--- base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Locale:Locale molto bene arredato, con stile e atmosfera tipica valtellinese. Cucina ottima, dal bastone di carne al pesce, dai pizzoccheri agli gnocchetti, dal vino ai dolci, tutto perfetto e soprattutto di grande qualità... Filippo poi è un’autentica forza della natura, molto simpatico, cordiale e amichevole,...Altro - text: cucina:Locale accogliente e familiare...bravissima la ragazza in cucina, come le ragazze al banco e in sala! CONSIGLIATO - text: servizio:Il servizio era impeccabile e il tortello di zucca era sublime. - text: cucina:Il ristorante propone piatti vegetariani che NON sono vegetariani. Dopo aver specificato al servizio la nostra etica alimentare, ci è stata consigliata una portata che durante la consumazione abbiamo constatato con amarezza che avesse parti di maiale come ingredienti (confermato dalla cucina). Poco valgono le...scuse del servizio, trovo assurdo e inconcepibile che situazioni del genere possano accadere nel 2024. Evidentemente questo è indice della poca professionalità di questo ristorante.Altro - text: servizio:La polenta con formaggio era saporita, ma il servizio è stato lento. inference: false model-index: - name: SetFit Aspect Model with sentence-transformers/paraphrase-multilingual-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.8096514745308312 name: F1 --- # SetFit Aspect Model with sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **spaCy Model:** it_core_news_lg - **SetFitABSA Aspect Model:** [MattiaTintori/Final_aspect_Colab_It](https://huggingface.co/MattiaTintori/Final_aspect_Colab_It) - **SetFitABSA Polarity Model:** [setfit-absa-polarity](https://huggingface.co/setfit-absa-polarity) - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect |