File size: 2,024 Bytes
12f6e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cifar100
metrics:
- accuracy
model-index:
- name: swin-base-finetuned-cifar100
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar100
type: cifar100
config: cifar100
split: train
args: cifar100
metrics:
- name: Accuracy
type: accuracy
value: 0.9201
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-finetuned-cifar100
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the cifar100 dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9201
- Loss: 0.3670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.3536 | 1.0 | 781 | 0.9052 | 0.3141 |
| 0.3254 | 2.0 | 1562 | 0.9117 | 0.2991 |
| 0.0936 | 3.0 | 2343 | 0.9138 | 0.3322 |
| 0.1054 | 4.0 | 3124 | 0.9158 | 0.3483 |
| 0.0269 | 5.0 | 3905 | 0.9201 | 0.3670 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|