--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar100 metrics: - accuracy model-index: - name: swin-base-finetuned-cifar100 results: - task: name: Image Classification type: image-classification dataset: name: cifar100 type: cifar100 config: cifar100 split: train args: cifar100 metrics: - name: Accuracy type: accuracy value: 0.9201 --- # swin-base-finetuned-cifar100 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the cifar100 dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9201 - Loss: 0.3670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.3536 | 1.0 | 781 | 0.9052 | 0.3141 | | 0.3254 | 2.0 | 1562 | 0.9117 | 0.2991 | | 0.0936 | 3.0 | 2343 | 0.9138 | 0.3322 | | 0.1054 | 4.0 | 3124 | 0.9158 | 0.3483 | | 0.0269 | 5.0 | 3905 | 0.9201 | 0.3670 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2