Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
metrics:
|
3 |
-
Recall @10
|
4 |
-
MRR @10
|
5 |
base_model:
|
6 |
- unicamp-dl/mt5-base-mmarco-v2
|
7 |
tags:
|
@@ -9,4 +9,123 @@ tags:
|
|
9 |
- Natural Language Processing
|
10 |
- Question Answering
|
11 |
license: apache-2.0
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
metrics:
|
3 |
+
- Recall @10 0.438
|
4 |
+
- MRR @10 0.247
|
5 |
base_model:
|
6 |
- unicamp-dl/mt5-base-mmarco-v2
|
7 |
tags:
|
|
|
9 |
- Natural Language Processing
|
10 |
- Question Answering
|
11 |
license: apache-2.0
|
12 |
+
---
|
13 |
+
|
14 |
+
# Urdu-mT5-mmarco: Fine-Tuned mT5 Model for Urdu Information Retrieval
|
15 |
+
|
16 |
+
As part of ongoing efforts to make Information Retrieval (IR) more inclusive, this model addresses the needs of low-resource languages, focusing specifically on Urdu.
|
17 |
+
We created this model by translating the MS-Marco dataset into Urdu using the IndicTrans2 model.
|
18 |
+
To establish baseline performance, we initially tested for zero-shot learning for IR in Urdu using the unicamp-dl/mt5-base-mmarco-v2 model
|
19 |
+
and then applied fine-tuning with the mMARCO multilingual IR methodology on the translated dataset.
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
|
25 |
+
<!-- Provide a longer summary of what this model is. -->
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
- **Developed by:** Umer Butt
|
30 |
+
- **Model type:** MT5ForConditionalGeneration
|
31 |
+
- **Language(s) (NLP):** Python/pytorch
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
## Bias, Risks, and Limitations
|
45 |
+
|
46 |
+
Although this model performs well and is state-of-the-art for now. But still this model is finetuned on mmarco model and a translated dataset(which was created using indicTrans2 model). Hence the limitations of those apply here too.
|
47 |
+
|
48 |
+
### Recommendations
|
49 |
+
|
50 |
+
|
51 |
+
## How to Get Started with the Model
|
52 |
+
|
53 |
+
Use the code below to get started with the model.
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
## Evaluation
|
58 |
+
|
59 |
+
The evaluation was done using the scripts in the pygaggle library. Specifically these files:
|
60 |
+
evaluate_monot5_reranker.py
|
61 |
+
ms_marco_eval.py
|
62 |
+
|
63 |
+
#### Metrics
|
64 |
+
Following the approach in the mmarco work. The same two metrics were used.
|
65 |
+
|
66 |
+
Recal @10 : 0.438
|
67 |
+
MRR @10 : 0.247
|
68 |
+
|
69 |
+
|
70 |
+
### Results
|
71 |
+
## Detailed Results
|
72 |
+
|
73 |
+
| Model | Name | Data | Recall@10 | MRR@10 | Queries Ranked |
|
74 |
+
|---------------------------------------|---------------------------------------|--------------|-----------|--------|----------------|
|
75 |
+
| bm25 (k = 1000) | BM25 - Baseline from mmarco paper | English data | 0.391 | 0.187 | 6980 |
|
76 |
+
| unicamp-dl/mt5-base-mmarco-v2 | mmarco reranker - Baseline from paper | English data | | 0.370 | 6980 |
|
77 |
+
| bm25 (k = 1000) | BM25 | Urdu data | 0.2675 | 0.129 | 6980 |
|
78 |
+
| unicamp-dl/mt5-base-mmarco-v2 | Zero-shot mmarco | Urdu data | 0.408 | 0.204 | 6980 |
|
79 |
+
| This work | Mavkif/urdu-mt5-mmarco | Urdu data | 0.438 | 0.247 | 6980 |
|
80 |
+
|
81 |
+
|
82 |
+
#### Summary
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
### Model Architecture and Objective
|
87 |
+
From config.json :
|
88 |
+
|
89 |
+
{
|
90 |
+
"_name_or_path": "unicamp-dl/mt5-base-mmarco-v2",
|
91 |
+
"architectures": [
|
92 |
+
"MT5ForConditionalGeneration"
|
93 |
+
],
|
94 |
+
"classifier_dropout": 0.0,
|
95 |
+
"d_ff": 2048,
|
96 |
+
"d_kv": 64,
|
97 |
+
"d_model": 768,
|
98 |
+
"decoder_start_token_id": 0,
|
99 |
+
"dense_act_fn": "gelu_new",
|
100 |
+
"dropout_rate": 0.1,
|
101 |
+
"eos_token_id": 1,
|
102 |
+
"feed_forward_proj": "gated-gelu",
|
103 |
+
"initializer_factor": 1.0,
|
104 |
+
"is_encoder_decoder": true,
|
105 |
+
"is_gated_act": true,
|
106 |
+
"layer_norm_epsilon": 1e-06,
|
107 |
+
"model_type": "mt5",
|
108 |
+
"num_decoder_layers": 12,
|
109 |
+
"num_heads": 12,
|
110 |
+
"num_layers": 12,
|
111 |
+
"output_past": true,
|
112 |
+
"pad_token_id": 0,
|
113 |
+
"relative_attention_max_distance": 128,
|
114 |
+
"relative_attention_num_buckets": 32,
|
115 |
+
"tie_word_embeddings": false,
|
116 |
+
"tokenizer_class": "T5Tokenizer",
|
117 |
+
"torch_dtype": "float32",
|
118 |
+
"transformers_version": "4.38.2",
|
119 |
+
"use_cache": true,
|
120 |
+
"vocab_size": 250112
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
## Model Card Authors [optional]
|
125 |
+
|
126 |
+
Umer Butt
|
127 |
+
|
128 |
+
|
129 |
+
## Model Card Contact
|
130 |
+
|
131 |
+
mumertbutt@gmail.com
|