530 4.76 3.68 3.16 0.400 23.96
|
209 |
+
-2.3 0.530 4.76 3.68 3.16 0.425 37.38
|
210 |
+
-2.3 0.530 4.76 3.68 3.16 0.450 56.46
|
211 |
+
-2.3 0.530 4.34 2.81 3.15 0.125 0.05
|
212 |
+
-2.3 0.530 4.34 2.81 3.15 0.150 0.17
|
213 |
+
-2.3 0.530 4.34 2.81 3.15 0.175 0.35
|
214 |
+
-2.3 0.530 4.34 2.81 3.15 0.200 0.63
|
215 |
+
-2.3 0.530 4.34 2.81 3.15 0.225 1.01
|
216 |
+
-2.3 0.530 4.34 2.81 3.15 0.250 1.43
|
217 |
+
-2.3 0.530 4.34 2.81 3.15 0.275 2.05
|
218 |
+
-2.3 0.530 4.34 2.81 3.15 0.300 2.73
|
219 |
+
-2.3 0.530 4.34 2.81 3.15 0.325 3.87
|
220 |
+
-2.3 0.530 4.34 2.81 3.15 0.350 7.19
|
221 |
+
-2.3 0.530 4.34 2.81 3.15 0.375 13.96
|
222 |
+
-2.3 0.530 4.34 2.81 3.15 0.400 25.18
|
223 |
+
-2.3 0.530 4.34 2.81 3.15 0.425 41.34
|
224 |
+
-2.3 0.530 4.34 2.81 3.15 0.450 62.42
|
225 |
+
0.0 0.600 4.78 4.24 3.15 0.125 0.03
|
226 |
+
0.0 0.600 4.78 4.24 3.15 0.150 0.18
|
227 |
+
0.0 0.600 4.78 4.24 3.15 0.175 0.40
|
228 |
+
0.0 0.600 4.78 4.24 3.15 0.200 0.73
|
229 |
+
0.0 0.600 4.78 4.24 3.15 0.225 1.30
|
230 |
+
0.0 0.600 4.78 4.24 3.15 0.250 2.16
|
231 |
+
0.0 0.600 4.78 4.24 3.15 0.275 3.35
|
232 |
+
0.0 0.600 4.78 4.24 3.15 0.300 5.06
|
233 |
+
0.0 0.600 4.78 4.24 3.15 0.325 7.14
|
234 |
+
0.0 0.600 4.78 4.24 3.15 0.350 10.36
|
235 |
+
0.0 0.600 4.78 4.24 3.15 0.375 15.25
|
236 |
+
0.0 0.600 4.78 4.24 3.15 0.400 23.15
|
237 |
+
0.0 0.600 4.78 4.24 3.15 0.425 34.62
|
238 |
+
0.0 0.600 4.78 4.24 3.15 0.450 51.50
|
239 |
+
-5.0 0.600 4.78 4.24 3.15 0.125 0.06
|
240 |
+
-5.0 0.600 4.78 4.24 3.15 0.150 0.15
|
241 |
+
-5.0 0.600 4.78 4.24 3.15 0.175 0.34
|
242 |
+
-5.0 0.600 4.78 4.24 3.15 0.200 0.63
|
243 |
+
-5.0 0.600 4.78 4.24 3.15 0.225 1.13
|
244 |
+
-5.0 0.600 4.78 4.24 3.15 0.250 1.85
|
245 |
+
-5.0 0.600 4.78 4.24 3.15 0.275 2.84
|
246 |
+
-5.0 0.600 4.78 4.24 3.15 0.300 4.34
|
247 |
+
-5.0 0.600 4.78 4.24 3.15 0.325 6.20
|
248 |
+
-5.0 0.600 4.78 4.24 3.15 0.350 8.62
|
249 |
+
-5.0 0.600 4.78 4.24 3.15 0.375 12.49
|
250 |
+
-5.0 0.600 4.78 4.24 3.15 0.400 20.41
|
251 |
+
-5.0 0.600 4.78 4.24 3.15 0.425 32.46
|
252 |
+
-5.0 0.600 4.78 4.24 3.15 0.450 50.94
|
253 |
+
0.0 0.530 4.78 3.75 3.15 0.125 0.16
|
254 |
+
0.0 0.530 4.78 3.75 3.15 0.150 0.32
|
255 |
+
0.0 0.530 4.78 3.75 3.15 0.175 0.59
|
256 |
+
0.0 0.530 4.78 3.75 3.15 0.200 0.92
|
257 |
+
0.0 0.530 4.78 3.75 3.15 0.225 1.37
|
258 |
+
0.0 0.530 4.78 3.75 3.15 0.250 1.94
|
259 |
+
0.0 0.530 4.78 3.75 3.15 0.275 2.62
|
260 |
+
0.0 0.530 4.78 3.75 3.15 0.300 3.70
|
261 |
+
0.0 0.530 4.78 3.75 3.15 0.325 5.45
|
262 |
+
0.0 0.530 4.78 3.75 3.15 0.350 9.45
|
263 |
+
0.0 0.530 4.78 3.75 3.15 0.375 16.31
|
264 |
+
0.0 0.530 4.78 3.75 3.15 0.400 27.34
|
265 |
+
0.0 0.530 4.78 3.75 3.15 0.425 41.77
|
266 |
+
0.0 0.530 4.78 3.75 3.15 0.450 60.85
|
267 |
+
-5.0 0.530 4.78 3.75 3.15 0.125 0.09
|
268 |
+
-5.0 0.530 4.78 3.75 3.15 0.150 0.24
|
269 |
+
-5.0 0.530 4.78 3.75 3.15 0.175 0.47
|
270 |
+
-5.0 0.530 4.78 3.75 3.15 0.200 0.78
|
271 |
+
-5.0 0.530 4.78 3.75 3.15 0.225 1.21
|
272 |
+
-5.0 0.530 4.78 3.75 3.15 0.250 1.85
|
273 |
+
-5.0 0.530 4.78 3.75 3.15 0.275 2.62
|
274 |
+
-5.0 0.530 4.78 3.75 3.15 0.300 3.69
|
275 |
+
-5.0 0.530 4.78 3.75 3.15 0.325 5.07
|
276 |
+
-5.0 0.530 4.78 3.75 3.15 0.350 7.95
|
277 |
+
-5.0 0.530 4.78 3.75 3.15 0.375 13.73
|
278 |
+
-5.0 0.530 4.78 3.75 3.15 0.400 23.55
|
279 |
+
-5.0 0.530 4.78 3.75 3.15 0.425 37.14
|
280 |
+
-5.0 0.530 4.78 3.75 3.15 0.450 55.87
|
281 |
+
-2.3 0.600 5.10 4.17 3.51 0.125 0.01
|
282 |
+
-2.3 0.600 5.10 4.17 3.51 0.150 0.16
|
283 |
+
-2.3 0.600 5.10 4.17 3.51 0.175 0.39
|
284 |
+
-2.3 0.600 5.10 4.17 3.51 0.200 0.73
|
285 |
+
-2.3 0.600 5.10 4.17 3.51 0.225 1.24
|
286 |
+
-2.3 0.600 5.10 4.17 3.51 0.250 1.96
|
287 |
+
-2.3 0.600 5.10 4.17 3.51 0.275 3.04
|
288 |
+
-2.3 0.600 5.10 4.17 3.51 0.300 4.46
|
289 |
+
-2.3 0.600 5.10 4.17 3.51 0.325 6.31
|
290 |
+
-2.3 0.600 5.10 4.17 3.51 0.350 8.68
|
291 |
+
-2.3 0.600 5.10 4.17 3.51 0.375 12.39
|
292 |
+
-2.3 0.600 5.10 4.17 3.51 0.400 20.14
|
293 |
+
-2.3 0.600 5.10 4.17 3.51 0.425 31.77
|
294 |
+
-2.3 0.600 5.10 4.17 3.51 0.450 47.13
|
295 |
+
-2.3 0.600 4.34 4.23 2.73 0.125 0.04
|
296 |
+
-2.3 0.600 4.34 4.23 2.73 0.150 0.17
|
297 |
+
-2.3 0.600 4.34 4.23 2.73 0.175 0.36
|
298 |
+
-2.3 0.600 4.34 4.23 2.73 0.200 0.64
|
299 |
+
-2.3 0.600 4.34 4.23 2.73 0.225 1.02
|
300 |
+
-2.3 0.600 4.34 4.23 2.73 0.250 1.62
|
301 |
+
-2.3 0.600 4.34 4.23 2.73 0.275 2.63
|
302 |
+
-2.3 0.600 4.34 4.23 2.73 0.300 4.15
|
303 |
+
-2.3 0.600 4.34 4.23 2.73 0.325 6.00
|
304 |
+
-2.3 0.600 4.34 4.23 2.73 0.350 8.47
|
305 |
+
-2.3 0.600 4.34 4.23 2.73 0.375 12.27
|
306 |
+
-2.3 0.600 4.34 4.23 2.73 0.400 19.59
|
307 |
+
-2.3 0.600 4.34 4.23 2.73 0.425 30.48
|
308 |
+
-2.3 0.600 4.34 4.23 2.73 0.450 46.66
|
309 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
monotonenorm
|